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Marine litter is a global problem that requires soon management and design of mitigation
strategies. Marine litter monitoring is an essential step to assess the abundances,
distributions, sinks and hotspots of pollution as well as the effectiveness of mitigation
measures. However, these need to be time and cost-efficient, fit for purpose and context,
as well as provide a standardized methodology suitable for comparison among surveys. In
Europe, the Marine Strategy Framework Directive (MSFD) provides a structure for the
effective implementation of long-termmonitoring. For beaches, the well-established 100m
OSPARmacrolitter monitoring exists. However, this method requires a high staff effort and
suffers from a high spatio-temporal variability of the results. In this study, we test the
potential of aerial drones or Unmanned Aerial Vehicles (UAVs) together with a Geographic
Information System approach for semi-automatic classification of meso- (1–25mm) and
macrolitter (>25mm) at four beaches of the southern Baltic Sea. Visual screening of drone
images in recovery experiments (50 m2 areas) at 10 m height revealed an accuracy of 99%.
The total accuracy of classification using object-based classification was 45–90% for the
classification with four classes and 50–66% for the classification with six classes,
depending on the algorithm and flight height used. On 100m beach monitoring
transects the accuracy was between 39–74% (4 classes) and 25–74% (6 classes),
with very low kappa values, indicating that the GIS classification method cannot be
regarded as a reliable method for the detection of litter in the Southern Baltic. In terms of
cost-efficiency, the drone method showed high reproducibility and moderate accuracy,
with much lower flexibility and quality of data than a comparable spatial-OSPAR method.
Consequently, our results suggest that drone based monitoring cannot be recommended
as a replacement or complement existing methods in southern Baltic beaches. However,
drone monitoring could be useful at other sites and other methods for image analysis
should be tested to explore this tool for fast-screening of non-accessible sites, fragile
ecosystems, floating litter or heavily polluted beaches.
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INTRODUCTION

The pollution of seas and coasts with marine litter, especially
plastics, is a growing global problem (United Nations
Environment Programme, 2019). The state of pollution of
beaches with macrolitter (>25 mm), and its associated
problems are well known and documented for many regions
worldwide (Abu-Hilal and Al-Najjar, 2009; Jayasiri et al., 2013;
Rosevelt et al., 2013; Topçu et al., 2013; Duhec et al., 2015;
Hidalgo-Ruz et al., 2018). In Europe, the pollution of beaches
ranges from a few up to more than 1,000 litter items on a 100 m
beach stretch, depending on factors such as exposition,
accessibility or population density (e.g., Marlin 2013; Gago
et al., 2014; Schulz et al., 2015; Schernewski et al., 2017). Here
the most common items are plastics, and the main sources of
pollution vary between fishing in the North Sea (Schulz et al.,
2015) and tourism and recreation in the Mediterranean Sea
(Vlachogianni, 2019), Baltic Sea (Schernewski et al., 2017) and
North East Atlantic (Schulz et al., 2015).

Marine litter is addressed as one of the UN Sustainable
Development Goals (SDG 14.1) aiming at preventing and
significantly reducing pollution in the world oceans by 2025
(United Nations, 2019). In order to design mitigation
strategies and fulfill SDG 14, as well as national and regional
goals timely, managers require monitoring methods that are time
and cost-efficient, fit for purpose and context. Although in-situ
beach litter monitoring is a commonly applied survey worldwide,
until today there is no clear consensus on the monitoring strategy
to be used and units are difficult to compare (Serra-Gonçalves
et al., 2019).

Efforts directed to monitor marine litter and to implement
measures for its reduction in Europe have been reflected in the
creation of the Marine Strategy Framework Directive (MSFD,
2008/56/EC); a comprehensive legislation to effectively protect
the marine environment across Europe, including a detailed
implementation procedure. Within this framework, the
European Union included marine litter as a descriptor for a
Good Environmental Status (GES) to be reached by 2020
(MSFD, 2008/56/EC). The implementation involves an initial
assessment of the current environmental status and
environmental impact, the determination of the GES, the
establishment of environmental targets and associated
indicators as well as the development of a monitoring
program and cost estimates. Since 2013, a joint, harmonized
monitoring strategy is carried out (JRC, 2013) which adapts and
further develops the OSPAR Guideline (OSPAR, 2010) and
ensures that data is comparable among monitoring surveys.
The OSPAR guideline evaluates the trend of abundance of litter
over an extended period of time (every 3 months) at sites
fulfilling specific criteria, recording the number of items over
beach transects of 100 m, from the sea edge to the highest
strandline or edge of vegetation, and identifying items
according to an item category list (OSPAR, 2010). Although
the OSPAR guideline is a flexible and relatively low-cost method
that can be carried out with volunteers; it suffers from several
weaknesses, being time-intensive, subjective upon litter types,
site conditions, frequency of sampling and the training and

experience of volunteers and staff (Smith and Markic, 2013;
Lavers et al., 2016; Schernewski et al., 2017). This increases the
challenge considering the inherent temporal and spatial variability of
marine litter subject to beach exposition, winds, currents and
distance to pollution sources (Ryan et al., 2009; Critchell and
Lambrechts, 2016; Schernewski et al., 2017). As a consequence,
Schernewski et al. (2017) conclude for Baltic Sea beaches that the
macrolitter beach monitoring method in practice is spatially
restricted, does not provide the required reliable data to provide
long-term trends and should only serve as a method in combination
with others. Optional methods such as the 1 km beach sampling
method to monitor marine litter above 50 cm (OSPAR, 2010) or the
Rake method (Haseler et al., 2019) focusing on the mesolitter size
class, are suitable complementary approaches for Baltic beaches but
rarely applied. Therefore, a need for complementary beach litter
monitoring methods for macrolitter still exists. Since the MSFD
expands the environmental monitoring and reporting requirements,
responsible authorities in Europe face the pressure tomeet these new
demands with limited financial and staff resources (JRC, 2013).
Therefore, cost-effectiveness is a pre-condition that additional beach
litter monitoring methods must meet.

Aerial drones or Unmanned Aerial Vehicles (UAVs) offer new
opportunities for marine litter monitoring and the remote
collection of high temporal and spatial resolution data. So far,
remote sensing studies have mainly relied on satellite or airplane
images to monitor floating marine debris at sea (Veenstra and
Churnside, 2012), derelict fishing gear (Moy et al., 2018) and
other litter in islands (Kataoka et al., 2018) or after disaster events
(Murphy, 2015); however all at much lower spatial resolutions.
The higher flexibility and smaller size of UAVs allow capturing
images at lower altitudes, obtaining images in cloudy conditions
and in narrower areas at higher spatial resolutions, thus collecting
more specific information on the surfaces recorded (Pajares,
2015).

Consumer-based drones are nowadays accessible tools used in
various environmental purposes, such as monitoring of invasive
plant management (Lehmann et al., 2017) or mapping of
ecologically sensitive habitats (Ventura et al., 2018). Although
their use for scientific purposes is still new and limitations exist,
these commercial aerial drones have shown promising results for
rapid assessment and mapping of marine litter at beaches. First
studies developed abundance and density maps with
georeferenced location of specific litter items and hotspots
(Hengstmann et al., 2017; Deidun et al., 2018), while most
recent studies have tested the potential of machine learning
(Atwood et al., 2018; Martin et al., 2018), deep learning
approaches (Fallati et al., 2019) and most recently, the
combination of photogrammetry, geomorphology, machine
learning and hydrodynamic models (Goncalves et al., 2020) for
the automatic identification of macrolitter. Based on these findings,
drone-based monitoring could have the potential to cover larger
spatial scales in less time, provide with standardized units of litter
abundance and assess distribution patterns and pollution hotspots.
Thus, it already seems reasonable to assess the potential of consumer
UAVs for regular and official beach monitoring in practice.

