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Odorous gas emissions from swine production have been a concern for neighbors

and communities near livestock farms. Manure storage is one of the main sources

of gaseous emissions. Manure additive products are marketed as a simple solution

to this environmental challenge. Manure additives are user-friendly for producers and

can be applied (e.g., periodically poured into manure) without changing the current

manure storage structure. Little scientific data exist on how these products perform

in mitigating gaseous emissions from swine manure. The research objective was to

evaluate the effectiveness of 12 marketed manure additives on mitigating odor, ammonia

(NH3), hydrogen sulfide (H2S), greenhouse gases (GHG), and odorous volatile organic

compounds (VOCs) from stored swine manure. A controlled pilot-scale setup was

used to conduct 8-week long trials using manufacturer-prescribed dosages of additives

into swine manures. Manure was outsourced from three swine farms to represent a

variety of manure storage types and other factors affecting the properties. Measured

gaseous emissions were compared between the treated and untreated manure. None

of the tested products showed a significant reduction in gaseous emissions when all

(n = 3) manures were treated as replicates. Selected products showed a wide range of

statistically-significant reduction and generation of gaseous emissions when emissions

were compared in pairs of manure types from one farm. The latter observation highlighted

the lack of consistent mitigation of gaseous emissions by manure additives. The results

of this study do not warrant full-scale trials with the tested products.
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animal production systems, swine manure, waste management
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INTRODUCTION

The swine industry has a significant environmental and
socio-economic challenge with the gaseous emissions that
originate from the storage, handling, and land-application of
swine manure. Emissions of ammonia (NH3), hydrogen sulfide
(H2S), volatile organic compounds (VOCs) contribute to odor
nuisance. A relatively small subset of VOCs (e.g., phenolics, fatty
acids, sulfur-containing VOCs) has been consistently ranked
and prioritized as significant contributors to the characteristic
smell of swine odor downwind from farms (Koziel et al., 2006).
Researchers have measured gaseous and odor emissions from
animal buildings (Akdeniz et al., 2012a; Bereznicki et al., 2012;
Cai et al., 2015). Efforts linking concentrations of gases and
measured odor are challenging (Akdeniz et al., 2012b; Parker
et al., 2012). Concerns about climate change are also relevant to
greenhouse gas (carbon dioxide (CO2), nitrous oxide (N2O), and
methane (CH4) emissions from stored manure and land-applied
manure (Maurer et al., 2017a). Airborne particulate matter can
also sorb VOCs and be a carrier of odor (Cai et al., 2006).

Progress is beingmade on developing and testing technologies
for the mitigation of odor and gaseous emissions from swine
farms (Maurer et al., 2016; Iowa State University Extension
Outreach, 2020). However, the farm-scale adoption of a
particular technology depends on a number of site-specific
regulatory and socio-economic factors. The Air Management
Practices Assessment Tool (Iowa State University Extension
Outreach, 2020) listing 12 approaches to mitigate odor and
gaseous emissions. These include manure additives, i.e., products
for surficial application to stored manure. Researchers have
reported developing and testingmanure additives such as various
types of biochars (Maurer et al., 2017b; Chen et al., 2020a;
Meiirkhanuly et al., 2020a,b), zeolites (Cai et al., 2007), and
peroxidase (Maurer et al., 2017c,d). The swine industry has access
to a relatively wide range of commercial products marketed as
manure additives.

Manure additives are user-friendly for farmers because they
can be applied (e.g., periodically poured into manure) without
changing the current manure storage structure. The active
ingredients are often proprietary, but the majority of products
claim to contain microbial flora aiming to minimize odor-
causing populations. Unfortunately, little scientific data exist on
how these marketed products perform in mitigating gaseous
emissions from swinemanure, and the impact on odormitigation
is relatively low (Iowa State University Extension Outreach,
2020).

The objective of this study was to test the effectiveness
of 12 marketed manure additives on their mitigation of
gaseous emissions of odor, ammonia (NH3), hydrogen sulfide
(H2S), greenhouse gases (GHG), and odorous volatile organic
compounds (VOCs) from stored swine manure. The products
were selected based on their usage in commercial swine
production in the U.S. The 12 products were Triune, Confine,
Manure Master Plus (MMP), Sulfi-Doxx dry (Sulfi-Dox), Waste
Away, Oxydol, Enviro Lagoon, Penergetic G, Manure Magic
(MM), Sludge Away; LLMO-SST (LLMO), and More Than
Manure (MTM).

