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The analysis of environmental occurrence of microplastic (MP) particles has gained notable
attention within the past decade. An effective risk assessment of MP litter requires
elucidating sources of MP particles, their pathways of distribution and, ultimately,
sinks. Therefore, sampling has to be done in high frequency, both spatially and
temporally, resulting in a high number of samples to analyze. Microspectroscopy
techniques, such as FTIR imaging or Raman particle measurements allow an accurate
analysis of MP particles regarding their chemical classification and size. However, these
methods are time-consuming, which gives motivation to establish subsampling protocols
that require measuring less particles, while still obtaining reliable results. The challenge
regarding the subsampling of environmental MP samples lies in the heterogeneity of MP
types and the relatively low numbers of target particles. Herein, we present a
comprehensive assessment of different proposed subsampling methods on a selection
of real-world samples from different environmental compartments. The methods are
analyzed and compared with respect to resulting MP count errors, which eventually
allows giving recommendations for staying within acceptable error margins. Our results are
based on measurements with Raman microspectroscopy, but are applicable to any other
analysis technique. We show that the subsampling-errors are mainly due to statistical
counting errors (i.e., extrapolation from low numbers) and only in edge cases additionally
impacted by inhomogeneous distribution of particles on the filters. Keeping the
subsampling-errors low can mainly be realized by increasing the fraction of MP
particles in the samples.

Keywords: microplastics, subsampling, microspectroscopy, Raman, Fourier-Transform infrared

INTRODUCTION

The occurrence of microplastic (MP) particles in environmental compartments has gained notable
interest in both scientific and mainstream media, a trend that is predicted to increase in the coming
years (Halden 2015). A major cause of concern related to plastic materials is its accumulation
potential due to their high persistence in the environment, while production rates further increase
and concomitantly the plastic waste (Jambeck et al., 2015; Brandon et al., 2019; Borrelle et al., 2020).
Assessments of the abundance of MP particles in various kinds of samples can be found throughout
the literature e.g., in water (Lenz and Labrenz 2018; Liu et al., 2019; Karlsson et al., 2020), sediment or
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soil (Claessens et al., 2013; Vianello et al., 2013; Bergmann et al.,
2017; Enders et al.,, 2019), wastewater treatment plants (Tagg
et al,, 2015; Murphy et al.,, 2016) as well as biota (Lusher et al.,
2017). Understanding sources, pathways and sinks of MP
particles is key to understand how to effectively limit further
spreading of this pollutant (Halle et al., 2016; Geyer et al., 2017;
Siegfried et al., 2017). Therefore, large numbers of environmental
samples have to be analyzed quantitatively, as not only the spatial
but also the temporal occurrence of MP particles at a given
location is of high relevance. Methods suitable for
comprehensive monitoring studies need to be fast, quantitative
and automated to deal with the high number of samples to
process.

The currently used analytical tools can be sorted into two
categories: mass and particle-based methods. Mass based
methods are pyrolysis gas chromatography and mass
spectrometry (Py-GC-MS) (Fischer and Scholz-Bottcher, 2019;
Logemann et al., 2018; Dierkes et al., 2019) or thermoextraction
and desorption coupled with gas chromatography-mass
spectroscopy (TED-GC-MS) (Fischer and Scholz-Bottcher,
2019; Duemichen et al., 2014; Duimichen et al, 2015;
Diimichen et al, 2017). Their main advantages are short
analysis times and straightforward application. Also
challenging environmental samples can be processed in few
hours (Fischer and Scholz-Bottcher, 2019; Diimichen et al,,
2017), with only relatively little sample preparation. The better
the removal of organic matter, however, the more robust the
analysis results will be, as organic compounds can hamper the
correct data interpretation (Primpke et al., 2020a). As a drawback,
only the integral mass fraction of polymer within the sample is
obtained, without giving details on particle numbers or size
distribution. Furthermore, the techniques are destructive,
which makes it impossible to reuse the samples after
measurement. Particle-based methods, such as spectroscopic
imaging by Fourier-Transform infrared (FTIR) spectroscopy
(Loder et al., 2015; Kiappler et al., 2016; Primpke et al., 2017;
Primpke et al, 2019) or microspectroscopic particle
measurement using FTIR (Browne et al., 2010; Vianello et al.,
2013; Loder et al.,, 2015; Tagg et al., 2015; Wagner et al., 2017;
Kiéppler et al., 2018; Poulain et al., 2019) or Raman (Lenz et al,,
2015; Képpler et al,, 2016; Anger et al., 2018; Schymanski et al.,
2018), register size, morphology and chemical classification of
each particle (mass fractions can be estimated by applying volume
estimates and bulk density values (Simon et al., 2018)). Particles
>500 um are often picked and investigated manually. For
particles <500 um, a purified particle dispersion (i.e., after
removal of non-MP particles) is typically filtered onto a
suitable filter substrate and then subjected to either imaging or
individual particle measurement. The imaging approach entails
scanning the entire filter area without a-priori knowledge about
particle locations. Each spectrum at each measured pixel is
evaluated and particle information is obtained by grouping
together adjacent pixels with identical spectral classification
(Primpke et al, 2017; Primpke et al, 2019; Primpke et al.,
2020b). The particle measurement approach is done in two
passes. First, an optical image is acquired with a light
microscope (LM) to identify particles. Then, spectra are only
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acquired where particles were detected. Figure 1 illustrates both
approaches graphically.

