
fenvs-08-525469 October 12, 2020 Time: 15:58 # 1

ORIGINAL RESEARCH
published: 16 October 2020

doi: 10.3389/fenvs.2020.525469

Edited by:
Andrew Hursthouse,

University of the West of Scotland,
United Kingdom

Reviewed by:
Mitja Janža,

Geological Survey Ljubljana, Slovenia
Dino Musmarra,

University of Campania Luigi Vanvitelli,
Italy

*Correspondence:
Loris Colombo

loris.colombo@polimi.it

†These authors have contributed
equally to this work

Specialty section:
This article was submitted to
Toxicology, Pollution and the

Environment,
a section of the journal

Frontiers in Environmental Science

Received: 09 January 2020
Accepted: 07 September 2020

Published: 16 October 2020

Citation:
Colombo L, Alberti L, Azzellino A

and Bellotti M (2020)
Multi-Methodological Integrated

Approach for the Assessment
of Diffuse Pollution Background

Levels (DPBLs) in Functional Urban
Areas: The PCE Case in Milano NW

Sector. Front. Environ. Sci. 8:525469.
doi: 10.3389/fenvs.2020.525469

Multi-Methodological Integrated
Approach for the Assessment of
Diffuse Pollution Background Levels
(DPBLs) in Functional Urban Areas:
The PCE Case in Milano NW Sector
Loris Colombo1*†, Luca Alberti1,2†, Arianna Azzellino1† and Marina Bellotti3†

1 Dipartimento di Ingegneria Civile e Ambientale, Politecnico Di Milano, Milan, Italy, 2 AMIIGA Project Work Package Leader,
Milan, Italy, 3 Direzione Generale Ambiente e Clima, Regione Lombardia, Milan, Italy

The Milano Metropolitan Area [named FUA (functional urban area)] has a history of
heavy industrialization causing a large portion of area being affected by significant diffuse
contaminations of soil and groundwater. Among the various contaminants, chlorinated
solvents (e.g., tetrachloroethylene and trichloroethylene) are the most used in industrial
processes and represent the major cause of groundwater pollution within the FUA. The
background diffuse contamination generated by these pollutants is so persistent and
widely spread that makes it extremely challenging to identify the sources responsible for
their release. Such background contamination originates from the overlapping of both
known sources (point sources), associated to specific high release of contamination, and
unknown small sources (multiple point sources), clustered within a large area, whose
release is low but persistent. The aim of this article is to present the methodology,
developed within the framework of the AMIIGA Project (Interreg Central Europe
Grant N◦ CE32), which combines multivariate statistical analysis and groundwater
numerical modeling in order to separate the point sources contribution from the
background diffuse contamination, and supporting public authorities in the management
of groundwater remediation. A methodological workflow is proposed guiding local and
regional institutions to use the methodology (i.e., exploratory analysis of big dataset,
simulation of groundwater flow and transport, multivariate and geostatistical analysis) to
assess diffuse pollution background levels in large urbanized areas.

Keywords: transport model, FUA, cluster analysis (CA), multivariate analysis, DPBLs, diffuse contamination, Milan

INTRODUCTION

Groundwater contamination by chlorinated solvents is a critical issue (Alamdar et al., 2019) in
functional urban areas (FUAs, OECD, 2012). According to Alberti et al. (2018) such contamination
is typically associated to point sources (PSs) corresponding to hotspots releasing plumes of high
concentrations. However, because of the intense industrial and urban development during the
last postindustrial years, in FUA there are a number of unknown small sources releasing a low
contaminant mass. These multiple PSs (MPSs) may originate from sewage system leakages, small
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garages, or single spill of paints by single citizens, and MPSs
are often responsible in urban areas of a diffuse background
contamination. In Italy, the Italian legislative decree (IT-Decree
3/04/2006.n. 152, 2006, which enforce the Water Framework
Directive) defines the anthropogenic diffuse pollution as the
“chemical, physical, and biological alteration of environmental
matrixes and contaminations determined by diffuse sources and
not linked to a PS,” and it designates regional authorities to
recognize and to enact actions when diffuse contamination is
identified. Because of this legislative demand, there is the need
of scientific-based tools as support for recognizing areas affected
by anthropogenic diffuse pollution and identifying proper diffuse
pollution background levels (DPBLs) (i.e., background diffuse
pollution level not attributable to specific PSs).

In urban areas, highly contaminated plumes coexist with
diffuse background contamination. Within the Milano FUA, a
background diffuse contamination is present with concentration
levels that are higher than the environmental quality standard
(EQS) for PCE defined by the IT-Decree 3/04/2006.n. 152, 2006).
In the same area, highly polluted plumes pose challenges in
terms of the assessment of contaminant migration pathways,
identification of the source (Alderuccio et al., 2019; Colombo
et al., 2019; Ostoich et al., 2019; Stefania et al., 2019), and
remediation activities. In areas where a diffuse contamination
background is present, site owners and stakeholders, not directly
responsible for the contamination, often have to cope with
unsustainable remediation and groundwater protection costs.

Although clearly stated that measures to recover diffuse
pollution of groundwater contribute to the achievement of
quality goals for both groundwater and surface water bodies
defined under the WFD, no specific mention about the need to
manage identify groundwater diffuse pollution background levels
is given in these directives. In 2006, Italian Legislative Decree
152/06 enforcing the EU-WFD (EU-Directive 2006/118/CE,
2006; Balderacchi et al., 2014) defined water quality objectives
to be achieved by 2015 (with the possibility to extend the time
of achievement). The aim was to regulate procedures at the
scale of groundwater bodies and to leave the responsibility to
each member state for groundwater management (as reflected
by the IT-Decree 3/04/2006.n. 152, 2006). However, it was
early clear that member states had local critical situations
hampering the respect of the objectives due to the occurrence
of anthropogenic diffuse contaminated areas, particularly in
urban settings (Busico et al., 2018; Alamdar et al., 2019;
La Vigna et al., 2019; Pereira, 2019). Such “diffuse-like”
contamination originated from former unknown PSs (i.e.,
MPSs) is totally neglected in existing European legislation, and
only at regional scale some legislations exist addressing this
issue (Regione Lombardia, 2017). Dealing with groundwater
contamination at the urban scale is in fact in the loophole
between EU regulation (e.g., large diffuse nitrate contamination)
and national legislations (PSs). The anthropogenic diffuse
contamination in urban aquifers cannot be managed with
the usual remediation strategies used for PSs, for two main
reasons: (1) the difficulty to identify specific sources and (2) the
broad extension of the contaminated areas. Both aspects call
for alternative approaches, because the application of standard

characterization and remediation strategies are not economically
sustainable.