Our working hypothesis was that the tested manure additives
will effectively reduce gaseous emissions from different types
of swine manure when tested on a pilot-scale using the
manufacturer-prescribed dose. This research shows the side-
by-side comparisons of commercial additives to help the
pork industry understand their performance and potential
impact on mitigating odor and gaseous emissions from
manure. Additionally, A similar study on the evaluation of
manure additives was carried out 20 years ago; however,
many new products have been introduced since then (Heber
et al., 2001). Farmers and the regulatory community need
reliable scientific data on the performance of marketed
manure additives that are popular with the U.S. Midwest
pork industry.

EXPERIMENTS

The “Experiments” section is largely reduced to the essentials to
avoid redundant information that was described in detail in the
“Methods” section of the recently published paper (Chen et al.,
2020b). The Chen et al. (2020b) paper is focused on methods and
raw data presentation in an organized fashion for transparency
and reuse. This paper focuses on data analysis, results, discussion,
and conclusions.

Experimental Design
Table 1 summarizes the additive products tested in the four,
8-week long Trials of the effectiveness for mitigation of gas
emissions from stored swine manure.

A detailed description of the experimental design, key
components of manure storage simulators, properties of manure,
airflow control, gas (NH3, H2S, CO2, CH4, N2O), 11 odorous
VOCs and odor concentration measurements are presented
elsewhere (Chen et al., 2020b).

The experimental set up of this research was pilot-scale and
aimed to simulate the deep pit swine manure storage structure.
A total of 15 manure storage simulators are available, and each
has a height of 1.22 meters (4 ft) and a diameter of 0.38m (15
inches), as shown in Figure 1. Fresh manure was collected from
three farms at different locations in Iowa. The detailed manure
properties and manure collection are presented elsewhere (Chen
et al., 2020b).

The manure storage simulators were initially filled with 74.6 L
of swine manure. Every 2 weeks, 9.5 L of the manure from the
same farm was added directly from the top of the simulators to
simulate the manure addition in the real swine barn. The airflow
rate was kept at 7.5 air exchange per hour (ACH) by FL-3839ST
rotameters (Omega Engineering Inc, USA). Each Trial of the
experiment lasted for 8 weeks. The baseline gas emissions from
each simulator were measured for ∼2 weeks before applying
any treatment. The dosage of each product was followed by
the recommended dosages on their product labels or websites.
The gas concentration measurements for NH3 and H2S were
done twice a week; GHG, odor concentrations, and VOCs were
done weekly.
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TABLE 1 | Summary of four, 8-week long Trials to test the effectiveness of additive products for mitigation of gas emissions from stored swine manure.

Manure additive products tested* Manure source/storage type Time of the year for manure collection**

Trial 1 Triune; Confine N; Manure Master plus; Sulfi-Doxx dry; Deep pit 1; Deep pit 2; Outdoor December 2018

Trial 2 Waste Away; Enviro Lagoon; More Than Manure; Oxydol Deep pit 1; Deep pit 2; Outdoor March 2019

Trial 3 Sludge Away; Penergetic G; Manure Magic Deep pit 1; Deep pit 2; Deep pit 3 July 2019

Trial 4 LLMO-SST Deep pit 1; Deep pit 2; Deep pit 3 October 2019

*Detailed description of each product including the mode of operation, the recommended dosage that was followed and used in each Trial, manufacturer name is described in Chen

et al. (2020b).

**Manure was collected at the same farms, but at different times of the year [i.e., manure properties varied significantly for untreated manure (Control), (Chen et al., 2020b)].

FIGURE 1 | Pilot-scale setup of manure storage simulator to test the effectiveness of manure additives for mitigation of gas emissions. Airflow in the headspace is

measured and controlled by a rotameter with a needle valve for each simulator. Gas samples are collected from the “dirty air” outlet. The mitigation effect was

estimated by comparing the gaseous emissions between treated and untreated manure.

Ammonia and Hydrogen Sulfide
NH3 and H2S concentrations were measured with both Drager
X-am 5600 portable gas analyzer and OMS-300, which can
be used to measure real-time gas concentrations. OMS-300
is equipped with NH3/CR-1000 and H2S/C-50 electrochemical
gas sensors (Wallisellen, Switzerland), and Drager X-am
5600 equipped with NH3 and H2S XS sensors (Luebeck,
Germany) (Maurer et al., 2017b; Wi et al., 2019; Chen et al.,
2020b).

Greenhouse Gases
Greenhouse gases were measured for CO2, N2O, and CH4. First
GHG samples were collected with a syringe from the headspace
of themanure simulators in 5.9mL Extainer vials (Labco Limited,
U.K.). All Extainer vials have been pre-cleaned with Helium gas
(UHP 300) and vacuumed for over 7 cycles. Then the samples
were analyzed with GHG-GC (SRI Instruments, Torrance, CA,
USA) equipped with flame ionization detector (FID) and electron
capture detector (ECD) (Maurer et al., 2017b; Chen et al., 2020b).
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Volatile Organic Compounds
For VOC emissions, the manure storage air samples
were collected in 1 L gas sampling glass bulbs
(Supelco) by using portable sampling pumps. After
bringing back to the lab, VOCs were absorbed with
a 2 cm divinylbenzene/Carboxen/polydimethylsiloxane
(DVB/Carboxen/PDMS) solid-phase microextraction (SPME)
fiber (57384-U, Supelco, Bellefonte, PA, USA) for 50min at lab
temperature (23–24◦C), then analyzed with a multidimensional
GC-MS within 12 h of sample collection.