Both methods are inherently slower than the mass-based
techniques and require elaborate sample purification steps to
remove non-plastic particles (Enders et al., 2020). Increasing the
fraction of MP particles per sample allows for a faster and more
reliable analysis, as less particles have to be processed and
overloaded filters are avoided, which can lead to erroneous
results. The currently used microspectroscopic techniques
cannot compete with mass-based techniques regarding their
sample throughput rates. However, to assess the potential
toxicological impacts on both biota and humans, knowledge
about MP particle size distribution and numbers is critical
(Masé et al., 2003; Zettler et al, 2013). Hence,
microspectroscopic methods for MP analysis are of high
current relevance and the acceleration of sample throughput
rates is one of the major challenges.

One approach to speed up imaging and particle measurements
is to measure only a certain fraction of any sample and to
extrapolate the obtained results. This can be achieved in two
ways: i) Subsampling before filtration: only a fraction of the entire
sample is filtered onto the sample substrate which will be
completely measured. This method requires very careful
homogenization of the sample to avoid extrapolation errors.
For homogenization, different densities and the fast
sedimentation of the particles in aqueous suspensions pose
challenges. The success of this splitting before filtration is
largely influenced by the method and splitting tools applied.
ii) Subsampling during analysis: The entire sample is filtered on
one or multiple filters, but only a fraction of each filter is
measured. This method circumvents the challenges of prior
homogenization and sample splitting, but requires a robust
strategy to select which areas or particles to measure. The
main statistical problems therein arise from both, the
inhomogeneous distribution of the particles on the filter and
the low numbers of MP particles, of typically around 1%. The
present study focuses on pathway ii) ie., the statistical
subsampling of particles that are already on the filter
substrate. The results are applicable to any MP sampling
technique probing particles spatially distributed on a filter
substrate, irrespective of the exact measurement technique.
However, we do not strive to determine hard numbers for
potential speed gains, as these are highly dependent on the
actually used method and measurement requirements. Speed
optimization of each analysis technique is an important,
yet difficult endeavor requiring careful balancing the runtime
with result quality, which is highly specific for the respective
methods.

Subsampling on a Substrate: Challenges

Filtering particles from an environmental sample onto a
microscopy filter does not lead to a homogeneous distribution
of particles on the filter area. Comprehensive guidelines explain
the challenges and recommend strategies for successful filtrations.
(Merck, 2018). The stream of water is usually not of a constant
flow-rate, leading to different forces on the particles on the filter
throughout the filtration process. Air bubbles can be present that
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FIGURE 1 | Schematic comparison of spectroscopic imaging and particle measurement. Reproduced from Brandt et al. (2020).
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FIGURE 2 | Distribution of measure areas on a circular filter, following
different layouts. (A) Spreading on a quarter of the filter. (B) Forming a cross.
(C) Following a spiral. (D) Random placement. The green squares correspond
to 7.3% of the filter area and the red boxes to 8.2%, respectively. Both
together represent 15.5% of the filter area (Huppertsberg and Knepper 2018).

introduce additional unpredictable forces. Often, the particle
concentration on the filter follows a gradient with low
concentrations around the filter center and higher
concentrations closer to the filter perimeter (Thaysen et al,
2020). To minimize coagulation of particles on the filter, the
flow rate can be reduced or tangential flow filtration can be
performed (Buffle and Leppard 1995).

Further inhomogeneity is introduced by the nature of the
environmental particles. Depending on the sample origin (e.g.,
rainwater or wastewater treatment sludge) and given the large
range of MP types itself, the samples contain a broad variety of
particles different in size, density and shape; properties that have
a significant influence on particle distribution dynamics. In
addition, particles that tend to aggregate easily clump together
and can even incorporate particles of other types. The low
fraction of MP particles per sample can lead to low statistical
robustness of any deduced conclusions (Anger et al., 2018;
Karlsson et al., 2020). All such factors make the selection of a
representative subset an especially challenging task and have to be
considered during the assessment.

Proposed Subsampling Strategies

The strategies proposed to select a representative subset during
analysis can be sorted into two categories, corresponding to two
different workflows.