Several well-established methodological approaches exist
for the identification of natural background level (NBL)
of groundwater contaminants (Rotiroti and Fumagalli, 2013;
Rotiroti et al., 2015; Ducci et al., 2016; Parrone et al., 2019; Serianz
et al., 2020). However, consolidated methods are still lacking
for the identification of DPBLs. In this study, the multivariate
statistical approach described by Azzellino et al. (2019) has been
combined with numerical modeling and geostatistics to support
definition of DPBLs.

The study concerns the northwestern (NW) sector of the
Milano FUA, where a widespread groundwater contamination
is present mainly due to tetrachloroethylene (PCE). In this
area, single plumes with higher contaminant concentration
deriving from a known source of contamination coexist
with a broad background diffuse contamination, characterized
by lower concentration levels (but still higher than legal
threshold limits defined in the IT-Decree 3/04/2006.n. 152,
2006). In such complex settings, main challenges are either
the capability to locate sources (Alberti et al., 2016a; Bortoni
et al., 2019) and to track the plumes (Stefania et al., 2018;
Colombo et al., 2019) or to define the DPBLs representative
for the broad area to which the plumes overlap (Azzellino
et al., 2019). Improving the capability of tracking plumes
and the apportionment of contaminant sources will make
remediation strategies more effective, allowing to identify the
polluter, which should be charged with the liability costs
for remediation (Alderuccio et al., 2019). Concerning PCE, a
range of remediation technologies can be used, ranging from
adsorption on granular activated carbon (Erto et al., 2009)
or on clay minerals (Cloutier et al., 2008) to biodegradation
(Wang et al., 2020) and degradation in catalyzed systems
(Watts and Teel, 2019), with costs dramatically different whether
the source of pollution is diffuse or localized. On the other
hand, the definition of DBPLs would allow to quickly identify
situations where the treatment costs would be extremely
high and the remediation largely ineffective, preventing to
charge expensive and ineffective remediation measures to site
owners not responsible for the groundwater contamination. We
believe that this study will be useful to propose a decisional
framework of methods useful to estimate DPBLs for groundwater
contaminated by chlorinated solvents and any other kind
of pollutants.

MATERIALS AND METHODS

Study Area and Hydrogeology
The study area is located in the Lombardy Region, encompassed
between the main rivers Ticino and Adda, located to the west
and to the east of Milano, and it includes the NW sector of
Milano city and 12 municipalities belonging to the FUA. The
total area is 157 km2 and lies at the center of one of the most
populated and industrialized areas in Europe (Figure 1). The
area is historically affected by the presence of many chlorinated
hydrocarbons plumes originating from the northern outer border
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FIGURE 1 | Study area and distribution of available monitoring network and contaminated sites. The pilot area in the right is colored by pink (12 municipalities:
Milano, Pero, Rho, Baranzate, Novate M.se, Bollate, Arese, Senago, Garbagnate M.se, Lainate, Caronno Pertusella and Origgio). The Milano Province on the left is
dashed with gray color.

of the Milano municipality where many suspected contaminated
sites (as brownfields and active industrial sites) are present, which
had been or are still active during most of 20th century.

Local hydrology is dominated by the Seveso and Olona
rivers and the Villoresi irrigation channel (Figure 2). The mean
annual temperature and precipitation are, respectively, 15◦C
and 1,200 mm. The main direction of the groundwater flow is
from north–northwest to southeast with an average groundwater
gradient of 0.2%. Four main aquifer Group (named from A to D)
are recognized in the Lombardy Plain, but only three have been
investigated through drillings in the Milano area. The aquifers
are hosted by a sequence of plio-pleistocenic alluvial sediments
that filled the Neogene Po plain foredeep reaching a maximum
thickness of approximately 500 m (Bini, 1997; Carcano and
Piccin, 2002).

The main aquifers affected by the contamination (A and
B) have an alluvial and glaciofluvial origin and have the
highest transmissivity values. The shallow Aquifer A has an
average thickness of 30 m and is composed of sandy-gravel
with hydraulic conductivity ranging between 1 × 10−5 and
4 × 10−3 m/s. Underneath, the semiconfined Aquifer B, about
60 m thick, is characterized by a hydraulic conductivity varying
between 1 × 10−5 and 1.4 × 10−3 m/s. This unit is mainly
composed of sand interrupted by clay lenses that subdivide
it in several small aquifers (i.e., multilayered aquifer). The
two aquifers are hydraulically unseparated in the northern

part of the study area (Figure 3); i.e., it exists only an
unconfined, unseparated/undifferentiated aquifer constituted by
both Aquifers A and B, shown in Figure 1 above the aquitard
limit (brown line). The absence of hydraulic separation between
the two aquifers is also shown in Figure 3, where the clay lenses
in black disappear proceeding toward Monza. On the other
hand, in the Milano area, Aquifers A and B are hydraulically
separated at a depth of about 40 m from the ground level by
a clay layer (black lenses in Figure 3, with thickness varying
between 5 and 10 m) with a very low hydraulic conductivity
(around 1× 10−9 m/s). More details about the conceptual model
can be found in previous works (Cavallin et al., 1983; Alberti
and Francani, 2001; Perego et al., 2014; ARPA Lombardia, 2015;
Alberti et al., 2016b). A proper definition of the aquifer geometry
and hydrogeological properties is a key step to clearly define
how monitoring well screens are distributed in the overlapping
aquifers, to properly define the monitoring networks and to build
a mathematical model useful to reconstruct the groundwater flow
and contaminant transport.