The purpose of this study is to evaluate the applicability of
commercial aerial drones for the implementation of long-term
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monitoring strategies within regional environmental agencies in the
Southern Baltic Sea. Nonetheless, this evaluation could also serve as a
template for the evaluation of drone-based monitoring for other
regions. Here, we intend to answer: could drone-based monitoring
complement the 100mOSPARmethod to extend its spatial coverage
and provide a pollution pattern over e.g. an entire coastline? We 1)
explore and test an UAV approach for marine litter monitoring of
meso- (1–25mm) and macrolitter (>25mm) with a GIS based semi-
automatic object-based classification; 2) apply this methodology at
four different southernBaltic beaches and 3) evaluate its suitability and
cost-efficiency as a complementary method in monitoring programs.

METHODOLOGY

Study Sites
The Baltic Sea is an enclosed sea with a population of 90 million
people and 15 major coastal cities, 10 main rivers (Marlin, 2013)

and with an economy that highly focuses on tourism, with cruises
and ferries frequently transporting people and goods across the
sea, and to a smaller extent on fishing and shipping (HELCOM,
2017). Four beaches in the southern Baltic Sea, three in
northeastern Germany and one in Lithuania, were selected for
the study (Figure 1). Beaches were selected based on their
accessibility and for presenting different beach geomorphology,
sand color, background substrate (i.e. stones, shells, algae and
vegetation) and level of tourism. Two of the sites, Warnemünde
and Klaipeda, are urban beaches. Stoltera and Ahrenshoop are
peri-urban beaches located close to Nature Conservation Areas.
Beach visitors and hikers were present in different quantities at all
sites during the sampling time.

Aerial images were captured under different weather
conditions (Figure 1). At all German beaches, official cleaning
activities takes place regularly. In Stoltera and Warnemünde,
cleaning occurred every day from 5–9 a.m. during high season
and three times per week during low season. This is carried out

FIGURE 1 | Study sites for drone mapping and in-situ data collection of beach litter in the Southern Baltic Sea, specifically Germany (1) (A): Stoltera, (B):
Warnemünde, (C): Ahrenshoop) and Lithuania (2) (D): Klaipeda).
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with a mechanical vehicle (“Beach Tech 2000”) which removes
litter and seaweed and is able to clean 22,000 m2 per hour (pers.
com. Rostocker Gehwegreinigung, July 2019; Tourismuszentrale,
2019). In Ahrenshoop, regular cleaning takes place by hand two
times a week during high season (June–September) and no cleaning
the rest of the year (pers. com. Kurverwaltung Ahrenshoop, October
2020). In Klaipeda, the beach belongs to the protected area “Coastal
Region Park” and cleaning takes place only after extreme weather
events (pers. com. A. Balciunas, 2019). In addition, removal of beach
litter is also carried out byNGOs at all sites, serving as environmental
awareness raising mechanisms (e.g., Battisti and Gippoliti, 2019).

Equipment and Software
Study areas were mapped with a low cost quadcopter DJI
Phantom four Pro V2.0 with an integrated RGB CMOS
camera of 20 Megapixels (focal length 8.8 mm) to develop and
test an UAV-based approach for marine litter monitoring of meso-
(1–25mm) and macrolitter (>25mm). The drone had a GPS/
GLONASS system with a hover accuracy of ±0.5 m (vertical) and
±1.5 m (horizontal), a gimbal unit to provide near nadir observations
and obstacle avoidance, automatic flight and Return To Home
(RTH) features. A controller, which uses a smartphone device as
display, allows monitoring of battery life and drone status. In this
study, two smartphone devices (Android and iOS) were tested to run
the flight mapping apps and fly the drone. PolarPro ND filters were
used to adjust shutter speed under different light conditions, with
ND 8 for cloudy, ND 16 for sunny and ND 32 for very sunny
conditions.

For mapping, two apps were tested: DroneDeploy v.3.13.1 and
Pix4D Capture v.4.5.0. The apps set the mapping area, flight
altitude, speed, field of view (FOV), front and side overlap and
create an orthomosaic with the images obtained. Agisoft
Metashape was used for image stitching for one orthomosaic
where neither of the mapping apps provided satisfactory results,
using a standard process of photo alignment which uses images
and point cloud data to create mosaics or 3D data (Agisoft, 2020).
Moreover, the geospatial analysis software ENVI 5.3 and ArcGIS
v.10.5 were used for image analyses. ENVI 5.3 served to explore
the spectral signatures of different objects in the image, while
ArcGIS v.10.5 was used to carry out supervised object-based
classification.

Field Approach and Image Acquisition
The methodology for image acquisition and analysis followed five
main steps (Figure 2). A total of four flights per beach (three for
Klaipeda and Warnemünde) were carried out as one-time
sampling in the same day at three different altitudes near the
highest sun zenith angle (between 11 a.m and 1 p.m CET) inMay,
June, July and October 2019. All sampling was carried out under
the permission of the Ministry for Energy, Infrastructure and
Digitalization in MV, Germany and following the guidelines of
the German Air Traffic Control (Deutsche Flugsicherung, DFS).
In Lithuania, drone flights for small devices (<25 kg) do not
require permission, thus sampling was not restricted but followed
regulations (Civil Aviation Administration, CAA, 2020). Care
was taken during all surveys to avoid impacts such as crashing on

FIGURE 2 | (1) Workflow for drone-based monitoring and object-based supervised classification based on five main steps, each with separate single steps to
follow. (2) Set up for sampling of the recovery experiment (A) and 100 m beach transects (B). In the recovery experiments, selected items (based onmost common items
found in the Baltic region) were placed in a cleaned area of 5 × 10 m. The 100 mmonitoring was based on OSPAR guidelines. After drone mapping of the zone, litter was
collected on the area from the intertidal to the back of the beach with two people and then counted and classified according to the OSPAR list of items.
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people or structures (e.g. trees), or cause disturbances to birds by
the noise and start/landing of the drone. We carried out sampling
away from conglomeration of people and chose a start/land site
with sufficient distance from trees and structures. The drone was
always kept on sight to maneuver in case of danger. The flight
heights used were low and thus more noise was produced, but we
kept flights short (3 min for recovery experiments and max.
20 min for one sampling of 100 m beach transect) to minimize
disturbance. The sampling was carried out only under good stable
weather conditions (noon, clear sky or homogeneous cloud cover,
wind speed <20 km/h, no rain). Supplementary Table S1 shows
the settings used for drone-based mapping following Martin et al.
(2018) and own experiences. Ground Control Points (GCPs) were
not used for georeferencing. The drone gives good positional
relative accuracy- that is how points on a map are placed relative
to each other- which we suggest is sufficient for image
classification, as we are not overlaying different orthomosaics
but rather making a comparison of the classification results
between different flight altitudes and algorithms.