The first category, the “area selection strategy,” does not need
any a priori knowledge and distributes a number of box-shaped
areas to measure over the entire filter area. It is mostly suitable for
imaging protocols. Different layouts for distributing the
measuring boxes can be considered to account for the
inhomogeneous distribution of particles on the filter, such as a
cross or a spiral layout (refer to Figure 2). (Huppertsberg and
Knepper, 2018). The number and size of the boxes can be
adjusted to cover a desired fraction of the filter. After the
spectroscopic measurements within the box areas, the result is
then extrapolated according to the fraction of filter area covered
by the boxes. It is theoretically possible to design area-based
subsampling approaches that do not rely on placing rectangular
boxes, for instance dividing the filter in cake-piece shaped
sections. Such a section accounts for a radial inhomogeneity
by covering central and peripheral area of the filter. Their
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TABLE 1 | Summary of origin of analyzed samples (WWTP = wastewater treatment plant).

Compartment Origin Number of samples
Rainwater Weser catchment area, Germany 5
Riverine surface water Warnow catchment area, Germany 6
Riverine sediment or beach sand Schlei river, Germany, baltic sea beaches in Germany, Denmark, Sweden 10
Wastewater sludge Municipal WWTP designed for 50.000 inhabitants, Germany 6

practical application could be limited, however, as most FTIR- or
Raman-software packages are restricted to the selection of
rectangular areas for measurement. The viability of the
different layouts will be assessed practically later in this
manuscript.

The second category, the “particle selection strategy,”
requires some a priori knowledge that is gained from first
acquiring an overview optical image from the entire filter using
a light microscope (LM). That image can be used to determine
the number and location of each particle or even characterize
the particles further regarding their size, shape and color
(thereby decreasing the uncertainty about the particle
location) and the actual fraction of particles measured can
be adjusted more precisely. If further information per particle
is derived, more sophisticated chemometric methods for
finding representative subsamples can be engaged
(Chaudhuri, 1994; Daszykowski et al., 2002; Rodionova and
Pomerantsev, 2008).

It is also possible to combine both approaches. Imhof et al., for
instance, chose to manually identify particles larger than 500 pm
and to automatically measure all smaller particles based on an
“area selection strategy,” measuring approx. 1.6% of the filter area
(Imhof et al., 2016).

Different subsampling strategies are currently in use that
usually measure about 1-10% of the filter area. Their use is in
most cases justified by hypothetical considerations, but
practical validations of the subsampling strategies are
scarce. A recent study by Mintenting et al. assessed the
subsampling and errors of riverine water samples and
concluded that at least 50% filter coverage is needed for
robust particle counts, which is substantially higher than
most studies aim for (Mintenig et al., 2020).

With this publication, we revisited 27 MP samples from
different environmental compartments that were measured by
Raman microspectroscopy, without using any subsampling
method. The GEPARD software was used for particle
detection and automated Raman measurement, an appropriate
tool to reduce analysis time and remove operator-bias (Brandt
et al., 2020). As a side effect, all information about the filtered
sample (e.g., particle count, coordinates, sizes and spectral
identification) is stored in particle datasets. These datasets are
used to re-evaluate the sample by simulating a measurement
using a dedicated subsampling strategy and determining the
subsampled result. Comparing subsampled to original result
allowed us to draw quantitative conclusions about the
statistical robustness and usability of the investigated
subsampling strategies.

MATERIALS AND METHODS

Sample Details and Filtration

27 fully analyzed samples from different environmental
compartments were the basis for our analysis (Table 1). The
samples underwent purification procedures identical to
established schemes as presented by Enders et al. (Enders
et al., 2020), a study which presents a flow chart of detailed
protocols for the different sample conditions. Reproducibility of
the applied purification methods is thereby ensured. An
exception to the above are the rainwater samples that
underwent a combination of oxidation with Fenton’s reagent,
enzymatic digestion and density separation using ZnCl, (Loder
etal,, 2017). The final filtration was done using a tailor-made glass
filtration device. After cleaning all glass parts with 3% H,O, and
sonication in MilliQ water (3 x 10 min, renewal of the MilliQ
water after each 10 min interval), 10 x 10 mm silicon filters with
10 or 50 um holes were inserted into the filtration device using red
PTFE filter holders that also act as seals. During filtration, the flow
rate of the water is observed to avoid overloading of the filters.
The filtration is done in a laminar flow box (Telstar Aeolus V) to
avoid contamination from air-borne particles. Full details about
used filters and the filtration setup are already published and can
be found elsewhere (Képpler et al., 2015; Brandt et al., 2020).
Without prior homogenization, each sample was filtered onto
several filters. Only one of these filters per sample was used in the
following analyses, so the particle numbers and MP content are
not representative for the actual environmental sample.
Therefore, further information on the sample origin and the
sampling is neglected. The analyzed samples counted between
1,500 and 33,000 particles per filter. In the following, both
“sample” and “filter” refer to the single filter representing each
environmental sample.