Methodology Description: A Decisional
Framework to Assess DPBLs in Urban
Areas
The methodology developed during the Interreg Project
(AMIIGA-CE32) is summarized in Figure 4. The proposed
approach has a key role to assess DPBLs in urban areas, and it
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FIGURE 2 | Model domain, internal conditions (rivers in light blue), and wells (divided in the two aquifers based on the screens position). For more details about the
model implementation, see Supplementary Figure S1 (Colombo et al., 2019).

is shown as a step-by-step decisional framework where the main
steps are summarized in the flowchart.

The methodology developed in this article, from the
preliminary data exploration by means of multivariate statistical
analysis through the coupling with a groundwater fate and
transport model, consists of five main steps:

(1) Data collection and preparation: gathering of data available
in Milano FUA (concentration values, monitoring network
characteristics, documentary research on contaminates
sites) and setup of the database structure (detection of
outliers, errors, and missing values).

(2) Exploratory data analysis: cluster analysis (CA) applied
to a univariate set of concentration data (PCE) in
order to separate the PS hotspots from the background

diffuse pollution due to MPSs. The identified hotspots (if
associated to some documental information) are used as
input contamination sources for the numerical model.

(3) Numerical modeling (MODFLOW2005+MT3DMS):
simulation based on the identified hotspots of the main
contamination plumes in the FUA. The model results
are useful to separate the dataset in 2 main components:
the first one linked to specific PSs and a second one,
larger and clustered in overall area, not linked to any
hotspot that can be associated to a diffuse contamination
(Colombo et al., 2019).

(4) Multivariate analysis: principal component and factor
analysis (PCA/FA) with CA to identify the different water
quality profiles of diffuse contamination in the FUA
(Azzellino et al., 2019).
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FIGURE 3 | North-South cross section AA’ corresponding to the blue line in Figure 1. Aquifers A and B are in light blue and green.

(5) Spatial analysis: the diffuse contamination pattern is
analyzed by means of spatial interpolation tools.

These steps will be further explained and described in the
following paragraphs and will be applied to the NW Milano
part of the FUA case study, in order to demonstrate how the
DPBLs may be defined.

Data Collection, Preparation, and
Exploratory Data Analysis
For the assessment of groundwater quality, 10 independent
geochemical datasets, provided by private and regional agencies
(e.g., Water Managers and the Environmental Protection
Agency) were merged into a single database. It contains
structural information about 3,500 wells/piezometers (name
of monitoring point, address and municipality, site owner,
geographical coordinates, depth of monitoring point, and screen
information) and 12 hydrochemical groundwater data (as shown
in Table 1, the variables are in the first column) covering the
period 2003–2017. The descriptive statistics in Table 1 provided
details regarding mean, median, standard deviation, maximum,
minimum, and main quartiles. Once the data were collected, the
final data needed to be checked, validated, and prepared prior to
proceeding with the following data analysis. The steps involved
data editing and coding (e.g., check for errors or omissions)
and data cleaning (e.g., error detection and treatment of missing
data). One of the most important steps was to detect errors and
omissions and, in general, to check whether the data complied
with the required quality standards (accurate, consistent with
goal, uniformly entered, complete, and with a good codification
and tabulation). The final dataset was validated in collaboration
with the Environmental Protection Agency (i.e., comparing data
entry with sampling certificates). At this stage, a univariate CA
was applied to PCE concentrations (Afifi et al., 2003; Everitt

et al., 2011; Yu et al., 2014) to identify data errors, outliers, and
measurements strictly linked to hotspots (i.e., PSs).

As described by Azzellino et al. (2019) a k-means clustering
algorithm was applied, which, starting from k seeds or initial
centers, allowed to isolate k clusters of similar characteristics.
The k-means procedure was applied to all available data of
PCE groundwater measurements containing both background
values and several outliers. Based on different trials, k was
set to 15, and the analysis was run twice, using the final
cluster centroids, obtained from the first analysis, as initial seeds
for the second. Some of the identified clusters were clearly
contamination hotspots and were considered later as PSs in the
modeling phase. A multivariate k-means CA was also applied
later to identify patterns (i.e., clusters) of background diffuse
pollution in the Milano FUA.

Groundwater and Transport Model
A three-dimensional (3D) numerical flow and transport model
was implemented using MODFLOW2005 (Harbaugh, 2005)
and MT3DMS (Zheng, 2010) through the graphical interface
Groundwater Vistas 6. A period of 63 years was used as
total transport simulation time (starting from 1955 to 2017)
in order to simulate historical plumes linked to the oldest
sources. This allowed reaching a quasi–steady-state for PCE
level simulation downstream of the main industrial plants
selected as PSs. The advective term of the transport was
solved using the total variation diminishing scheme because
it is more accurate in solving advection-dominated problems
and minimizing numerical dispersion (Zheng and Wang, 1999;
Zheng, 2010). Plume simulation showed the extent of the
PS contamination in the area. More details about flow (e.g.,
grid, boundary and internal conditions, hydraulic conductivity)
and transport model (e.g., concentrations, dispersivity values,
porosity, diffusion) are provided in Colombo et al. (2019).
A synthetic overview of the main details is in Supplementary

Frontiers in Environmental Science | www.frontiersin.org 5 October 2020 | Volume 8 | Article 525469

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/environmental-science#articles


fenvs-08-525469 October 12, 2020 Time: 15:58 # 6

Colombo et al. PCE DPBLs in Milano FUA

 

1) Data collection 
and preparation

•Collect data
•Setup database 
structure 
•Screen data for 
error

2) Exploratory data 
analysis

•Descriptive statistics
•Univariate  K-means 
Cluster Analysis 
applied to PCE 
concentration (Hotspot 
VS Outliers)

3) Groundwater and 
Transport model 

•Flow simulation 
considering the conceptual 
model of the area
•Transport of the main 
contaminant from selected 
PS

4) Multivariate analysis

5) Spatial analysis

•Principal Component Analysis: summary of the 
correlated parameters 
•Factor Analysis: interpretation of principal 
component
•K-means Cluster Analysis on main factors: 
interpretation of common profile 

•Mapping (IDW) of DPBLs in urban areas 

DPBLs assessment

•Estimation of PCE 
DPBLs: weighted 
general statistics of K-
means Cluster Analysis 
both for Aquifer A and 
Aquifer B

FIGURE 4 | Flowchart of the multi-methodological approach to assess DPBLs in Milano FUA.