Previous studies using consumer drones with a camera
resolution similar to ours, tested flight altitudes between 5 and
35 m (Deidun et al., 2018; Martin et al., 2018; Fallati et al., 2019)
and up to 60 m (Atwood et al., 2018; Goncalves et al., 2020). The
flight altitudes chosen for this study were set based on the Pix4D
Ground Sampling Distance (GSD) calculator to obtain a GSD
<5 mm as optimal spatial resolution to detect litter in the meso
(5–25 mm) and macro (>25 mm) scale; namely 10, 15, and 18 m,
which would give spatial resolutions of 2.7, 4.1, and 4.9 mm,
respectively. This is also in accordance with the EU law
regulations for drone flights, limited to a range of 10 m to
120 m, based on the aircraft settings and EU law (European
Parliament and Council, 2018).

To assess the detection accuracy of litter items at these different
flight heights, recovery experiments were carried out on a
previously cleaned area of 5 × 10 m (Figure 2) where litter
items of different colors, shapes and sizes (1–30 cm) were
displayed (Supplementary Figure S1). These included the most
common item categories for the Baltic (Schernewski et al., 2017).
The sites mapped had different number of items (14–57 items)
and background substrates and were sampled under different
weather conditions (Figure 1). In addition, beach transects of
100 m (with unknown number and type of litter) were mapped
from the intertidal zone to the back of the beach (Figure 2) at a
flight height of 10 m. After mapping, two people collected the
items seen by naked eye and classified them according to the
OSPAR list of items (OSPAR, 2010). All captured images were
converted into orthomosaics and these were integrated in a
Geographic Information System (GIS) for image analyses.

Image Processing and Pre-analyses
A total of 14 orthomosaics were created in GeoTIFF format which
presented spatial resolutions of 2.7–8 mm/px, based on flight
height and mapping app used. In general, all apps use
photogrammetry approaches based on image orthorectification
with point clouds and elevation data to produce orthomosaics,
however, different image processing may have caused the
differing spatial resolutions between the apps (e.g., use of

image stitching enhances image spatial resolution). For each
site, three orthomosaics (one for each flight height) of
recovery experiments (Klaipeda and Warnemünde, only two)
and one orthomosaic of a 100 m beach transect taken at 10 m
altitude. Image analysis was carried out on ArcGIS, using Digital
Numbers (DN) with a radiometric resolution of 8 bit. The
projection used was WGS1984 UTM Zone 33N/34N for
Germany and Lithuania, respectively.

First, the orthomosaics obtained from the recovery
experiments at 10 m height were visually screened to assess
and compare the accuracy of litter detection from drone imagery
vs. ground truth data. Here, the analyst knew the number and type of
items but not their position in the image. The items were counted
from left to right, starting at the top of the image towards the bottom,
zooming at the objects to mark them. Preliminary analyses were
conducted to find the best classificationmethod between pixel-based
vs. object-based classification. Similarly, the influence of different
number of classes (2, 4, and 6 classes) was tested in ArcGIS and
ENVI. The latter was used to inspect the spectral differences of each
background material by taking 10–20 samples of objects in each
orthomosaic.

Object-Based Supervised Classification
Image classification followed a standard procedure of object-
based supervised classification incorporated in ArcGIS including
four steps, i.e. segmentation, the selection of training samples,
classification and accuracy assessment.

Segmentation groups pixels into “objects” based on
homogeneity criteria set by spectral and spatial values and
minimum segment size. This aims at reducing noise from the
background and highlighting objects of interest for object-based
classification. Based on the gained knowledge from the
investigated sites, a decision tree for choosing segmentation
parameters was created (Figure 3). Spectral and spatial values
were chosen individually per site. The minimum segment size
used here was between 2 and 10 pixels (1–5 cm2) with the aim to
allow recognizing small litter items like cigarette butts (1–2.5 cm).
It is important to consider that only four beaches were studied,
thus the employment of this decision tree should be further tested
for its application in more sites. For an example of the
segmentation result, see Supplementary Figure S2.

The classification approach used is supervised and therefore
requires training data. Training samples were taken as segments
to obtain 4–6 distinct classes. The criteria used here were: 1)
select >20 samples (if possible), proportional to the class size but
not exceeding the number of objects per class in the image, 2)
select samples with enough distance from one another to
increase variability of the training set, 3) select samples at
the center of the item to avoid mixed pixels and 4) include
different color tones for each class, i.e. if vegetation was present
in different tones of green, training samples included these to
provide an accurate classification of the class. Additionally,
histograms and scatterplots on ArcGIS were checked to
ensure that each class was spectrally distinct from one
another. The training samples taken at each recovery
experiment were used for classification of the recovery sites
and 100 m beach transects.
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Three supervised classification algorithms were tested:
Maximum Likelihood (ML), Random Forest (RF) and Support
Vector Machine (SVM). These algorithms follow different set of
rules in respect to the training samples to be used. For the RGB
camera used, ML classification in ArcGIS requires a minimum
number of 20 training samples per class and assumes normal
distribution of the samples, while RF classification and SVM can
work with fewer samples, do not assume normal distribution and
are less susceptible to noise in the image. The functioning of each
algorithm is also different. ML is based on the concept of normal
distribution and Bayes theorem of decision making, based on the
probability that every pixel in an image belongs to a particular
class. The strength of ML is that it considers the variability within
each class using the covariance matrix to classify the candidate
pixel (Lillesand et al., 2004). RF uses multiple decision trees
trained to use small variation of the data, where the majority vote
from the trained trees decides the class assignment for each pixel
(Berhane et al., 2018). SVM is a non-parametric statistical
learning approach and therefore there is no assumption made
on the underlying data distribution. SVM maps input data as
vectors into a higher dimensional space to separate data into
different classes using hyperplanes (Mountrakis et al., 2011). The
output of the approaches is a classified image (.tif) of a number of
classes as defined in the training samples.

Accuracy assessment of the image classifications was carried
out with a set of 500 validation points created in an “equalized
stratified random”manner, i.e. distributed within each class, each
one having the same number of points. A confusion matrix, based
on the comparison between the classification and reference data,
revealed the accuracy of each algorithm by calculation of
commission and omission errors for each class, total accuracy
and kappa value of agreement. The total accuracy (TA) is the
percentage of correctly classified validation pixels and measures
the accuracy of the classified image. The producer’s accuracy

(PA), also known as recall, indicates the true positive rate or the
proportion of true positives in relation to true positives and false
negatives in the model classification. It is also a measure of
omission error. The user’s accuracy (UA), also known as
precision, indicates the positive predictive power or the
proportion of true positives in relation to true positives and
false positives in comparison to the reference data. It is also a
measure of commission error (Story and Congalton, 1986;
Campbell and Wynne, 2011). Cohen’s Kappa gives an overall
assessment of accuracy of the classification in respect to
randomness, with a value of 0 indicating no better than
random, >0 better than random and <0 worse than random
(Cohen, 1960).

Because only one replicate classification was carried out per
height and algorithm, statistical tests for significant differences
were not conducted. Instead, we provide an overview of the
accuracy measures obtained from each image classification and a
comparison of the mean and standard deviation between the
classifications at different flight heights for each sampling site.