The SPME fiber loaded with VOCs was inserted into a
260◦C G.C. (Microanalytics, Round Rock, TX, USA) inlet; VOCs
were thermally desorbed for 2min and analyzed by a mass
spectrometer (Agilent, model 5973N, Santa Clara, CA, USA)
(Chen et al., 2020b).

Odor
The odor samples were collected weekly by using Vac-U-
Chamber (SKC Inc., Eighty-Four, PA, USA) and transfer back
to the lab in 10 L Tedlar sample bags. Tedlar sample bags were
flushed and vacuumed with air multiple times before using them.
Within 12 h, all the odor samples were analyzed with AC’SCENT
International Olfactometer (St. Croix Sensory Inc., Stillwater,
MN, USA) using dynamic triangular forced-choice methods.
There were four panelists, and each sample was evaluated twice
by each panelist (Akdeniz et al., 2012a; Chen et al., 2020b).

Mitigation and Statistical Analyses
The experimental design was a completely randomized design.
Gases such as NH3, H2S, CO2, N2O, and CH4 initially were
all measured or analyzed in units of parts per million. Gas
concentrations were first converted from the field condition to
standard condition (1 atm, 25◦C, and dry air). For odor, the unit
was used Odor Units. For VOC, the peak area count was used.

The overall mean percent reduction to emissions was
calculated with Equation 1:

%R=
EControl−ETreatment

EControl
∗100% (1)

Whereas, %R is the overall mean percent reduction, Econtrol is the
average emission of the control, Etreatment is the average emission
of the treatment.

The two-way ANOVA and Tukey-Kramer Method were used
to determine the p-values of the reduction. All statistical analysis
was done in JMP software (version Pro 15, SAS Institute, Inc.,
Cary, NC, USA). When a p-value is less than or equal to 0.05, the
reduction is statistically significant.

All data were analyzed in two ways:

(a) Averaging results for treating all types of manure analyzed
as replications (n = 3 replications, assuming manures from
different farms are replicates).

(b) Treating all types of manure as being distinct (no
replications, assuming manures from different farms are not
replicates; comparing (n = 1) control vs. (n = 1) treatment
using the same manure).

RESULTS

In this research, a total of 12 manure additive products was
evaluated (Table 1). Four products were evaluated in Trial 1, and
another four products were evaluated in Trial 2; 3 products were
evaluated in Trial 3; 1 product was evaluated in the last Trial
(Trial 4). The percent reduction in gaseous emissions (%R) were
all calculated by comparing emissions from the treated manure
with the Control in the same Trial. The results are organized by
Trials and presented in two types of tables for each Trial. The first
table type summarizes results by (a) averaging results for treating
all types of manure as replications (n = 3 replications, assuming
manures from different sources are replicates). The second table
type summarizes results by (b) treating all types of manure as
being distinct (no replications, assuming manures from different
sources are not replicates, comparing (n = 1) control vs. (n =

1) treatment using the same manure). Rows in each table are
organized by targeted gases, starting with NH3 and followed by
H2S, GHGs, odor, and odorous VOCs.

In addition, the Supplementary Material contains
detailed comparisons of emissions for each targeted gas
over 8 weeks of each Trial, illustrated with 130 figures
(Supplementary Figures 1–130). Supplementary Tables 1–3

serve as a guide for finding results on a particular manure
additive and targeted gas.

Trial 1 (Confine N, Triune, MMP, and
Sulfi-Doxxdry)
The four products that were evaluated during Trial 1 of the
experiment were Confine N, Triune, MMP, and Sulfi-doxxdry.
The results of considering the three types of manure sources
as triplicate were summarized in Table 2. The measurements
over the 8-week of the experiment for all four productions
are listed in Supplementary Material (Triune: Supplementary

Figures 1–9; MMP: Supplementary Figures 10–18; Confine
N: Supplementary Figures 19–27; Sulfi-dox: Supplementary

Figures 28–36). For all targeted gases, there was not any
statistically significant reduction found.

For NH3 emission, Sulfi-dox showed the highest percent
reduction of 8% with a p-value of 0.5359. Confine N and
MMP increased NH3 emissions. MMP and Sulfi-dox reduced the
average H2S emissions by 34% with a p-value of 0.3525 and 10%
with a p-value of 0.9834, respectively. Triune increased the H2S
emissions by 13% with a p-value of 0.9555.