Figure S1. Figure 2 shows discretization grid, boundary,
and internal conditions and the wells that were included
into the model domain. The implementation of a flow
and transport model enabled to distinguish the monitoring
wells crossed by PCE plumes from those affected only by
diffuse contamination. By simulating the plumes generated
by the PSs, it was possible to identify and exclude from
the following analysis the monitoring wells falling inside
these plumes. This process allowed cleaning the dataset from
those points, leaving only those measurements linked to a
diffuse pollution.

Spatial Analysis of the Diffuse
Contamination
Spatial interpolation maps were prepared based on the final
dataset prepared based on the univariate CA and the numerical
model analysis results. The interpolation was made, for each
single aquifer, using ArcGis Software v.15 and applying the
inverse distance method (IDW). The IDW estimates the data

value at each point by calculating a distance weighted average of
the points within the search radius as follows:

∧
z(x0) =

n∑
i=1

{
d−r

ij∑n
i=1 d−r

ij
· z(xi)

}

where j represents the point, whose value is being interpolated,
dij is the distance from point j to sample point i, and r is an
arbitrary value or mathematical power that can be selected by
the investigator, z(xi) are the data values for the n points (x1. . .
xn) within the search radius, and z(x0) is the estimated values.
If r is equal to 1, the IDW becomes a simple linear interpolator.
The r power controls the significance of known points on the
interpolated values based on their distance from the output
point. The default value is set to 2. Otherwise, assigning a higher
value to r means emphasizing the contribution of the nearest
points. Thus, nearby data will have the most influence, and the
interpolated surface will have more detail (Watson and Philip,
1985). The choice to use IDW was focused on (1) minimizing the
computational effort so that the large dataset can be mapped (i.e.,
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TABLE 1 | Summary statistics of the water quality parameters considered in the analysis.

Mean Median SD Min Max Quartiles

Valid % Missing 25th 50th 75th

Ca2+ (mg/L) 41,483 54.8 425.67 72.00 5,504.11 0.00 128,100.00 52.00 72.00 93.00

Cl− (mg/L) 45,796 40.3 16.96 14.00 13.38 0.00 303.00 7.00 14.00 24.00

Cr_tot (µg/L) 46,764 37.3 9.06 2.50 148.05 0.00 123,00.00 2.50 2.50 3.24

K+ (mg/L) 41,240 55.8 8.37 0.90 99.02 0.00 2,715.00 0.50 0.90 1.13

Mg2+ (mg/L) 41,331 55.4 87.27 16.00 1,100.28 0.00 25,600.00 11.50 16.00 19.70

Na+ (mg/L) 41,349 55.3 81.24 7.00 1,182.12 0.00 37,860.00 5.00 7.00 11.00

NO3
− (mg/L) 48,183 33.3 23.31 22.85 14.33 0.00 190.06 11.00 22.85 35.00

PCE (µg/L) 48,316 32.9 14.98 3.00 301.68 0.00 37,800.00 0.75 3.00 8.00

pH (-) 39,905 60.9 7.66 7.70 0.41 5.56 8.00 7.50 7.70 7.85

SO4
2− (mg/L) 46,037 39.5 31.50 31.00 27.98 0.00 1,363.00 15.00 31.00 41.20

TCE (µg/L) 48,285 33.0 11.12 1.00 212.43 0.00 14,000.00 0.50 1.00 2.20

TCM (µg/L) 45,416 41.4 3.43 0.50 87.21 0.00 17,214.00 0.50 0.50 1.05

the more data are available, the better will be the interpolation)
and (2) the statistical simplicity as IDW does not require to
include a statistical error component that can be used to estimate
the error in the predictions at unsampled locations.

Temporal trend in concentrations was also investigated
(Azzellino et al., 2019), revealing the presence of weak trends,
but the concentrations were substantially stable during the
last 8 years. The IDW interpolation algorithm was applied
to the PCE median values calculated at each monitoring
point considering the 7-year interval period 2010–2017; r
was set as equal to 2, and neighbors points included in a
circle of 12 km of diameter. Such a choice was made to
deal with the heterogeneity of the measurement frequencies
affecting the dataset (e.g., some piezometers had more than 50
measurements, whereas some others had much fewer, having
been only occasionally sampled during the 7 years). Furthermore,
the median was preferred over the mean being less affected
by extreme values than the average. Consequently, medians
enabled to reduce the influence of high concentration values
due to data entry or laboratory errors, not detected during the
exploratory data analysis.

Multivariate Analysis
PCA is aimed to maximize the variance of a linear combination
of the variables (Yidana et al., 2008; Olsen et al., 2012;
Sheikhy Narany et al., 2014). Essentially, PCA is a one-sample
technique applied to data with no groupings or partitioning
among the observations. More often, they are obtained to be
used as input to other analyses (e.g., PCA is often used as
a preliminary step for regression analysis). In hydrogeology,
PCA is used to reduce the number of dimensions of data
with a great number of correlated variables. Original data
are converted into a new set of data, uncorrelated, called
principal component (PCs), each aggregating the variables
more correlated with the PC and among themselves. PCA
was turned into an FA in order to reduce the contribution
of the less significant parameters within each component,
extracting a new set of varifactors through the rotation of

axes defined by PCA rotation. In this analysis, the PCA was
applied to the parameters shown in Table 1 through the
statistical software IBM SPSS Statistics R© (version 26.0), and
the extracted PCs were rotated based on a varimax rotation
criterion (Azzellino et al., 2019), maximizing the variance of
the squared loadings of each rotated component. The varimax
criterion tends in fact to make the loadings either large or
small to facilitate the component interpretation. That allowed
selecting few factors (Fs) able to describe the whole dataset
with minimum loss of original information. A reduced set of
factors representative of the initial correlated variables was thus
obtained and used for a second k-means CA to analyze the
similarities among the water quality profiles at the different
monitoring wells.