Cost-Efficiency Analysis
Official marine litter monitoring methods need to be time and
cost efficient. The MSFD requires the comparison of methods for
marine litter monitoring to meet the practical demand of cost-
efficiency (JRC, 2013) considering implementation and annual
running costs to fulfill the MSFD Descriptor 10 and to be
implemented by national authorities within their national
marine litter monitoring programs. The following approach
provides a subjective comparison of a set of two monitoring
methods: an UAV monitoring method with a commercial RGB
drone and a hypothetical non-established spatial-OSPAR
monitoring method to evaluate aspects of costs and efficiency.
The evaluation of efficiency was based on four criteria: accuracy,
reproducibility, flexibility and quality. Accuracy refers to the

FIGURE 3 |Decision tree for segmentation parameters based on beach characteristics of the four study sites. SPE: Spectral Value, SPA: Spatial Value, MSS: Mean
Segment Shift Value.
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share of items identified at the beach transects vs. ground truth
data. Reproducibility reflects the likelihood that, when a method
is applied by different persons, drones and software, the same
results will be obtained. Flexibility is defined as how flexible the
method is with respect to weather conditions, external
disturbances, permissions and battery life. Quality refers to
how well are items defined and whether sufficient data is
provided, i.e. type and number of items, type of material and
spatial distribution.

In contrast to the current OSPAR method, spatial-OSPAR
considers the spatial distribution of litter items per area, thus
comparable to the output of the drone approach, and taking into
account 100 m beach transects (or 1 km beach transects for items
>50 cm) with smaller transects of 10 m and 3–6 quadrats of 9 m2,
displayed from the tide line, middle and to the back of the beach
(an adapted version after Bravo et al., 2009).

Costs of the UAV and the spatial-OSPAR methods were
calculated considering implementation costs (equipment, software
and testing period) and annual running costs for office and field/lab
work to be carried out at four beaches, four times a year, by a
minimum of two persons. Our time and costs estimations follow
own experiences. These estimations may, therefore, vary based on
type of drone used, analysis method and level of training required, as
well as currency and salary estimations for the country. The initial
costs include equipment costs as well as the costs for a testing period
for both methods (6 months for the UAV-method and 3months for
the spatial-OSPAR method). Annual running costs include field/lab
(travel, survey and analysis) working time and office (planning,
organization and reporting) working time. The total monitoring
costs were calculated as the sum of initial costs and annual running
costs for field/lab and office work, and were classified as: 5 (very low)
< 15,000 €; 4 (low) < 30,000 €; 3 (moderate) < 45,000 €; 2 (high) <
90,000 € and 1 (very high) > 90,000 €.

Each method and criteria was scored separately, evaluated by
three experts as: 1 (very low), 2 (low), 3 (moderate), 4 (high) and 5
(very high). The efficiency score is the average of the scores for
each criterion. To obtain the final cost-efficiency score, the cost
and the efficiency scores were multiplied and classified as: <5
(very low), <10 (low), <15 (moderate), <20 (high) and >20 (very
high).

RESULTS

Preliminary Analyses
Accuracy Assessment by Visual Screening
Visual screening carried out on images captured at 10 m flight
height revealed a mean recovery rate of 99.4 ± 16.2% for the four
beaches (Ahrenshoop 87.5%, Stoltera 97%, Warnemünde 90%, in
Klaipeda 16 instead of 13 items were found again, 123%). These
results gave the first “green light” towards testing a semi-
automatic method for classification with ArcGIS. The objects
easier to find by visual screening were larger items (>2.5 cm),
items placed close to each other, items of bright colors and shapes
normally not found naturally at the beach (e.g. bottle caps in
yellow, blue, pink, orange, red, bright green). The objects most
difficult to find were mainly in colors white, black, brown and

transparent and shapes like string/cord, lines and squares,
especially of small sizes and diameters (<2.5 cm).

Pixel Based vs. Object Based Classification
The high spatial resolution of drone images, which is needed for
the detection of small litter, also led to noise from shadows,
differences in sand color and tread marks, which disturb the
classification, and thus needed to be handled accordingly. Pixel-
based unsupervized classification (A) resulted in a complex image
due to high variations on sand, background substrate (i.e. sand
color and amount of stones, shells and vegetation), colors and
shades. Using object-based unsupervized classification (B) objects
were clearly separated from sand and the “noise” from shadows
and differences in sand color were reduced or eliminated
(Supplementary Figure S3). The results of this test
classification also showed that images at 10 m height gave a
closer and sharper look into smaller objects than images
obtained at 15 and 18 m height (Supplementary Figure S4),
which reduced the noise of the background but smaller objects
were more difficult to identify and classify.

Influence of Different Number of Classes
Unsupervized classification into two classes highlighted all
objects from sand (Supplementary Figure S5A), whereas
classification into four classes (Supplementary Figure S5B)
showed clustering of the objects, however with high variability
in the classification, i.e. one object was classified as three different
ones. The classification into six classes showed even higher
variability in the classification: objects of white and black color
were clustered separately and colorful litter items were
highlighted from the sand but classified in non-coherent
clusters with single items belonging to more than one class
(Supplementary Figure S5C).

The analysis of spectral profiles of objects on ENVI 5.3 revealed
that each object had a different spectral profile and could therefore
be classified separately into a total of maximum six classes: litter,
algae, vegetation, shells, stones and sand. For Warnemünde, the
class “shadows” was added (Supplementary Figure S6). Between
all classes present, algae, vegetation and sand presented
characteristic and consistent spectral profiles that could allow
the differentiation from other classes. However, for the case of
litter the high variation in color presented no consistent curve in
which classification could be based upon. Lastly, shells, stones and
shadows that were present in either white or dark colors had similar
spectral profiles with flat DN values at either extreme (0–255).

Like this, four to six classes were chosen for the selection of
training samples to carry out object-based supervised
classification with three algorithms. For classification with four
classes, algae and vegetation as well as stones and shells were
considered together as two classes. For classification with six
classes, algae and vegetation as well as stones and shells were
considered as separate classes. This latter classification was
carried out only for the sites where the presence of stones and
shells as well as of algae and vegetation was clear, in this case
Stoltera and Ahrenshoop. Although these classes are not the
object of interest, it was important to understand how white and
black objects would be classified.
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TABLE 1 | Accuracy of image classification on recovery sites with 4 and 6 classes (litter, vegetation, algae, stones, shells and sand) for each site, algorithm and flight height.
The values are presented as percentage from top to bottom: Total Accuracy (TA), Producer’s accuracy (PA) of litter class, User’s accuracy (UA) of litter class and kappa
value of agreement (k).

Four classes Six classes

Site Algorithm/Height 10 m 15 m 18 m Mean ± SD 10 m 15 m 18 m Mean ± SD

Stoltera ML 0.75 0.76 0.62 0.71 ± 0.06 0.64 0.58 0.56 0.59 ± 0.03
0.85 0.80 0.45 0.70 ± 0.18 0.79 0.70 0.46 0.65 ± 0.14
0.55 0.57 0.18 0.43 ± 0.18 0.70 0.59 0.30 0.53 ± 0.17
0.66 0.68 0.50 0.61 ± 0.08 0.56 0.49 0.47 0.51 ± 0.04

RF 0.58

— — —

0.50 0.51

—

0.51 ± 0.01
0.95 0.35 0.28 0.32 ± 0.03
0.39 0.16 0.13 0.15 ± 0.01
0.43 0.40 0.42 0.41 ± 0.01

SVM 0.73 0.74 0.73 0.73 ± 0.00 0.62 0.65 0.63 0.63 ± 0.01
0.81 0.72 0.61 0.71 ± 0.08 0.48 0.75 0.59 0.61 ± 0.11
0.42 0.47 0.42 0.44 ± 0.02 0.91 0.99 0.99 0.96 ± 0.04
0.63 0.66 0.64 0.64 ± 0.01 0.54 0.58 0.55 0.56 ± 0.02