Particle Measurements

Full details about the measurement workflow using the GEPARD
software are reported in a separate publication (Brandt et al,
2020); only a short summary is given here.

LM images were acquired directly in the Raman microscope
(WITec® alpha 300R), which is also used for the spectroscopic
measurements using a 532nm laser and a 600L/mm
spectroscopic grating. The optical LM images were acquired in
dark-field at adjustable focus heights, which allows constructing
an image of optimal depth-of-field for both, small and large,
particles. A watershed-based image segmentation algorithm was
used to localize particles and determine their boundaries. Raman
spectra were collected for each particle (typical conditions: 0.5 s
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integration time, five accumulations) and the TrueMatch®
software (WITec®) was used for spectral evaluation. The
results from spectra database matching were combined with
the particle information from the particle recognition step to
obtain complete information about particle type and size
distributions.

Data Processing

The datasets generated by the GEPARD software contain all
information about particle location, contour and chemical
classification. This readily allows revisiting the datasets and
selecting particles from the entirety of the particle list
according to any desired subsampling strategy. The code for
all calculations is realized in form of a Python script, the full
source code can be found on https://gitlab.ipfdd.de/Brandt/
subsampling.

To assess the performance of any considered subsampling
model it is necessary to derive quantitative measures of its
performance. We calculated the subsampling-error according
to Equation 1. A subsampling model was applied to each fully
measured dataset and the subsampled count of MP particles
determined (SI chapter “Application of Subsampling Methods”).
To estimate the total MP particle count, the subsampled count
was extrapolated by dividing by the subsampling fraction. That
estimated MP particle count was then divided by the original MP
particle count.

mpCount ypsampled / fraction
mpCount y;ginal

subsamplingError = -100% (1)
To reduce statistical deviations, each filter was processed 10 times.
For each iteration, the filter was rotated about 36° around the filter
center and then the subsampling is repeated. This increases the
number of performed tests by 10-fold and reduces noise in the
results, making data interpretation more robust.

Implemented Subsampling Methods
Hereafter, we describe the implemented subsampling methods.
The first two followed the particle selection strategy, i.e., rely on
knowledge about particle location, and the remaining methods
follow the area selection strategy, i.e., they represent different
approaches for placing rectangular areas (boxes) for conducting
measurements. To test practically relevant fractions, we tested
fractions from 2 to 90% in terms of particle count fractions, and
from 2% to the maximum achievable fraction in terms of filter
area coverage for the individual box selection methods.

Random Particle Subsampling

The method is based on a prior particle recognition step. Out of
the list of detected particles, a given number is selected on a
completely random basis to represent the desired fraction of
particles measured.

SizeBin Particle Subsampling

The concept is the same as in the random particle subsampling
with additional accounting for size distribution bias to reduce the
uncertainty related to low number size fractions (as usually the

Microplastic Subsampling Assessment

TABLE 2 | Highest achievable filter coverage for the implemented patterns. By its
pattern, the cross layout is only feasible with five or 9 boxes (3 or five boxes
across, respectively). The other patterns were arbitrarily set to have either 5, 10 or
20 boxes.

Number of boxes Cross Spiral Random Random quarter
5 54% 26% 46% 21%
9 38% n.a. n.a. n.a.
10 n.a. 29% 47% 17%
20 n.a. 25% 43% 14%

case for larger particles). Therefore, the detected particles are first
grouped into size bins. The chosen size limits in between the bins
are 5 pm, 10 pm, 20 pm, 50 pm, 100 um, 200 um, and 500 pm.
After sorting the particles into the bins, a certain number of
particles is randomly drawn from each bin so that the measured
fraction of particles is equal for all bins. At least one particle is
taken from each bin (given, that the bin is not empty). For
example, when 10% of all particles have to be measured, the
algorithm will select 5 particles out of a bin with 50 particles, 20
out of a bin with 200 particles and 1 out of a bin with only 4
particles.

Box Selection Subsampling
Four different layouts were implemented for placing measuring
boxes on the circular filter:

i. Cross layout with either 3 or 5 boxes across, respectively
(Figure 2B)

ii. Spiral layout with 5, 10 or 20 boxes. The first box is located in
the center and the last one touches the perimeter of the filter
area. (Figure 2C).

iii. Random layout with 5, 10 or 20 boxes. The boxes are placed
randomly on the filter area. Given this random character, the
highest achievable fractions can vary slightly, also depending
on how many tries the algorithm was allowed to perform to
find a valid solution. The implemented algorithm sets the
random number generator to a fixed seed prior to
calculation to yield the same random pattern for each
run (Figure 2D).

iv. Random layout on a quarter of the filter with 5, 10 or 20
boxes. Same as iii), but box placement is restricted to only a
quarter of the filter (Figure 2A).