RESULTS

Exploratory Data Analysis: Point Source
Identification
The hydrochemical dataset, after data collection and preliminary
validation, contained 48,316 PCE measurements. These values
are shown in Figure 5 as a boxplot in a logarithmic scale.
The boxplot uses the median and the lower and upper
quartiles defined as the 25th (Q1) and 75th percentiles (Q3).
The difference (Q3 - Q1) is called the interquartile range.
The box is constructed by drawing a box between Q1 and
Q3 with a solid line drawn across the box to locate the
median (i.e., 3 µg/L). The following quantities (called fences)
are needed for identifying extreme values in the tails of the
distribution:

– lower inner fence: Q1 - 1.5∗IQ
– upper inner fence: Q3 + 1.5∗IQ
– lower outer fence: Q1 - 3∗IQ
– upper outer fence: Q3 + 3∗IQ

Frontiers in Environmental Science | www.frontiersin.org 7 October 2020 | Volume 8 | Article 525469

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/environmental-science#articles


fenvs-08-525469 October 12, 2020 Time: 15:58 # 8

Colombo et al. PCE DPBLs in Milano FUA

FIGURE 5 | Boxplot in a logarithmic scale of the distribution of the 48,316 PCE measurements (µg/L). Mild outliers (i.e., points beyond the inner fences) are drawn
as dots, whereas extreme outliers (i.e., points beyond the outer fences) are drawn as stars.

A point beyond an inner fence on either side is considered
a mild outlier. A point beyond an outer fence is considered an
extreme outlier.

Cluster analysis results are shown in Table 2, and Figure 6
displays the 15 clusters and their composition in terms of number
of cases included. It can be observed that most of the clusters
contain a very small amount of data, whereas a single cluster,
number 1, contains 99% of the PCE values with concentrations
considerably lower than the other clusters. The data belonging to
this cluster 1 can be considered to define the DPBLs, whereas the
other 14 clusters may be possibly attributed to hotspots (i.e., PSs).

By cross-checking the position of the monitoring
points belonging to the smaller and extreme clusters with
the information available from the AGISCO database
(ARPA Lombardia, 2019), which contains the location of
contaminated/potentially contaminated sites (remediated or in
progress to be remediated, Figure 7), it was possible to identify
which monitoring wells fell into a contaminated/potentially
contaminated sites. Based on documental research (e.g.,
investigations, remediations, characterizations) for each of the
interested site, it was possible to derive the history of the area and
the temporal profile of the source, which was potentially linked
to the sampled downgradient PCE contamination. Such a cross-
check allowed to further subdivide the monitoring wells falling in
the 14 smaller clusters as (1) point sources wells, when monitoring
wells are inside the boundaries of the industrial site; (2) plumes
wells in case of monitoring wells positioned downstream an
industrial site and crossed by a contaminant plume; and (3)
isolated wells, monitoring points without a clear association
with a known potential industrial contaminant source, which
might be affected by an “unknown source” (Figure 7). So,
the CA was a fundamental tool that helped to identify (1)
the cluster containing data with median values no higher
than 4–5 µg/L and (2) the clusters made of outliers that were
hotspots (i.e., PSs) and candidates as contaminated/potentially

contaminated sites (PSs) to be simulated by the transport
numerical model.

Numerical Transport Model: PCE Plumes
Simulation From 1955 to 2017
A 3D numerical transport model was implemented considering
the previously identified PCE PSs as contaminant sources. In
order to simulate the history of each source (numbered from
1 to 6 in the Figure 8), the modeled time interval started
from 1955 until 2017. Thus, simulation stress periods were
defined as 7:6 with a time interval of 10 years and one with
a time interval of the 3 years (representing the period 2014–
2017). In Figure 8, the 2017 contours of the PCE plumes
originating from the main sources are shown (starting from
1955) concerning Aquifers A (Figure 8a) and B (Figure 8b).
The transport model results were validated with the available
data from 1955 to 2017 considering for each stress period the
average concentration at each sampling point. The Italian Law
threshold limit (IT-Decree 3/04/2006.n. 152, 2006) is 1.1 µg/L
for PCE. Through a Geographical Information System (ArcGIS
v.15), the plumes were overlapped to the monitoring network
map, selecting all the points falling inside the isoconcentration
line 1.1 µg/L. Then those points were excluded from the final
dataset, which included only those monitoring points falling
in white areas of Figure 8 that are not linked to any specific
sources and can be considered affected only by a diffuse
pollution. Furthermore, the numerical simulation confirmed
that those monitoring points previously defined as Plume Wells
are actually falling within the areas occupied by the plumes,
validating the accuracy of the univariate CA results. Differently
the points defined as Isolated Wells are not located in any of
the simulated plumes. Because of the high concentrations of
PCE and the fact that the univariate CA showed that they do
not belong to cluster 1, it was assumed that such wells were
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TABLE 2 | The number of cases, frequencies, and summary statistics included in each of the 15 clusters.