Ahrenshoop ML 0.84 0.82 0.79 0.82 ± 0.02 0.66 0.65 0.61 0.64 ± 0.02
0.97 0.98 0.98 0.98 ± 0.00 0.92 0.92 0.86 0.90 ± 0.03
0.50 0.45 0.36 0.44 ± 0.06 0.28 0.29 0.15 0.24 ± 0.06
0.78 0.76 0.71 0.75 ± 0.03 0.59 0.58 0.53 0.57 ± 0.03

RF 0.73 0.73 0.73 0.73 ± 0.00 0.56 0.56 0.57 0.56 ± 0.00
0.77 0.73 0.92 0.81 ± 0.08 0.22 0.18 0.18 0.19 ± 0.02
0.08 0.09 0.09 0.09 ± 0.00 0.02 0.04 0.02 0.03 ± 0.01
0.63 0.63 0.64 0.63 ± 0.00 0.47 0.47 0.48 0.47 ± 0.00

SVM 0.74 0.76 0.75 0.75 ± 0.01 0.60 0.63 0.64 0.62 ± 0.02
0.96 1 0.94 0.97 ± 0.02 0.87 0.44 0.54 0.62 ± 0.18
0.19 0.21 0.14 0.18 ± 0.03 0.16 0.20 0.26 0.21 ± 0.04
0.66 0.68 0.66 0.67 ± 0.01 0.52 0.55 0.56 0.54 ± 0.02

Warnemündea ML 0.90 0.75

—

0.83 ± 0.08 adrone images taken only at 10 and 15 m. Classification
was done only with 4 classes because only 4 features

were present
1 0.99 1.00 ± 0.01

0.88 0.70 0.79 ± 0.09
0.87 0.66 0.77 ± 0.11

RF 0.71 0.61

—

0.66 ± 0.05
0.93 0.67 0.80 ± 0.13
0.22 0.08 0.15 ± 0.07
0.62 0.48 0.55 ± 0.07

SVM 0.76 0.62

—

0.69 ± 0.07
0.97 0.95 0.96 ± 0.01
0.74 0.30 0.52 ± 0.22
0.68 0.49 0.59 ± 0.10

Klaipedab ML

—

0.69 0.54 0.62 ± 0.07 bdrone images taken only at 15 and 20 m instead of
18 m. Classification was done only with 4 classes

because only 4 features were present
0.88 0.93 0.91 ± 0.03
0.88 0.79 0.84 ± 0.05
0.59 0.38 0.49 ± 0.11

RF

—

0.54

— —
0.74
0.11
0.38

SVM

—

0.71 0.44 0.58 ± 0.14
0.89 0.76 0.83 ± 0.07
0.69 0.36 0.53 ± 0.17
0.61 0.25 0.43 ± 0.18
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The criterion to “select >20 training samples” was not
possible to fulfill in all beaches and taking a larger amount
of training samples in the small recovery area contradicted
the goal of the semi-automatic classification. For the object of
interest (i.e. litter), most beaches had at least 20 training
samples. For Klaipeda, which had the lowest density of
litter in the recovery area, 10 training samples were chosen.
Since stones and shells were not easy to distinguish from

white or black objects (e.g., litter or algae pieces) from the
spectral profiles, only a few samples were taken based on
their shape and distance from algae or water, to avoid
misclassifications.

Object-Based Classification
The accuracies of image classification for recovery experiment
(5 × 10 m) are shown in Table 1. The classification with four

FIGURE 4 | Comparison of supervised classification with four classes with the algorithms ML, RF, and SVM on erial images at 10 m for the site Stoltera,
Ahrenshoop, Warnemünde and Klaipeda. Each close-up image shows litter objects on the recovery site (D) and their classification result (A–C), such as litter objects of
different sizes (square) and cigarette butts (1–2.5 cm) (circle).
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classes showed total accuracies (TA) that ranged between 36%
and 90% forML, 54% and 73% for RF and 44% and 76% for SVM,
depending on flight height and site. Producer’s accuracy (PA)
for litter showed similar ranges: 45–100% for ML, 67–95% for
RF and 61–100% for SVM. Whereas user’s accuracies (UA) for
litter were lower. Kappa values were in most cases >0.60
indicating that classification was better than random.
Classification with six classes showed in general lower
values for TA, PA and UA for all algorithms and sites. Here
kappa values were in most cases <0.60 indicating that
classification was closer to random.

In most cases, measures of accuracy (TA, PA, and UA)
decreased at images taken at higher flight altitudes.
Classification of images taken at 10 m showed highest TAs,
highest PA for litter classification and highest kappa values in
most sites for the three algorithms. In some cases, higher TAs
were also seen at images taken at 15 m or 18 m; however, this was
mainly due to higher accuracies in classes other than litter. User’s
Accuracy (UA) for litter was lower for all classification
algorithms, with values of 18–88% for ML, 8–39% for RF and
14–75% for SVM with four classes and 15–70% for ML, 2–16%
for RF and 16–99% for SVM with six classes, depending on flight
height and site (Table 1).

Due to a lack of replicates, an assessment of significant
differences for measures of accuracy between algorithms was
not possible to carry out and thus is not possible to statistically
assess if an algorithm performs better than another.
Nevertheless, Table 1 shows that no clear differences were
found between algorithms for samples taken at different sites.
Similarly, no clear differences were observed between
measures of accuracy for images taken at different heights,

which in general showed low standard deviations from
the mean.

The resulting classified images showed that ML and SVM gave
a better representation of litter and background features in
contrast to RF (Figure 4). In the case of Warnemünde, similar
classifications were seen between the three algorithms but SVM
showed misclassifications between vegetation/algae and shadows
(Figure 4). For 6-class classification, these results were similar,
but as more classes were used, more detail was defined and
misclassifications were seen between shells and white litter objects
(Figure 5). In general, both ML and SVM were able to classify
meso- and macrolitter size with varying accuracies relative to
sand color, background substrate, weather conditions and litter
objects.

The classification of 100 m beach transects (at 10 m flight
height for German sites and 15 m for Klaipeda) showed lower
accuracy values than achieved on the recovery experiments,
independent from site and image resolution. Classification
with four classes showed kappa values between 0.23 and
0.53, which indicated that classification was rather random
among different algorithms and no single algorithm could
show a good performance in all cases (Table 2). Similar
patterns were seen for the classification with six classes. The
high range of difference for PA and UA for litter is due to how
AAPs are placed on the image, sometimes hitting only one or
no litter item, which skewed the results to either extreme (0
or 100%).