For GHG emissions, all four products did not have a
significant impact on CO2 emissions. But all four products had
increased the CH4 emissions production by 9∼30%. MMP and
Sulfi-dox reduced N2O emissions by 8%; Confine N and Triune
reduced N2O emissions by 5 and 4%, respectively.

MMP had the highest percent reduction in Trial 1, 20%,
and followed by Triune with a reduction of 13%. For VOC
emissions, There were always mitigations in some targeted gases,
and at the same time, generations in others. For example, MMP
had mitigations in DEDS and DMTS by 15% and 32% but
generated DMDS by 77%. Triune increased the p-cresol emission
significantly by 310% with a p-value of 0.0016, and Confine N
increased the p-cresol emission by 240% with a p-value of 0.0593.
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TABLE 2 | Trial 1-comparison of averaged gaseous emissions (flux or arbitrary units for VOCs) and percent reductions (%R) from three types of manure sources (farms)

with their standard deviations.

Trial 1 Control Confine N MMP Sulfi-dox Triune

NH3 (mg/h/m2 ) 88.8 ± 55.0 92.6 ± 54.1 90.6 ± 48.1 81.8 ± 50.4 87.9 ± 41.3

%R −4 (0.7403) −2 (0.8761) 8 (0.5359) 1 (0.9361)

H2S (mg/h/m2 ) 0.99 ± 0.62 0.96 ± 0.91 0.65 ± 0.46 0.89 ± 0.58 1.11 ± 1.15

%R 2 (0.9999) 34(0.3525) 10 (0.9834) −13 (0.9555)

CO2 (mg/h/m2) 2,631 ± 778 2,536 ± 566 2,685 ± 865 2,732 ± 1050 2,679 ± 678

%R 4 (0.9849) −2 (0.9984) −4 (0.9805) −2 (0.9988)

CH4 (mg/h/m2 ) 66.4 ± 36.6 77.0 ± 46.5 74.5 ± 47.2 87.7 ± 55.2 72.1 ± 44.6

%R −16 (0.8721) −12 (0.9496) −32 (0.2971) −9 (0.9852)

N2O (mg/h/m2) 1.30 ± 0.43 1.24 ± 0.44 1.20 ± 0.45 1.20 ± 0.45 1.26 ± 0.44

%R 5 (0.9623) 8 (0.8356) 8 (0.8356) 4 (0.9906)

Odor (OU/m3) 2,835 ± 2,067 2,639 ± 2,286 2,271 ± 2,174 2,706 ± 1,747 2,474 ± 2,164

%R 7 (0.9955) 20 (0.8101) 5 (0.9991) 13 (0.9561)

4EP* (PAC) 1,489,367 ± 995,237 1,464,857 ± 944,412 1,350,266 ± 1,194,695 1,236,546 ± 981,292 1,329,705 ± 1,009,783

%R 2 (1.000) 9 (0.9906) 17 (0.9183) 11 (0.9842)

Acetic acid (PAC) 15,356 ± 33,903 22,834 ± 60,019 33,034 ± 65,464 41,325 ± 108,664 11,428 ± 28,230

%R −49 (0.9951) −115 (0.8895) −169 (0.6617) 25.6 (0.9996)

DEDS* (PAC) 6,855 ± 4,263 7,282 ± 5,513 5,848 ± 5,019 6,352 ± 4,312 5,778 ± 5,017

%R −6 (0.9949) 15 (0.8855) 7 (0.9904) 16 (0.8583)

DMDS* (PAC) 16,128 ± 13,371 13,545 ± 8,034 28,537 ± 34,989 19,841 ± 19,366 16,568 ± 29,883

%R 16 (0.9954) −77 (0.3580) −23 (0.9818) −3 (1.00)

DMTS* (PAC) 5,234 ± 4,787 3,519 ± 3,358 3,601 ± 3,902 5,506 ± 8,153 5,507 ± 4,651

%R 33 (0.7474) 31 (0.7799) 3 (0.9999) −5 (0.9997)

Indole (PAC) 19,555 ± 19,289 17,011 ± 13,476 18,558 ± 25,027 18,641 ± 19,961 17,911 ± 17,112

%R 13 (0.9904) 5 (0.9998) 5 (0.9998) 8 (0.9982)

IsB (PAC) 36,091 ± 104,805 31,558 ± 121,494 4,340 ± 157,403 45,488 ± 137,253 15,001 ± 36,108

%R 13 (0.9999) −20 (0.9996) −26 (0.9988) 58 (0.9741)

p-Cresol (PAC) 629,279 ± 627,787 2,136,907 ± 2,402,924 671,264 ± 728,725 418,377 ± 433,800 2,581,168 ± 3,429,324