PCE (µg/L)

Cluster N◦ Mean Standard deviation Max Min Median

1 50,564 10.72 38.66 676.00 0.00 3.00

2 9 11,686.33 594.53 12,432.00 10,738.00 11,850.00

3 1 31,500.00 — 31,500.00 31,500.00 31,500.00

4 5 13,534.00 999.61 14,995.00 12,620.00 13,430.00

5 28 8,853.45 760.30 10,110.00 7,670.00 8,774.50

6 63 6,339.75 697.29 7,520.00 4,990.00 6,432.00

7 294 1,354.27 526.91 2,467.30 690.00 1,230.00

8 2 28,898.00 964.49 29,580.00 28,216.00 28,898.00

9 1 19,835.00 — 19,835.00 19,835.00 19,835.00

10 1 51,630.00 — 51,630.00 51,630.00 51,630.00

11 1 37,800.00 — 37,800.00 37,800.00 37,800.00

12 1 53,480.00 — 53,480.00 53,480.00 53,480.00

13 1 17,840.00 — 17,840.00 17,840.00 17,840.00

14 3 32,946.67 387.34 33,190.00 32,500.00 33,150.00

15 115 3,599.52 696.78 4,930.00 2,490.00 3,642.00

FIGURE 6 | Representation of 15 clusters identified through CA using boxplots in a logarithmic scale for the PCE concentrations (µg/L).

affected by plumes due to unknown sources and consequently
had to be deleted from the dataset used for the assessment
of the PCE DPBL.

Diffuse Contamination Assessment:
Mapping and Multivariate Analysis
Both the exploratory data analysis and the groundwater flow
and transport model phases allowed to identify the monitoring
points linked to some specific PSs and plumes. These monitoring
points were later excluded from the following analysis. Thus,
the spatial interpolation of the PCE 7-year median values
allowed to identify different zones characterized by different
levels of diffuse contamination in the NW sector of the Milano
FUA. Figure 9a shows the shallow aquifer and the intersection

between the monitoring points and plume areas delimited by
the isoconcentration line of 1.1 µg/L (i.e., the EQS for PCE
defined by the IT-Decree 3/04/2006.n. 152, 2006). Monitoring
wells that had to be removed from the dataset are represented
in black. In Figure 9b, only the median values of the diffuse
pollution dataset that was used for the spatial interpolation is
shown. For semiconfined Aquifer B, the corresponding maps
are available in the Supplementary Figures S2, S3. The maps
resulting from IDW interpolation of PCE median values are
presented in Figures 9c,d, respectively, for the shallow and
the semiconfined aquifer. In those maps, PCE concentration
levels are subdivided into three different classes: (1) below
the EQS, (2) between EQS and the drinking water threshold
limit (i.e., 10 µg/L for the sum of PCE and TCE IT-Decree
3/03/2001.n. 31, 2001), and above the drinking water threshold
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FIGURE 7 | Monitoring wells belonging to clusters 2 to 15 overlapped with contaminated/potentially contaminated sites; numbered triangles correspond to PSs
simulated in the transport model.

limit. The maps clearly show that the distribution of diffuse
contamination is not homogeneous within the study area. Areas
in light blue are characterized by PCE concentrations below
1.1 µg/L, and thus, they are not affected by groundwater
diffuse pollution. Areas in yellow show PCE concentrations
exceeding the EQS but lower than the drinking water threshold
limit and, finally, the red areas that reflect PCE concentrations
higher than the drinking water threshold limit that are not
attributable to a specific plume or source and are distributed
over large areas. The use of IDW combined with multivariate
analysis allowed also dealing with the high heterogeneity of
the raw dataset (high density of sampled data is in the

contaminated sites or in proximity to the Drinking Water
Pumping Station).

Multivariate Analysis
Details about this analysis can be found in Azzellino et al.
(2019). In short, PCA was applied to the groundwater parameters
(Table 1) in order to select few factors (Fs) able to describe the
whole dataset and the information useful for the definition of
DPBLs in the different areas of the NW sector Milano FUA.
Five rotated PCs were extracted and accounted for about 75% of
cumulative variance from the original 12 variables. Table 3 shows
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FIGURE 8 | PS related plumes simulation selected by the CA in (a) the shallow aquifer and (b) the semiconfined aquifer.

the matrix of the factor loadings, which represent the correlation
of each variable with each rotated PCs.

Based on factor loadings, the varifactors can be interpreted as
follows:

• F1 accounts for 23% of the variance, and it is loaded by
Ca2+, Mg2+, and NO3

−. The correlation between Ca2+

and NO3
− can be associated with the use of fertilizers,

which is very common in cultivated regions, as in the
studied area (Tisdale and Nelsson, 1975).
• F2 accounts for 20% of the variance and is loaded by Cl−,

Na+, and SO4
2−, and it can be associated to the leakage of

agricultural and municipal wastes (Sikora et al., 1976).
• F3 accounts for 13% of the variance and is loaded by

PCE and TCE, which, in reason of their production,
use, and chemical affinity, are often simultaneously
found in groundwater.
• F4 accounts for 9.5% of the variance and is loaded by

K+ and total chromium (Cr) that is another typical
contaminant detected in Milano FUA groundwater. F5
accounts for 9% of the variance and is loaded by
trichloromethane (TCM), which is also a chlorinated
hydrocarbon largely used in industrial productions.

PCA/FA highlighted that chlorinated hydrocarbons (PCE-
TCE) concentrations are correlated, being loaded on the same
factor. Hydrochemical parameters are instead split into two
different components (main ions in Table 3), whereas the other

two dominant pollutants, Cr and TCM, are uncorrelated being,
respectively, loaded on the fourth (i.e., 9.5% of the total variance)
and on the fifth (i.e., 9% of the total variance) varifactor.

Based on these five factors, a new k-means CA was run in order
to identify the different contamination profiles. In these clusters
the varifactor F3 (e.g. loaded by PCE/TCE) is never higher than
one standard deviation from the general sample mean. The
parameter k was set to 15, and the analysis was run twice, using
the final cluster centroids obtained from the first analysis as
initial seeds for the second. This process, being based on multiple
parameters, allowed to split further the cluster 1 previously
obtained through the univariate CA and to better characterize
the different patterns of diffuse contamination present in the
study area. Five clusters, namely, 1, 6, 10, 11, and 15, contained
more than 98% of the data (Supplementary Table S2). In these
clusters, the varifactor F3 (e.g., loaded by PCE/TCE) is never
higher than 1 standard deviation from the general sample mean
(Figure 10). The main statistics of these five clusters are reported
in Supplementary Table S1. The PCE concentration statistics of
these clusters were used to estimate the DPBLs as reported in
section “DPBL Definition.”