The classified 100 m beach transects showed similar
classification patterns as in the recovery experiments but could
not be representative of the litter found on the sites during
collection (Stoltera: 174 items, Warnemünde: 167 items,

FIGURE 5 | Comparison of supervised classification with six classes with the algorithms ML, RF, and SVM on erial images at 10 m for the site Stoltera and
Ahrenshoop. Each close-up image shows the distribution of litter objects on the recovery site (D) and their classification result (A–C), such as litter objects of different
sizes (square) and cigarette butts (1–2.5 cm) (circle).
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Ahrenshoop: 77 items and Klaipeda: 214 items) (Supplementary
Figure S7). Figure 5 shows the classification results with highest
TA, PA for litter and kappa values for each site (seen at Table 2).
Both images and confusion matrices showed that
misclassifications occurred in all algorithms (Supplementary
Table S2). ML showed misclassification between litter and
vegetation in Warnemünde (Supplementary Figure S12) and

between vegetation, stones and litter in the classification with four
classes in Ahrenshoop (Supplementary Figure S10). RF showed
an overestimation of litter abundance in Klaipeda
(Supplementary Figure S13) and in the classification with six
classes in Ahrenshoop (Supplementary Figure S11). SVM
misclassified vegetation and litter in Stoltera (Supplementary
Figures S8, S9) and stones and litter in Klaipeda (Supplementary

TABLE 2 |Accuracy of image classification on 100 mbeach transects at 10 m flight height with 4 and 6 classes (litter, vegetation, algae, stones, shells and sand) for each site,
algorithm and flight height. The values are presented as percentage from top to bottom: Total Accuracy (TA), Producer´s accuracy (PA) of litter class, User´s accuracy (UA)
of litter class and kappa value of agreement (k).

Algorithms/Sites Stoltera Ahrenshoop Warnemünde Klaipeda

Four classes Six classes Four classes Six classes

ML 0.44 0.25 0.55 0.64 0.47 0.54
0 0 1 0 0.25 1
0 0 0.007 0 0.02 0.02

0.27 0.11 0.39 0.56 0.31 0.37

RF 0.72 0.39 0.51 0.57 0.74 0.39
0 0 0 0 0 1
0 0 0 0 0 0.02

0.49 0.15 0.35 0.46 0.54 0.23

SVM 0.66 0.36 0.44 0.74 0.73 0.52
0 0 1 1 0.25 0.75
0 0 0.01 0.04 0.11 0.03

0.36 0.13 0.31 0.64 0.52 0.34

TABLE 3 | Cost-efficiency analysis for UAV and spatial-OSPAR for beach litter monitoring methods. The values are based on our experience taking into account the MSFD
guidelines (JRC, 2013) and federal state authority staff salaries (37.5 € per hour) for a monitoring of four beaches, four times a year. In bold are shown the scores for cost
and efficiency, giving the cost-efficiency score.

Costs Description Items >2.5 cm 100 m
monitoring

Items >50 cm 1 km
monitoring

UAV Spatial-OSPAR UAV Spatial-OSPAR

Investment and initial
test for implementationa

Costs of equipment, software, methodological tests in the field,
training for field work and analysis

48,000 € 15,100 € 48,000 € 15,100 €

Annual office costsb Orders, selection of sites, drone permissions and licenses,
reporting, annual replacement costs for materials

10,000 € 10,000 € 10,000 € 10,000 €

Annual field/lab costsb Travel to site, survey, analysis of data 10,600 € 5,800 € 16,000 € 4,000 €

Annual running costs 20,600 € 15,800 € 26,000 € 14,000 €

Total annual costsc 36,600 € 20,833 € 42,000 € 19,033 €

Person hours/year 1,296 768 1,440 720

Cost score 3 4 3 4

Efficiency
Accuracy 3 4 5 5
Reproducibility 5 3 5 5
Flexibility 1 4 2 4
Quality 3 5 4 4

Efficiency score 3.0 4.0 4.0 4.5

Cost—efficiency 9.0 16 12 18
Low High Moderate High

aOne-time investment to be done every 3 years, considering a drone lifetime of 3 years and renewal of training.
bConsiders brutto salary for a federal state authority in Germany (37.50 € per hour).
cConsiders a third of the investment and initial costs added to the annual running costs.
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FIGURE 6 | Object-based supervised classification of 100 m beach transects taken at 10 m flight height. Only the results with best total accuracy (TA), producer’s
accuracy for litter (PA) and kappa value of agreement for with 4 and 6 classes are shown for each site: Stoltera (A,B), Ahrenshoop (C,D), Warnemünde (E) and Klaipeda (F).
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Figure S13). Objects that were correctly classified were
anthropogenic items (beach tents of ca. 2 m in
Warnemünde–Supplementary Figure S12—and
Ahrenshoop–Supplementary Figures S10, S11 classified as
litter), algae and beach wrack in Stoltera (Supplementary
Figure S8) and Ahrenshoop (Supplementary Figure S10),
vegetation (Supplementary Figure S10) and shells
(Supplementary Figure S11) in Ahrenshoop, and stones in
Klaipeda (Supplementary Figure S13).

Time and Cost-Efficiency
As seen on Table 3, the UAV spatial method for 100 m and
1 km beach monitoring involves higher initial costs and
about two times more costs and time effort for field work
and analysis than the spatial-OSPAR method. The higher
investment costs for the UAV method are related to software
costs, since license software is often required within official
federal agencies. If these software costs were not considered,
the investment costs would decrease to only 3,000 € for the
drone and other materials. Costs for testing period of
implementation were higher for the drone method,
estimated as 30,000 € for the 100 m and 1 km monitoring
vs. 15,000 € for the spatial-OSPAR method. Office costs are
the same for both methods. Annual running field costs
(survey on site) were lower for the UAV method at 100 m
beach transects (1,800 € vs. 2,400 € for the spatial-OSPAR),
but higher once spatial extension increased to 1 km (2,400 €
vs. 1,800 € for the spatial-OSPAR method). Annual running
costs for analysis of the data (lab work) was considerably
higher for the UAV method than for the spatial-OSPAR
method (4,800 € vs. 2,400 € for 100 m and 9,600 € vs. 1,200 €
for 1 km) (Table 3).

The overall cost-efficiency score for beach litter monitoring
was 9–12 (low tomoderate) for the UAVmethod vs. 16–18 (high)
for the spatial-OSPAR method.

DISCUSSION

Lessons Learned From Object-Based
Classification
Results from the recovery experiment showed that litter sizes
>2.5 cm (i.e. macrolitter size) were the minimum size detectable.
PAs for litter for the recovery experiments at different sites were
between 77% and 100% with kappa values between 0.43 and 0.87
for images taken at 10 m height. These accuracy values were
comparable to those obtained through visual screening of the
same images (>87%, mean 99.4% ± 16.2). Even if smaller litter
items were detected and classified (e.g., Figures 4, 5, cigarette
butts <2.5 cm), in reality many were misclassified. Another study
also showed limitations in the detection of smaller items size,
where items <4 cm were also most misclassified (Martin et al.,
2018). TA was lower for classification into six vs. four classes
(Table 1), but the PA for litter was in some cases similar, reaching
values between 70 and 80%. In the 6-class classification, white and
dark litter items were better classified than with the 2-class or 4-
class classification (Supplementary Figure S5), but at the same

time introducing more classes increased the complexity of
the image.

The results from visual screening and spectral curves gave an
initial indication of misclassification. Objects with a flat spectral
curve (e.g. white shells and black stones) in colors white, black,
transparent and brown, and litter which did not present any
consistent curve (Supplementary Figure S6) were most
misclassified on RGB images, whereas the objects of bigger
size (>2.5 cm) and bright colors were correctly classified as
litter (e.g. Figure 4). This is because object color, weather,
light conditions and background substrate influence DN values
and thus classification. In addition, the selection of training
samples based on DN values depends on the judgment of the
observer, increasing chances of error and misclassifications.
Furthermore, it was not possible to establish whether one
algorithm can cope better with background complexity than
others, since factors like weather conditions differed in each
site. We suggest that the higher complexity of sand and
background substrate challenges segmentation of the image,
which in turn, influences classification results. This was also
observed by Martin et al. (2018) where shadows, vegetation
and non-uniform background as well as the variability of each
item within the same category (different sizes and colors)
presented limitations in classification. In our study, as
complexity of the background increased, the use of more
classes became beneficial (e.g. in Ahrenshoop, Supplementary
Figures S10, S11). However, in order to derive accurate statistics,
the use of replica on each site and condition as well as further
explore the influence of litter quantities and background substrate
should be explored.