%R −240 (0.0593) −7 (1.00) 34 (0.9956) −310 (0.0016)

Phenol (PAC) 1,861,252 ± 1,529,281 1,781,037 ± 1,508,159 1,400,407 ± 1,203,608 1,373,320 ± 1,587,260 1,673,158 ± 1,341,959

%R 4 (0.9997) 25 (0.7863) 26 (0.7488) 10 (0.9903)

PA (PAC) 12,010 ± 34,618 12,815 ± 45,534 22,017 ± 57,369 32,851 ± 109,235 7,833 ± 20,682

%R −7 (1.00) −83 (0.9810) −174 (0.7752) 35 (0.9993)

Skatole (PAC) 1,263,970 ± 747,462 1,223,405 ± 749,454 1,288,386 ± 749,454 1,058,927 ± 736,251 1,494,055 ± 1,114,703

%R 3 (0.9998) −2 (1.00) 16 (0.9255) −18 (0.8908)

%R is statistically significant when the p-value < 0.05 (signified by bold font). Negative (-)%R signifies generation.

*%R = percent reduction with respect to Control (untreated); PAC = peak area count (arbitrary unit); N/A = Below the detection limit; 4EP = 4-ethyl phenol; DEDS = Diethyl disulfide;

DMDS = Dimethyl disulfide; DMTS = Dimethyl trisulfide; IsB = Isobutyric acid; PA = propanoic acid.

The user’s instructions for themanure additive products tested
in this research did not specify “what kind of manure” they target
to treat. These products are marketed for generic use in stored
swine manure regardless of environmental conditions. Thus, we
also analyzed the data by considering that the manure sources
are “different” (no replication), which is summarized in Table 3

for Trial 1. Similar tables are also provided for Trials 2, 3, and 4.
In general, the second approach to data analysis did not yield

consistent results. For example, Triune showed generations of
NH3 emission for outdoor storage manure by 93% with a p-value
of 0.0014, but a 24% reduction on manure from deep pit 1 and
no impact on NH3 emission from deep pit 2 manure. Triune also
generated 937%more p-cresol with a p-value of 0.0001 in outdoor

manure. A similar lack of trend also occurred for other products.
Confine N showed a reduction of 58%with a p-value of 0.0211 for
outdoor manure but generated 42% more H2S in manure from
pit 2. Sulfi-dox generated 55% more on CH4 emission in deep pit
1 manure with a p-value of 0.0105. Confine N mitigated the odor
concentration by 48% with a p-value of 0.0129 in manure from
pit 2 and generated 604% more of p-cresol in outdoor manure
with a p-value of 0.0064.

Trial 2 (WA, MTM, Enviro Lagoon, and
Oxydol)
The four products tested in the second Trial were WA, MTM,
Enviro Lagoon, and Oxydol. The analyzed results, which
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TABLE 3 | Trial 1-comparison of averaged gaseous emissions (flux or arbitrary units for VOCs) and percent reductions (%R) analyzed separately for each type of manure

sources (farms) with their standard deviations.

Trial 1 Manure

Source

Control Confine N MMP Sulfi-dox Triune

NH3 flux (mg/h/m2 ) ± st. dev. Pit 1 121 ± 25.0 126 ± 40.4 129 ± 39.7 128 ± 36.9 92.6 ± 32.8

−4 (0.7403) −6 (0.8761) −6 (0.5359) 24 (0.9361)

Pit 2 117 ± 53.5 112 ± 51.2 101 ± 36.0 91.9 ± 24.7 117 ± 40.8

%R (p-value) 5 (0.9933) 14 (0.7072) 21 (0.2989) 0 (1.00)

Outdoor 28.3 ± 11.7 40.3 ± 21.1 42.4 ± 16.1 25.2 ± 11.5 54.6 ± 23.3

−43 (0.3620) −50 (0.2074) 11 (0.9901) −93 (0.0014)

H2S flux (mg/h/m2 ) ± st. dev. Pit 1 0.80 ± 0.33 0.79 ± 0.36 0.77 ± 0.34 0.96 ± 0.45 0.38 ± 0.44

0 (1.00) 3 (0.9999) −21 (0.7398) 52 (0.0291)

Pit 2 1.19 ± 0.67 1.69 ± 1.20 0.37 ± 0.37 0.47 ± 0.39 2.36 ± 1.13

%R (p-value) −42 (0.5105) 69 (0.0809) 60 (0.1606) −99 (0.0035)

Outdoor 0.97 ± 0.74 0.40 ± 0.37 0.81 ± 0.53 1.23 ± 0.61 0.59 ± 0.42

58 (0.0211) 17 (0.9016) −27 (0.6013) 39 (0.2309)