In all box selection approaches, the size of the (square) boxes is
adjusted so that the desired fraction of filter area is covered,
without having the individual boxes overlap or range over the
filter perimeter. The maximum achievable fraction of filter to be
covered is summarized in Table 2 (More details about box
placement and the link to the code for interactive visualization
can be found in SI chapter 1).

Figure 3 shows a graphic user interface (gui) to visualize the
implemented methods on real samples, measured by GEPARD.
All the subsampling methods in Figure 3 are configured to select
10% of the sample i.e., 10% of the particles are measured by the
“random” and the “size bin” selection, whereas 10% of the filter
area is covered by the respective box selection methods. The gui
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allows adjusting the measured fraction of each method, as well as
the number of boxes for the box sampling methods. Furthermore,
the loaded sample can be rotated about a given angle. A text box
above the filter scheme summarizes sample details (particle
count, MP percentage) and displays the results from the
respective subsampling method.

RESULTS AND DISCUSSION
Particle-Based Subsampling

At first, we investigated the subsampling-error (%) as a function
of the measured fraction of particles (%) for the four respective
sample categories (Figure 4), see SI chapter “Selected Images of
Filters” for example images. We chose grouping the samples by
their environmental origin because a sample’s origin is always
known. Sorting samples into categories allows deduction of
parameters influencing subsampling efficiency and, vice versa,
allows estimating subsampling efficiency if a sample’s category
was known. Hence, any correlation between environmental
compartment and subsampling performance would allow for a
better planning of the subsampling strategy without any further
sample characterization. The averaged particle numbers per filter
are given in the plot titles for each category, as well as the average
MP percentage within these particles. Each data point in Figure 4

represents the average over all filters from the respective group of
sample types (number of filters is given in plot title), where each
filter was evaluated 10 times. The resulting subsampling-error
exponentially decreases with increasing measured fraction and
approaches 0 at 100% (note the logarithmic x-axis in Figure 4).
Comparing the two different particle based subsampling methods
shows that sorting particles into size bins (Figure 4, green) or not
(Figure 4, orange) does not seem to have a systematic advantage
across sample types.

The results illustrate that measuring only small filter fractions
(both in terms of particle count or covered filter area) can lead to
large counting errors. Measuring less than 5% of the entire
particle population leads to errors exceeding 50%. Even worse,
also the error margins increase with decreasing fraction measured
in the plots in Figure 4. For example, at 5% measured fraction, the
subsampling-error could be 20% or 80%. This large range of
potential errors of a particular filter demonstrates that measuring
such small fractions does not allow a sensible extrapolation of MP
occurrences.

Comparing the results from the different compartments shows
that the subsampling-errors are generally lower when the sample
has more particles (i.e., higher number of particles is measured at
a given fraction) or the sample has a higher content of MP
particles. Especially the MP content is critical: The high MP
content of the rainwater samples compensates the low particle
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FIGURE 4 | Subsampling-errors and their standard deviation of Random and SizeBin Subsampling, as derived from the different sample types (rainwater, river
water, sediment, and sludge). As reference, the theoretical subsampling-error derived from the Poisson distribution.

count (at 10%, only about 300 particles are measured!) and the
subsampling-errors are comparable to the sludge samples with a
substantially higher particle count (at 10%, about 1,700 particles
have to be measured) but low MP content.

Reliably predicting magnitude and standard deviation of the
subsampling-error is a complicated task. Anger et al. used the
normal distribution to estimate the number of particles to achieve
a certain error, but applying the formula requires knowing MP
fraction and the prediction interval (Anger et al., 2018). Karlsson
et al. used the Poisson distribution to model the probability
density functions of MP occurrence observations (Karlsson
et al,, 2020). The Poisson distribution is better suitable for
smaller sample sizes and, for application to the present study
results, only requires an estimate of the MP fraction (mean equals
variance in the Poisson distribution). Figure 4 also shows the
theoretically expected errors and error margins for the Poisson
distribution, assuming the average MP count indicated in the plot
titles. The agreement of theoretical and experimental
subsampling-errors is good for the samples from sediment and
beach sand, having the lowest absolute number of MP particles.
However, the Poisson distribution more and more
underestimates the subsampling-error with increasing number
of MP particles. A more in-depth statistical discussion of the topic
should be the scope of a separate study.