No clear differences of performance accuracy could be
assessed between the algorithms; however, in contrast to
previous studies, RF was the algorithm that presented most
problems in performance in our images (Table 1). Martin
et al., (2018) used RF classification obtaining an accuracy of
61.8% for detection of litter, 39.5% total accuracy and F-score of
0.13. Their classification presented an overestimation of 5-times
due to false positive items, as similarly seen in the classified
images with RF in our study. Another study by Goncalves et al.
(2020) at beaches in Portugal also used RF, obtaining 75%
sensitivity (≈Producer’s accuracy) and 73% positive predictive
value (≈User’s accuracy) with a F-score of 0.75. These studies
used approaches related to changes in the color space of spectra
(Martin et al., 2018; Goncalves et al., 2020) which were not used
in this study.

Observations of the classified images from recovery
experiments suggest that ML better highlighted small features
(stones or shells) (Figure 4, 5) but did not necessarily classify
litter better (Table 1), yet bottle caps and larger macrolitter were
detected. In contrast, SVM gave less importance to small features
leading to less noise from stones, shells or sand heterogeneity
within the images. Still, small objects (also litter) were well
classified in most cases, up to large mesolitter sizes like
cigarette butts (Figures 4, 5). Some studies suggest that a
higher litter abundance leads to higher detection of litter by
RF and other algorithms (Martin et al., 2018; Atwood et al., 2018),
which was not observed in our study.
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The image classification used in this study did not provide a
distinction of litter composition and only focused on detection of
litter items to provide an estimation of abundance and distribution.
Based on the litter collected on site, the highest amounts of litter
were in the categories plastics and paper (mainly due to cigarette
butts), mainly macrolitter size of white or brown color and colorful
mesolitter items (Supplementary Figure S7). Our results showed,
however, that GIS classification based on RGB data was not
satisfactory to provide estimations of abundance, since litter
items were not possible to identify from the classified images at
large spatial scales (100 m beach transect). TAs at the 100m beach
transects were much lower than at recovery experiments and PAs
for litter were in most cases 0% (Table 2). This may be due to
uncertainties in themethod, because accuracy assessment depended
on whether one or more points hit a litter object or not, bringing
accuracy to extreme values of 0 or 100%. Due to the low segment
size used for segmentation, large items were constructed with
several segments, thus litter “objects” could not be counted as
such in the classified images since the number of segments per
item would overestimate the real count. Future studies should
consider taking the GPS coordinates of litter items as a method
to get reference data for larger transects.

Our analysis method did not prove to be sufficiently accurate
or time-efficient. It is important to consider other methods for
analysis, while following requirements for official beach litter
monitoring. As technology develops and advanced equipment
becomes more accessible, many of the limitations encountered in
our study (mainly related to image resolution and processing
time) will be overcome. Other methods including deep learning
have demonstrated to be an alternative for the classification of
objects on RGB images since it does not rely only on DN values
(Fallati et al., 2019). In their study, object recognition reached a
sensitivity (≈Producer’s accuracy) of 67%, positive predictive
value (≈User’s accuracy) of 94% and F-score of 0.49, arguing
the tool can be well used for the monitoring of litter and detection
of hotspots in the study sites.

Strengths and Limitations of Consumer
Drones for Beach Litter Monitoring
Taking into account our experiment results and assessment on
cost and time efficiency, drones are still a method that needs to be
explored and adjusted for efficient monitoring. The images from
drones provide high spatial resolution which is required for the
detection of small litter items. Our results showed that litter sizes
>2.5 cm (i.e. macrolitter size) were the minimum size detectable.
Even if smaller litter items were detected and classified (e.g.,
Figure 4, cigarette butts <2.5 cm), in reality many were
misclassified. Thus, the accuracy of consumer RGB drones can
be regarded as high (Table 3) for large particles but decreases with
smaller item size and additionally depends on parameters such as
item color, shape and weather conditions. These limitations could
be overcome with more advanced drone sensors (e.g.
multispectral) or the use of other analysis methods (e.g. deep
learning) which increase accuracy; however, this would involve
higher costs and expertize. In terms of type of data obtained and
quality, our results suggest that the drone method (with RGB

camera) can only provide data on the number of items and spatial
distribution (moderate to high quality), in contrast to the spatial-
OSPAR method where litter objects are collected by hand and can
be better visualized to define also type of item and material, and
give indications of pollution sources (Table 3).

A clear strength of drones is reproducibility (Table 3). Our
results showed that the mapping of sites can be easily carried out
after simple training of staff with the help of free mapping apps.
These apps automatically map a site of interest at a set height,
speed and area, enabling long term monitoring of the same site
under consistent conditions. Although our analysis method did
not prove to be sufficiently accurate and time-efficient, analysis of
data in general would follow a strict protocol, carried out semi-
automatically, decreasing chances of human error once the
method is set up and sufficiently evaluated. For the 100 m
OSPAR beach monitoring it is known that a difference of at
least ± 10% is common, depending on who is carrying out the
field work (Schernewski et al., 2017). In this respect, the drone
method shows very high reproducibility in contrast to moderate
reproducibility for the spatial-OSPAR method, and comparable
values for 1 km beach transects (Table 3). Nevertheless, our own
experiences showed that drone and GIS basedmonitoring is time-
intensive (creation of orthomosaics 2–8 h, classification of the
images, 3–8 h) and analysis of the images requires higher skills
than for data obtained with an adapted spatial-OSPAR method.

Flexibility was the main limitation for monitoring with
commercial drones in contrast to current monitoring methods
(Table 3). The drone method depends on wind, weather and
light conditions and can hardly be applied according to a fixed
timetable. However, the dependence on weather conditions is a
factor that all remote sensing studies need to consider (Murphy,
2015). At our study sites, ideal weather conditions initially involved
wind speeds <20 km/h and enough sun light; however, overcast
conditions and wind speeds of 27 km/h at Ahrenshoop also
demonstrated good results (Table 1: Figures 4, 5). Cloudy
conditions showed best image outputs to avoid direct sunlight
and shadows which led to sun glint and darker areas that
disturbed image classification (Supplementary Figures S8, S9).
ND Filters helped to minimize the reflection from sand under
strong sunlight but shadows and sun glint could not be fully
corrected. Issues with GPS signal, battery life (max. 20min) and
compatibility between smartphone device and mapping apps were
also limitations encountered during our sampling. In addition, drone
licenses are nowadays needed for all types of aerial drones and legal
permissions are required at most places in Germany and limited to
zones outside nature protected areas and of high urban density or
conglomerations of people (§ 21a LuftVO, BMVI, 2017). From
December 31, 2020, new EU regulations will apply and replace
national regulations for each country (European Union Avitation
Safety Agency, 2020).