CO2 flux (mg/h/m2 ) ± st. dev. Pit 1 3,380 ± 661 2,938 ± 415 3,485 ± 835 3,769 ± 1,071 2,967 ± 687

13 (0.4166) −3 (0.9937) −11 (0.5475) 12 (0.4852)

Pit 2 2,410 ± 568 2,453 ± 518 2,293 ± 573 2,400 ± 508 2,364 ± 488

%R (p-value) −2 (0.9992) 5 (0.9611) 0 (1.00) 2 (0.9989)

Outdoor 2,102 ± 448 2,218 ± 536 2,278 ± 565 2,028 ± 524 2,707 ± 749

−6 (0.9856) −8 (0.9344) 4 (0.9974) −29 (0.0708)

CH4 flux (mg/h/m2 ) ± st. dev. Pit 1 91.4 ± 22.9 103 ± 38.1 108 ± 33.0 142 ± 40.9 82.8 ± 38.1

−13 (0.9375) −18 (0.8174) −55 (0.0105) 9 (0.9738)

Pit 2 42.12 ± 28.3 42.0 ± 33.3 33.6 ± 13.5 32.5 ± 19.6 40.7 ± 22.9

%R (p-value) 0 (1.00) 20 (0.9009) 23 (0.8547) 3 (0.9999)

Outdoor 65.5 ± 40.4 86.0 ± 46.8 82.3 ± 82.6 89.0 ± 33.7 92.9 ± 52.1

−31 (0.6802) −26 (0.8137) −36 (0.5508) −42 (0.4001)

N2O flux (mg/h/m2 ) ± st. dev. Pit 1 1.33 ± 0.45 1.21 ± 0.46 1.23 ± 0.47 1.22 ± 0.48 1.28 ± 0.44

9 (0.9695) 7 (0.9846) 8 (0.9722) 3 (0.9992)

Pit 2 1.31 ± 0.44 1.24 ± 0.43 1.16 ± 0.44 1.18 ± 0.46 1.26 ± 0.48

%R (p-value) 5 (0.9943) 12 (0.9119) 10 (0.9452) 4 (0.9983)

Outdoor 1.27 ± 0.45 1.25 ± 0.47 1.20 ± 0.47 1.20 ± 0.47 1.23 ± 0.43

1 (1.00) 5 (0.9953) 6 (0.9943) 3 (0.9992)

Odor concentration (OU/m3) ±

st. dev.

Pit 1 2,288 ± 1,820 2,652 ± 2,699 2,206 ± 1,550 2,442 ± 2,141 2,054 ± 1,404

−16 (0.9832) 4 (1.00) −7 (0.9994) 10 (0.9968)

Pit 2 4,303 ± 2,477 4,095 ± 2,069 2,237 ± 2208 2,757 ± 1791 4,684 ± 1,965

%R (p-value) 5 (0.9968) 48 (0.0129) 36 (0.0995) −9 (0.9687)

Outdoor 1,914 ± 901 1,169 ± 845 2,370 ± 2,870 2,919 ± 1,452 684 ± 321

39 (0.8615) −24 (0.9740) −52 (0.6788) 64 (0.4946)

4EP* (PAC) ± st. dev. Pit 1 2,428,215 ± 895,705 2,184,407 ± 718,889 2,126,714 ± 1,402,887 2,231,119 ± 864,003 1,739,410 ± 493,606

10 (0.9829) 12 (0.9630) 8 (0.9923) 28 (0.5607)

Pit 2 612,650 ± 558,574 531,698 ± 241,714 217,772 ± 141,488 273,271 ± 178,466 338,353 ± 184,038

%R (p-value) 13 (0.9592) 64 (0.0724) 55 (0.1591) 45 (0.3438)

Outdoor 1,427,236 ± 499,994 1,678,465 ± 846,344 1,706,313 ± 633,990 1,205,248 ± 439,900 1,911,353 ± 1,170,956

−18 (0.9592) −20 (0.9412) 16 (0.9739) −34 (0.6856)

Acetic acid (PAC) ± st. dev. Pit 1 9,567 ± 23,397 48,594 ± 89,414 58,847 ± 98,219 56,974 ± 138,341 17,997 ± 41,989

−408 (0.8976) −515 (0.7911) −496 (0.8132) −88 (0.9997)

Pit 2 24,104 ± 47,880 18,980 ± 50,142 28,026 ± 45,885 62,284 ± 131,575 11,915 ± 26,770

%R (p-value) 21 (0.9999) −16 (1.00) −158 (0.8188) 51 (0.9969)

Outdoor 12,395 ± 28,303 929 ± 1,852 12,229 ± 32,306 4,715 ± 5,788 4,373 ± 5,679

93 (0.7648) 1 (1.00) 62 (0.9325) 65 (0.9218)