The estimation of the present MP content on a particular filter
is difficult, but vital for the determination of the minimum
subsampling fraction to measure. Based on the divers set of
different sample types and applying the random particle
subsampling, we found, that if we accept a maximum
subsampling-error of 20%, the minimum fraction of particles
to measure is either 50% of all particles, or a total of 7,000

particles (Figure 5). These thresholds are valid even for MP
fractions approaching as low values as 0.1%. Note, the set of filters
herein analyzed was characterized with relatively low total
particle counts (maximum of 33,000), which hinders applying
our findings to larger filters with substantially higher particle
counts. These results furthermore show decreasing subsampling-
errors with increasing MP content. This, in turn, highlights the
tremendous importance of effective sample purification measures
to increase the MP fraction. As a result, not only analysis times
shorten by reducing the total number of particles to consider, but
also the extrapolation of results becomes more reliable when
applying subsampling methods.

Measuring at least 5,000 particles per filter might be a realistic
target for scientific purposes, but might also be impractical for
monitoring applications with substantially higher sample counts.
Measurement times can vary greatly depending on the exact
parameters for optical scan and spectroscopic measurement. Our
Raman  microspectroscopy  approach ~ would  require
approximately 6 to 8h for such a measurement, including
optical scan (1-3h), particle detection (several minutes) and
spectroscopic measurement (approximately 5h, a more
comprehensive review of commonly used analysis times for
Raman microspectroscopy is given by Anger et al. (2018)).
The particle-based methods allow exploiting information from
the optical microscope image to decrease the subsampling-errors
at very low measured fractions. The image of the filter not only
allows to precisely count and locate the particles, but also to
analyze each particle in terms of its characteristics regarding
shape, color, size and texture. A classifier that allows
distinguishing MP from non-MP particles (with a certain level
of confidence) based on these characteristics can be trained by
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running a feature extraction on a large number of particles of
known type (i.e., MP and non-MP, respectively). This “artificial”
up-concentration of MP particles post purification reduces the
error-margins in subsampling and is especially useful when only
low percentages of particles can be measured. Procedures for the
classification of particles from microscopy can be found
throughout literature and give valuable information about
what kind of particle features to exploit (Xu et al., 1997; Xu
et al., 2018; Peng and Kirk, 1998). Developing a machine-learning
model for effective MP classification from microscopy images goes
beyond the scope of this manuscript, due to the complexity of such
an endeavor, especially due to the low content of MP particles
i.e.,, the highly imbalanced datasets (Batista et al., 2004; Wei and
Dunbrack 2013). Instead, we decided to assess the final reduction
in subsampling-errors, given a classifier with a certain accuracy
score would exist. That helps deciding on whether to actually start
the efforts of developing a real classifier. As our datasets where
already fully analyzed, a dummy classifier can be readily set up
yielding any desired score from 0.5 (ie., no actual knowledge,
sampling is completely random) to 1.0 (ie., perfect classifier).
Three dummy classifiers with scores of 0.6, 0.7, and 0.8 were tested,
respectively. The concept is to use the classifier to extract a
subsample of all particles, which will have a higher MP fraction
than the original set of particles. As discussed above, a higher
fraction of MP has the highest potential to increase subsampling
accuracy. Then, the desired number of particles is chosen on a
random base from the subset with increased MP fraction. Details
about the dummy classifier and the exact calculations can be found
in SI chapter “Details on Trained Random Particle Subsampling”.
Figure 6 shows the results of the three classifiers, as compared to
the purely random particle subsampling.

The subsampling-errors at low measured fractions decrease
significantly when the score of the used classifier increases. The
results clearly show that the application of a classifier substantially
decreases the very high subsampling-errors below 10% measured
fraction, even if their classification score is not higher than 0.6 to
0.8. The effect gets less pronounced at higher measured fractions
wherefore it is most sensible to apply the methods if the measured
fractions are lower than 10%. It is important to keep in mind that
the final particle assignment is done according to the results of the
spectroscopy measurement, regardless of the used classifier’s initial
guess. Subsampling based on a classifier, however, complicates the

step of extrapolation as the sample measured is no longer a random
representative of the statistical universe of the filter. Refer to SI
chapter 5 for more details on the calculations. The obtained
findings are good reason for engaging in development of a real
classifier suitable for MP classification on LM images. However,
also other techniques, such as particle staining with fluorescent
dyes, could be exploited for an according pre-selection of a subset
with increased MP content (Shim et al., 2016).