DPBL Definition
The results shown in previous paragraphs confirm that the
Milano FUA cannot be managed as a homogeneous groundwater
body. Five main diffuse pollution patterns were identified,
with specific hydrogeological characteristics and pollutant
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FIGURE 9 | (a) Intersection between the complete dataset and the 1.1 µg/L isoconcentration lines of the plumes for Aquifer A; (b) representation for the shallow
aquifer of median values (period 2010–2017) of the adjusted dataset used to IDW interpolation process and (c) spatial map of the diffuse contamination in the
shallow/unseparated aquifer and (d) in semiconfined Aquifer B.

background concentration levels. Therefore, considering both the
lack of spatial homogeneity and the temporal variability observed
in PCE levels, the estimation of the DPBLs was done based on
the clusters and referred to the concentration classes (i.e., yellow
zone and red zone showing PCE values higher than 1.1 µg/L).
Since, because of the temporal variability, monitoring wells
belonging to different clusters may fall in the same concentration

class zone, DPBL was defined based on the clusters’ statistics
weighted by the frequency of each of the five clusters in the two
concentration class zones. For example, considering the yellow
zones (i.e., PCE concentrations higher than 1.1 µg/L but lower
than 10 µg/L) in the shallow aquifer, being the frequencies
of the five main clusters, respectively, 0.0, 0.0, 20.0, 31.4, and
48.6%, based on the cluster statistics of PCE concentrations
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shown in Supplementary Table S1, the DPBL was computed as
follows:

DPBL =
n∑

i=1

{
fi(%)∗Ci∑n

i=1 fi(%)

}
DPBLAquiferA PCE = (0.0∗0+ 0.0∗0+ 0.20∗4.8+ 0.314∗3.7+ 0.486∗10.15)/1

where Ci is the reference concentration, corresponding
to 50◦ percentile of the specific cluster statistics
(Supplementary Table S1) and fi (%) is the i-cluster
frequency in the yellow concentration class zone. The same
computation was carried out concerning the red zone
(i.e., PCE concentration higher than 10 µg/L) as reported
in Table 4.

DISCUSSION

In this study, a robust methodology was set up and tested
considering the groundwater pollution problem in the Milano
FUA. By using many different tools, through this methodology,
it was possible to accurately identify specific background
and threshold values that represent key information for the
improvement groundwater management.

Previous studies have also used some of the tools we used
in this work but never in such integrated way. Multivariate

FIGURE 10 | Varifactor characteristics of the main clusters: bars show the
mean varifactor values of the main clusters. The reference scale on the y axis
is the one of the standardized variables, so 0 is the total sample average, and
1 is the total sample standard deviation.

techniques have been applied in several studies for the
assessment of groundwater quality, for the analysis of
groundwater geochemistry and identification of sources
(Reimann and Filzmoser, 2000; Yu et al., 2014; Acikel and
Ekmekci, 2018; Adhikari and Mal, 2019; Stefania et al.,
2019); numerical transport models have been applied

TABLE 3 | Factor loading matrix: the loadings higher than | 0.6| are bolded and indicated as the significant loadings for the corresponding factor.

PC Initial eigenvalues Extraction sums of squared loadings Rotation sums of squared loadings

Total % of Variance Cumulative % Total % of Variance Cumulative % Total % of Variance Cumulative %

1 4.056 33.800 33.800 4.056 33.800 33.800 2.756 22.971 22.971

2 1.606 13.380 47.180 1.606 13.380 47.180 2.403 20.027 42.998

3 1.148 9.568 56.748 1.148 9.568 56.748 1.565 13.044 56.041

4 1.098 9.147 65.895 1.098 9.147 65.895 1.137 9.477 65.518

5 1.024 8.531 74.425 1.024 8.531 74.425 1.069 8.907 74.425

Rotated Component Matrix2

Component

1 2 3 4 5

Ca2+ 0.854 0.404 −0.060 0.017 0.036

Cl− 0.380 0.845 0.000 0.053 0.084

Cr-tot 0.185 −0.127 0.047 0.732 0.301

K+ −0.123 0.213 −0.030 0.723 −0.344

Mg2+ 0.807 0.175 −0.087 −0.025 −0.006

Na+ 0.046 0.888 0.182 −0.038 −0.046

NO3
− 0.604 0.370 0.069 0.232 0.137

PCE 0.065 0.094 0.827 0.073 0.192

pH −0.732 0.041 −0.170 0.016 0.218

SO4
2− 0.516 0.691 0.138 0.108 0.134

TCE −0.011 0.112 0.883 −0.050 −0.124

TCM −0.090 0.087 0.045 0.008 0.844

The total variances explained by rotate components are shown at the bottom of the table, as well the cumulative %. Extraction method: principal component analysis.
Rotation method: varimax with Kaiser normalizationa. aRotation converged in eight iterations.
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TABLE 4 | DPBLs ranges for PCE for the 2 separated Aquifers and the unseparated one in NW sector of Milano FUA.