DEDS* (PAC) ± st. dev. Pit 1 6,654 ± 5,876 9,442 ± 7,858 8,087 ± 7,288 6,355 ± 4,950 6,773 ± 4,949

−42 (0.7347) −22 (0.9688) 4 (0.9999) −2 (1.00)

Pit 2 7,470 ± 3,875 5,819 ± 3,939 5,332 ± 3,439 6,346 ± 4,238 5,170 ± 4,030

(Continued)
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TABLE 3 | Continued

Trial 1 Manure

Source

Control Confine N MMP Sulfi-dox Triune

%R (p-value) 22 (0.6938) 29 (0.4586) 15 (0.9008) 31 (0.3853)

Outdoor 6,440 ± 3,081 6,585 ± 3,778 4,123 ± 2,895 6,356 ± 4,315 5,391 ± 6,343

−2 (1.00) 36 (0.7143) 1 (1.00) 16 (0.9782)

DMDS* (PAC) ± st. dev. Pit 1 7,503 ± 5,763 9,415 ± 6,342 11,870 ± 7,507 8,128 ± 5,976 10,636 ± 5,255

−25 (0.9236) −58 (0.3544) −8 (0.9988) −42 (0.6695)

Pit 2 28,603 ± 14,346 21,663 ± 6,102 64,675 ± 41,032 429,00 ± 16,157 31,250 ± 50,042

%R (p-value) 24 (0.9904) −126 (0.1438) −50 (0.8769) −9 (0.9998)

Outdoor 12,279 ± 8,281 9,557 ± 4,653 9,065 ± 6,254 8,495 ± 4,892 7,817 ± 5,307

22 (0.7991) 26 (0.6853) 31 (0.5410) 36 (0.3779)

DMTS* (PAC) ± st. dev. Pit 1 4,217 ± 3,727 3,914 ± 4,399 4,143 ± 3,179 3,253 ± 3,445 6,111 ± 5,888

7 (0.9999) 2 (1.00) 23 (0.9864) −45 (0.8573)

Pit 2 8,198 ± 5,971 4,724 ± 2,983 4,833 ± 5,694 10,442 ± 12,319 6,133 ± 3,213

%R (p–value) 42 (0.8317) 41 (0.8472) −27 (0.9602) 25 (0.9705)

Outdoor 3,286 ± 3,193 1,920 ± 2,010 1,827 ± 1,351 1,472 ± 1,797 4,278± 4,848

42 (0.7994) 44 (0.7589) 55 (0.5847) −30 (0.9267)

Indole (PAC) ± st. dev. Pit 1 6,881 ± 4,843 7,739 ± 4,782 9,790 ± 4,100 9,475 ± 9,798 11,655 ± 13,940

12 (0.9991) −42 (0.9120) −38 (0.9402) −69 (0.6327)

Pit 2 16,221 ± 15,966 12,519 ± 8,698 5,518 ± 5,136 5,346 ± 3,408 18,826 ± 23,479

%R (p-value) 23 (0.9824) 66 (0.5302) 67 (0.5147) −16 (0.9953)

Outdoor 35,563 ± 21,331 30,776 ± 12,663 40,365 ± 12,663 41,101 ± 18,083 23,251 ± 11,758

13 (0.9895) −14 (0.9893) −16 (0.9818) 35 (0.7450)

Isobutyric acid (PAC) ± st. dev. Pit 1 66,525 ± 175,417 84,118 ± 208,548 102,748 ± 270,721 85,894 ± 225,713 28,127 ± 60,609

−26 (0.9998) −54 (0.9960) −29 (0.9997) 58 (0.9950)

Pit 2 30,527 ± 58,673 9,518 ± 15,098 22,832 ± 42,026 41,693 ± 85,661 9,684 ± 16,488

%R (p-value) 69 (0.9193) 25 (0.9980) −37 (0.9918) 68 (0.9214)

Outdoor 11,221 ± 8,719 1,038 ± 1,606 4,622 ± 11,043 8,878 ± 14,128 7,194 ± 6,291

91 (0.2260) 59 (0.6388) 21 (0.9875) 36 (0.9137)

P-cresol (PAC) ± st. dev. Pit 1 534,234 ± 315,599 742,864 ± 510,016 1,037,243 ± 967,635 617,710 ± 667,664 435,788 ± 237,403

−39 (0.9361) −94 (0.3532) −16 (0.9900) 18 (0.9960)

Pit 2 734,609 ± 1,037,615 1,308,301 ± 923,136 164,226 ± 191,558 171,126 ± 142,810 891,792 ± 643,553

%R (p-value) −78 (0.4780) 78 (0.4838) 77 (0.4958) −21 (0.9910)