Box-Based Subsampling

A closer investigation on distribution of the particles on the filters
is necessary before reviewing the box-based subsampling method.
The patchy and inhomogeneous distribution of the particles on
the filter exemplifies the difficulty to design a pattern for a box
selection subsampling (Figure 3, MP particles in red, others in
blue). Analyzing the impact of particle distribution heterogeneity
on the subsampling-error of the box-placement methods requires
quantification of the heterogeneity, which is a difficult endeavor.
Comparable literature studies are scarce but, fortunately, a recent
study investigated the distribution of particles on filters (Thaysen
et al., 2020). However, only examples from artificially produced
model samples were included. They proposed plotting particle
count as a function of particle distance to filter center to observe
particle distribution patterns. They exhibited “starburst” particle
distributions with highest particle density around the filter center.
To compare our results of real environmental samples to their
results we did the same calculations for filters from different
environmental compartments. However, we converted “particle
count” into “particle density”. Particle density is obtained by
dividing particle count by the area of the filter section that is
represented by the respective distances (intuitively, the section
from 1 to 2 mm away from filter center is smaller than the section
from 4 to 5 mm). Thereby, the differences in area of the filter
sections is taken into account and patterns emerge more clearly
(the original plots with particle count as function of distance from
filter center (i.e., without correction for filter increasing area of
filter sections) can be found in supporting information
Supplementary Figure S1). However, the distance from the
filter center distribution alone does not fully capture particle
distribution inhomogeneity. For instance, the method would be
insensitive to particles distributed only on one half, or quarter, of
the filter. To overcome this potential error we developed and
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implemented an orthogonal approach to calculate the “average
particle patchiness” value. The approach entails dividing the filter
area in cells (e.g., 50 x 50), and calculating the number of particles
in each cell. The average particle patchiness is then obtained by
dividing standard deviation of the particle number per cell by its

mean value. Supplementary Figure S2 in the SI shows example
images of filters with low, medium and high particle patchiness
and the respective (increasing) values.

In Figure 7, the filters are grouped again according to their
environmental origin. Again, knowing if there was any
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correlation between particle distribution homogeneity and
sample compartment would be useful (see SI chapter “Selected
Images of Filters” for example images). In case of the rainwater
filters, particle density on the filters peaks at around 5mm,
indicating a ring formation of particles at the perimeter of the
filter (refer to Supplementary Figure S3); inhomogeneous particle
distribution is also indicated by the high patchiness value of about
1.5. The samples from all other compartments show a similar
pattern with almost constant particle density from center to the
border of the filter, where particle density eventually decreases
(refer to Supplementary Figures 4 - 6). The analyzed examples did
not reveal any “starburst” pattern as to be expected from model
samples (Thaysen et al., 2020), but drawing any conclusions is
difficult, without taking into account details about sample workup
and filtration procedures (Merck, 2018). Conversely, observing the
averaged particle counts and the corresponding patchiness values
indicates a correlation. Higher overall particle counts lead to a
more homogeneous distribution of the particles on the filter. In
fact, the observed patchiness of all investigated samples correlates
well with the particle count, as shown in the left panel of Figure 8.
It is important not to misunderstand that finding! The goal should
not be to maximize the absolute particle count, but to increase the
number of MP particles on a filter. The right panel of Figure 8
shows that the correlation between patchiness and particle count is
the same if only MP particles on the filter are considered. The trend
is the same, although the absolute values of the patchiness increase
substantially. Refer to Supplementary Figure S2 in the SI for a
visualization of different levels of patchiness.

Reviewing the subsampling-errors of the box subsampling
methods, our investigations showed that the obtained
subsampling-errors are very similar for the individual layouts
when applied to the filters grouped according to their
environmental origin (refer to Supplementary Figure
S7-Supplementary Figure S10). The number of boxes to
create the individual layouts does not seem to have a notable
effect, although the cross layout shows slightly lower errors when
using five, instead of three boxes across. Only in case of the
rainwater samples with low particle counts and inhomogeneous
particle distribution (resulting in many empty spaces on the filter
ie, high patchiness), the errors from box measurement
subsampling exceed the errors from the random particle

subsampling. Otherwise, the observed subsampling is
dominated by the counting error, rather than an additional
error resulting from inhomogeneous particle distribution.

Figure 9 shows the subsampling-error of the box-placement
methods when sorting the filters into categories with different
particle counts. Including the random particle subsampling-
error, which is not affected by particle patchiness, allows
distinguishing the pure counting error from errors resulting
from inhomogeneous particle distribution on the filter. In case
of very low particle numbers (<2000) the subsampling-error from
the box-based methods is substantially higher than for the
random particle subsampling, which indicates an additional
contribution of particle distribution inhomogeneity to the
subsampling-error. At higher particle counts, the subsampling-
errors from random particle subsampling and the box-placement
methods come closer together, indicating a decreasing influence
of the particle distribution inhomogeneity. At around 5,000
particles (corresponding to a patchiness of approximately 1.0,
see Figure 8) the box-based sampling methods do not perform
worse than the random particle subsampling.