Frequencies DPBLs PCE (µg/l)

Zone Cluster 1 Cluster 6 Cluster 10 Cluster 11 Cluster 15 50◦ 75◦

Shallow Aquifer A Yellow 0.0% 0.0% 20.0% 31.4% 48.6% 7.1 10.6

Red 0.0% 0.0% 0.0% 0.0% 100% 10.2 15.4

Semi-confined Aquifer B Yellow 21.4% 8.0% 0.9% 20.6% 49.1% 9.4 18.0

Red 1.8% 12.8% 9.4% 7.7% 68.3% 12.9 24.5

Unseparated/undifferentiated aquifer Yellow 0.0% 27.5% 2.0% 47.1% 23.5% 5.1 15.2

(A, B, A + B) Red 6.3% 1.6% 1.6% 74.6% 15.9% 3.7 16.5

for trace main plumes for management of groundwater,
remediation, and mitigation strategies (El Bouqdaoui and
Aachib, 2018; Colombo et al., 2019; Guo et al., 2019; Sathe
and Mahanta, 2019; Janža et al., 2020); geostatistical analysis
has been applied to map some environmental variables and
contamination zoning (Guadagnini et al., 2020; Hossain
and Patra, 2020). Moreover, previous works mainly focused
on NBLs (Matschullat et al., 2000; Molinari et al., 2012;
Ducci et al., 2016; Sellerino et al., 2019) of groundwater
contaminants. In a previous study of this research (Azzellino
et al., 2019), we posed the basis for a statistical approach
to deal with diffuse contamination; in this work, the
proposed methodology has been completed by adding the
deterministic transport model to simulate the most relevant
plumes deriving from a PS contamination in the FUA
and to identify the subareas affected by these plumes that
should be excluded from the geostatistical interpolation of the
diffuse contamination.

This study has also shown that the PCE groundwater
contamination within the NW sector of Milano FUA is
present at different concentration levels with a heterogeneous
spatial distribution. The methodology was able to separate
the different contributes to this state of pollution: on
one side due to PSs and their plumes and on the other
due to MPSs responsible for a state of contamination
that, despite being low, is diffused over a large part of
FUA. This result has been reached combining univariate
CA and transport numerical modeling. Such a modeling
step may introduce some flaws in the methodology. It is
known in fact that when transport modeling is applied
in large areas with contaminated sites that have a long
and complicated industrial history (e.g., brownfields, old
landfills), uncertainties of the model results can be relevant.
The suggestion in order to model the source as best as
possible is to collect as much data as possible concerning the
site characterization.

In this perspective, an overestimation of the plume
dimension (length and width) would be preferable as it is
possible to delete from the original dataset some monitoring
wells that could be influenced by the PSs (i.e., some high
concentration values that could overestimate the diffuse
contamination estimation). Differently, leaving them in the
analysis database, it would possibly lead to overestimating
the concentrations obtained in the diffuse contamination
interpolation maps. Furthermore, the choice to assume as

diffuse contamination reference value, a weighted statistic
based on the clusters’ frequency in the range between 50th
and 75th percentiles, guarantees that the DPBLs are not
be overestimated.

Defining appropriate DPBLs for the present contaminants
is both a political and a scientific–technical issue. The case
study presented in the article highlights that the Milano
FUA is not a homogeneous groundwater body from the
contamination perspective, and therefore, it is important to
define different DPBLs within FUA subareas. Moreover, in order
to take into account the spatial and temporal heterogeneity
of the contamination, the clusters’ statistics, being robust and
stable in time, were chosen to be the basis for defining
DPBLs as the frequencies of each cluster rather than just the
dominant were considered as representative of the concentration
class zones.

Consequently, a unique value of DPBLs for the whole area
was not defined, but different values for each concentration
class zone and for each aquifer were provided (Table 4).
Furthermore, a range for each DPBL was provided considering
the 50th and 75th percentiles of the cluster concentration
statistics. The definition of a range rather than a single reference
value allows public authorities, responsible of the groundwater
management plan, to take decisions and to undertake actions
considering also political and administrative aspects. Indicatively,
the use of 50th percentile is suggested for the yellow zones,
while the use of the 75th percentile is suggested for the
red zones.

In the future, in order to apply the proposed methodology
in other urbanized areas, it would be useful to define minimum
requirements about the density of monitoring wells and
concentration data.

The definition of DPBLs is critical to select and optimize the
remediation actions needed for the aquifer restoration, especially
in areas where restoration goals might not be achieved because
of a massive historical presence of unknown MPSs (characterized
by small dimension and low mass release).

Recognizing the existence of a diffuse contamination and
defining a specific threshold limit for each contaminant of
interest (i.e., DPBLs) do not mean allowing polluters to
contaminate or to avoid their responsibilities. Differently, it
allows public and private decision-makers to understand whether
a site is a source of pollution or is exposed to a diffuse
contamination following the European Polluter Pay Principle.
Consequently, it is possible to set appropriated and eventually
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new remediation objectives and to choose between different
technical approaches for site clean-up, with efficiency and
remediation times that vary substantially as a function of the
associated costs and the environmental impact.

CONCLUSION

Many areas all around the world with a relevant industrialization
history are affected by groundwater contamination. In the Milano
FUA, where the groundwater was historically interested by PCE
and TCE contaminations from both PSs (or hotspots, because of
the presence of many factories and chemical plants) and MPSs
from the surface (i.e., septic tanks or dry wells in industrial
sites), a presence of many factories and chemical plants (i.e.,
automotive and galvanic) has also to be considered. In such
large and complex urban area, characterized by the presence
of shallow clustered MPSs (i.e., septic tanks, sewer leakages or
dry wells) whose effects overlap with the plumes originated by
specific PSs (or hotspots, e.g., leakages from petrochemical plants
or factories), a multidisciplinary integrated approach is needed in
order to quantify an anthropogenic DPBLs. In the EU legislative
framework, there is no indication about how to define DPBLs,
which in many situations are higher than the groundwater quality
standards and make unfeasible any remediation strategy. The
integrated methodological approach presented in this study has
the objective to help managing FUAs, which are particularly large
and affected by complex contamination patterns due to the high
industrialization.

The use of statistical approach (PCA/FA) together with
numerical model (MODFLOW/MT3DMS) allows distinguishing
two components of pollution: the first linked to a specific source
responsible for the main plumes that flew into Milano City
and the second spread in the FUA as a diffused contamination.
Because of the necessity to produce management plan of the
area by the public authorities, the use of the main statistics
of the clusters described in this study, applied to the zones
outlined by the IDW interpolation, allowed to compute DPBLs
for PCE in both the shallow Aquifer A and the semiconfined B.
The methodology here presented would be applicable in every
other FUA to quantify the non-homogeneous groundwater body
quality in high industrialized and densely populated areas.
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