Another important factor to discuss is the common natural
trade-off of remote sensing approaches where decreasing flight
altitude increases image resolution, but also decreases the area of
coverage, increasing post-processing times and costs (Murphy,
2015). The large number of images obtained (44–234 images for
recovery experiments and 459–1,247 images for 100 m beach
transects) at 10 m led to high processing time for orthomosaic
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creation (12–24 h). Drone images in our study had a high spatial
resolution (2.7–8 mm, 20 MP camera) and litter objects were
possible to see on images taken at all flight heights, but higher
flight altitudes (e.g., 18 m) were not enough to classify objects (i.e.
stones, shells, vegetation) accurately. Low flight height has also
been related to blurry images and vigneting effect especially on
sites with homogenous ground, like sand, which hinders
orthomosaic construction (DroneDeploy, 2020). Studies that
carried out mapping at much higher altitudes, focused on
litter patches or much larger litter at the coastline or rivers
(Atwood et al., 2018; Deidun et al., 2018) or combined
geomorphological and hydrodynamic variables into one model
that allowed more specific detection (Goncalves et al., 2020).

Contrarily to our results, a recent study using a similar set up
suggests drone survey to be a cost-efficient method for litter
quantification, however their study inspects a beach area of 20 ×
20 m by visual screening done by people (Lo et al., 2020). The
higher costs, and thereby lower cost-efficiency suggested in our
study are likely related to the method used for analysis and the
larger areas of beach inspected, as required by OSPAR (2010).

The main constraint for remote sensing of plastic litter is the
various shapes, dimensions, colors and materials in which litter is
present, making its recognition complex. Litter that is partially or
completely buried or hidden between the back vegetation are not
easily detected (Kataoka et al., 2018), especially with colors white,
black, brown and transparent, as seen in our study. NIR
spectroscopy with a MicroPhazir hand-held device is used to
complement OSPAR studies and obtain more detailed
information on material composition of mesolitter (Haseler
et al., 2018; 2019); however, to our knowledge there is no
published study using multi- or hyperspectral data on drones for
the purpose of marine litter monitoring. Methods by Acuña-Ruz
et al., (2018) used supervised classification for the detection of
Styrofoam and other macrolitter items (>0.5 m2) on hyperspectral
data using Visible and Near Infrared (VNIR), Short Wave InfraRed
(SWIR) and Thermal InfraRed (TIR) wavelengths of satellite
imagery for the creation of a spectral library of macrolitter items
and natural features at the beach (e.g., sand, algae, stones and shells)
for classification. The spectral signature of marine plastics has
shown to have three absorption features at 1,215 –1732 nm
(Garaba et al., 2018) as well as 2,313 nm specifically for PE
(Levin et al., 2006) and between the blue and green bands and
NIR spectrum for the detection of Styrofoam and other macrolitter
items at the beach (Acuña-Ruz et al., 2018). Although the use of
multi- and hyperspectral data can providemore detailed data, it also
implies higher costs due to equipment and expertize needed.

Application of Aerial Drones as Official
Beach Monitoring Methods
The MSFD encourages developing a comprehensive knowledge
on the sources and sinks of marine litter to adopt policies that
adapt to its current status. In the OSPAR guideline, currently in
use at the Baltic, trends on abundance and types of litter are
assessed every 3 months (OSPAR, 2010). Fulfilling the
requirements from the MSFD and carrying out monitoring for
all marine compartments to get a complete overview of the

marine litter problem can be challenging in time and cost
efforts. The data acquired needs to be reliable and accurate for
the design of mitigation strategies. With drone-based monitoring,
efforts during sampling can be reduced and the fatigue aspect and
visual differences can be eliminated if automatic detection is
carried out. However, as it is common when using remote sensing
approaches, implementation costs for the drone-based method
are higher (Murphy, 2015) in contrast to OSPAR, as also seen in
our results. In addition, the skills needed for analysis require prior
professional training and longer processing times, leading to
higher annual running costs. Furthermore, the drone-based
method requires the removal of litter, when carried out within
a monitoring program. Thus, despite a shorter time spent at the
field and higher reproducibility, the implementation of consumer
RGB drones as beach monitoring strategy involves significantly
higher costs, lower accuracy and provides less information on the
type of litter and material, thus can hardly be regarded as a cost-
efficient tool for this purpose in southern Baltic Sea beaches.

Nonetheless, UAV-based monitoring has proven successful at
other sites; and comparing our results to previous studies already
suggests that accuracy results depend upon the method chosen
for image analysis. Drones have been used for the monitoring of
litter in the Maldives (Fallati et al., 2019) and Maltese islands
(Deidun et al., 2018), showing satisfactory results in countries of
comparable pollution levels. These studies also highlight the
importance of density and distribution maps (Deidun et al.,
2018); data that is not normally obtained from current
OSPAR monitoring. UAV-based methods could also become
interesting for highly polluted sites like Indonesia (Purba
et al., 2019), India (Kaladharan et al., 2017) or the
Mediterranean coasts (Vlachogianni, 2019) to give a fast
overview of litter abundance and distribution to design fast
removal and mitigation strategies.

Although drones did not prove successful at beaches in our
study, other sites become of interest to further explore this tool. At
the Baltic Sea, many beaches cannot fulfill the OSPAR criteria, with
beaches at the north (e.g., Finland, Sweden) having rocky coasts and
cliffs not accessible for monitoring (Schernewski et al., 2017) where
drones could also become a helpful monitoring tool. Furthermore,
drones could also expand our understanding of marine litter
pollution by covering the back of the beach, dunes, river mouths,
fjords and the sea tomonitor floating litter, as these sites have not yet
been considered duringmonitoring approaches or by default require
more expensive equipment (e.g., like monitoring at sea, JRC, 2013).
Drones could also serve to assess pollution levels of proximate urban
areas that work as sources of pollution, as well as after specific
weather events, disasters like tsunamis or storms (Murphy 2015;
Kataoka et al., 2018), or even social events.Moreover, dronemethods
allow for storage of data long-term which can take into account
physical factors (like weather, light conditions and geomorphology
of the beach) for more spatio-temporal analysis (Kataoka et al.,
2018). Due to the high initial investment required in remote sensing
methods, it becomes necessary decreasing costs through
opportunistic research, partnerships and collaborations between
members of the state and the research community (Murphy, 2015).

Drone sensors for multi- or hyperspectral data operating in the
VNIR and SWIR domain are still expensive, nevertheless, the fast
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development of technology and lower costs for drones and
software suggest future studies could provide promising results
and cover this niche. In this sense, we suggest that monitoring of
litter items <50 cm and less polluted areas should continue to
occur under current in-situmethods, whereas for highly polluted
sites with macrolitter and sites with litter items >50 cm, drone
monitoring could become an option in the future.

CONCLUSION

Although the results from image acquisition and drone
performance at recovery sites were promising, methods for
litter detection and classification need to be further tested,
especially when applied to larger spatial scales. In frame of the
EU Marine Strategy Framework Directive (MSFD), this study
showed that drone monitoring with an integrated RGB camera is
not suitable to complement 100 m monitoring for Southern Baltic
beaches; however, there is potential for improving cost and time
efficiency in the 1 kmmonitoring for litter >50 cmwith alternative
methods to decrease processing time while increasing accuracy of
data. Drone monitoring has the potential to expand spatial
coverage to larger areas, monitor fragile or inaccessible sites
and provide maps of litter abundance and distribution,
especially in the context of hotspots. However, all these
alternative methods need to consider cost-efficiency in factors
such as type of equipment, processing time, effort and level of
expertize needed for the analysis of larger and more complex data
for establishing long-term monitoring strategies.
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