In order to keep the subsampling-error and its deviation
within one sigma below a 20% error margin, the covered area
of the filter should be at least 50%. A 50% filter area coverage
could only be fully realized with the cross layout with three boxes
across and, near enough, the random box layout (with 47%
coverage at 10 boxes, Table 2). In contrast to the particle-
based subsampling, the box placement methods do not bear
opportunities for exploiting machine-learning methods to
increase accuracy at low measured fractions.

Counting all MP vs. Counting Particular MP
Types

To simplify the quantitative assessment, herein only the integral
MP particle numbers were considered without discrimination into
different polymer types or morphological features. Most studies,
however, require information of MP species such as chemical
classification, color, size and shape. There are no standard
categorization methods in place as it depends on the research
question and the precise analytical tasks chosen. However, the
issue shall be addressed with some general reflections.
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Our study demonstrated the occurrence of high subsampling-
errors and high error margins when measuring low fractions of
particles on a filter. As a differentiation of different particle types
would decrease the individual particle numbers, the subsampling-
errors would increase accordingly. In other words, if particle types
have to be distinguished, the overall number of particles to measure
has to be increased. Thus, predicting which MP particle classes are
present in a sample results in even larger uncertainties than
estimating the integral MP content. A general recommendation
about required particle numbers cannot be reliably given for such
cases. A practical approach should entail measuring a certain
fraction of all particles, counting the particles in all categories of
interest and deciding if more particles need to be measured. As a
consequence, already reducing the initial sample volumes prior to
the purification steps can limit the final robustness of the results
i.e., when yielding to small numbers of the target particles. Treated
sample volumes should therefore be generously calculated.
Karlsson et al. discussed how many particles have to be
measured for having a statistically robust number (Karlsson
et al., 2020). Their study concluded a reasonable number would
be of about 30 particles per class. This is in agreement with the
results of our analysis that revealed an error of about 20%
(Figure 4) when having measured about 30 MP particles.
Nevertheless, exceptions have to be made for “very rare” categories.

CONCLUSION AND OUTLOOK

Spectroscopic particle measurements are of high importance
when it comes to MP analysis in environmental samples but
need to be sped up to be established as monitoring tools. We

compared the performance of different subsampling approaches,
based on two different method categories: 1) particle-based
methods and 2) measure box placement methods on 27
environmental samples from different compartments, such as
rainwater, river water, sediment and wastewater sludge.

The results can be summarized in three general findings. First,
none of the tested subsampling methods was identified to clearly
outperform the others. The dependency of the subsampling-
errors on the fraction measured was very similar for all
methods; differences could only be seen in edge scenarios, as
for instance in the case of filters with relatively low particle counts
and inhomogeneous particle distribution on the filter. There, the
particle-based subsampling proved to be more accurate than the
box-based methods. In the majority of samples however, the
observed subsampling-error was due to the counting error
(i.e., extrapolating from a low number of measured particles)
and particle distribution inhomogeneity is negligible.

Second, the magnitude of the averaged subsampling-error easily
exceeded 50% if only 5% or less of the filter was measured. More
critically, the standard deviation of the subsampling-error strongly
increases when decreasing the measured fraction. If reliable particle
counts with an error of less than 20% are required, the measured
fraction should be at least 50% or, in the case of particle-based
subsampling, at least 7,000 particles. However, if exact counts of
particular types of MP particles are of interest, the measured fraction
would have to be increased even further, thus reducing the time
saving from the subsampling. It might be advisable to measure the
entire filter in these cases.

Third, the best way to increase accuracy at low particle counts is
to increase the fraction of MP particles in the sample. This can be
done by further optimization of sample preprocessing steps or by
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implementing methods to identify possible MP particles prior to
spectroscopic measurement (by specifically trained classification
models or fluorescent staining). That finding seems trivial, but is
important to keep in mind when designing workflows for workup
and analysis of certain sample types. If only qualitative results are
required (i.e., are MP particles present or not), higher error margins
can be tolerated. Vice versa, if robust particle numbers are required,
sample preprocessing should be optimized or, if not possible, higher
fractions of the sample have to be measured.

To increase the validity of the herein gathered results to a larger
diversity of filters, especially with higher particle counts, we encourage
scientists in the field to critically reassess their measurements similarly
as described here. Deeper statistical considerations would be
beneficial for underpinning the observed effects.

The decision on the most appropriate subsampling strategy for
a fast and proper quantification of specific objects from different
environmental compartments is important for several scientific
disciplines, going far beyond microplastic research. Only one
example would be the microscopic quantification of specific
prokaryotic groups via phylogenetic staining of cells e.g., by
Fluorescence in situ hybridization (FISH). Therefore, we also
understand this study as a general stimulus for a more extensive
and interdisciplinary research on statistically relevant counting of
small and less abundant objects in the environment.
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