Outdoor 618,994 ± 309,165 4,359,556 ± 3,034,468 812,322 ± 549,734 466,295 ± 185,044 6,415,923 ± 3,583,622

−604 (0.0064) −31 (0.9997) 25 (0.9999) −937 (0.0001)

Phenol (PAC) ± st. dev. Pit 1 2,641,727 ±

1,749,816

3,266,446 ± 1,517,507 1,559,044 ± 819,677 2,356,688 ± 2,161,493 2,411,186 ± 1,359,152

−24 (0.5960) 41 (0.1084) 11 (0.9625) 9 (0.9827)

Pit 2 394,924 ± 337,458 468,653 ± 533,751 135,796 ± 134,117 129,380 ± 180,173 265,798 ± 64,068

%R (p-value) −19 (0.9795) 66 (0.2978) 67 (0.2750) 33 (0.8597)

Outdoor 2,547,105 ± 904,176 1,608,011 ± 601,267 2,506,382 ± 903,151 1,633,891 ± 788,861 2,342,490 ± 817,053

37 (0.1692) 2 (1.00) 36 (0.194) 8 (0.3901)

Propionic acid (PAC) ± st. dev. Pit 1 14,718 ± 38,284 30,721 ± 78,455 29,291 ± 77,680 37,777 ± 105,427 10,273 ± 27,753

−109 (0.9909) −99 (0.9936) −157 (0.9650) 30 (0.9999)

Pit 2 19,259 ± 47,616 7,322 ± 8,889 27,749 ± 63,422 60,776 ± 161,056 12,643 ± 23,222

%R (p-value) 62 (0.9982) −44 (0.9995) −216 (0.8368) 34 (0.9998)

Outdoor 2,053 ± 4,785 401 ± 1,135 9,010 ± 21,588 N/A* 583 ± 1,649

80 (0.9972) −339 (0.6303) 100 72 (0.9982)

Skatole (PAC) ± st. dev. Pit 1 1,603,388 ± 601,593 1,385,116 ± 598,248 1,686,521 ± 648,027 1,510,296 ± 782,516 1,619,319 ± 521,900

14 (0.9557) −5 (0.9988) 6 (0.9982) −1 (1.00)

Pit 2 496,532 ± 489,222 573,741 ± 285,065 1,686,521 ± 648,027 208,085 ± 192,715 451,585 ± 237,533

%R (p-value) −16 (0.9869) 47 (0.5654) 38 (0.7415) 9 (0.9984)

Outdoor 1,691,991 ± 469,405 1,711,358 ± 788,673 1,915,340 ± 661,213 1,358,401 ± 389,827 2,411,262 ± 1,237,952

−1 (1.00) −13 (0.9736) 20 (0.8943) −43 (0.3146)

%R is statistically significant when the p-value < 0.05 (signified by bold font). Negative (-)%R signifies generation.

*%R = percent reduction with respect to Control (untreated); PAC = peak area count (arbitrary unit); N/A = Below the detection limit; 4EP = 4-ethyl phenol; DEDS = Diethyl disulfide;

DMDS = Dimethyl disulfide; DMTS = Dimethyl trisulfide.
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TABLE 4 | Trial 2-comparison of averaged gaseous emissions from three manure sources (farms) with their standard deviations.

Trial 2 Control Enviro Lagoon MTM Oxydol WA

NH3 (mg/h/m2 ) 218 ± 71.1 232 ± 110 220.88 ± 95.14 249 ± 187 243 ± 171

%R −6 (0.9801) −1 (1.00) −14 (0.7321) −11 (0.8603)

H2S (mg/h/m2 ) 11.4 ± 18.3 11.2 ± 17.4 11.1 ± 17.0 12.8 ± 18.3 12.4 ± 18.8

%R 1 (1.00) 2 (1.00) −13 (0.9926) −9 (0.9981)

CO2 (mg/h/m2) 2,568 ± 432 2,587 ± 494 2,548 ± 419 2,577 ± 461 2,443 ± 441

%R −1 (0.9979) 1 (0.9984) 0 (0.9999) 5 (0.3821)

CH4 (mg/h/m2 ) 296 ± 232 352 ± 279 308± 238 346 ± 300 335 ± 274

%R −19 (0.9530) −4 (0.9999) −17 (0.9685) −13 (0.9868)

N2O (mg/h/m2) 0.83 ± 0.27 0.89 ± 0.33 0.84 ± 0.28 0.84 ± 0.28 0.86 ± 0.30

%R −7 (0.8063) −1 (1.00) −1 (0.999) −3 (0.9854)

Odor (OU/m3) 3,100 ± 1,872 2,996 ± 1,930 2,937 ± 1,899 3,350 ± 1,927 3,135 ± 1,647

%R 3 (0.9986) 5 (0.9919) −8 (0.960) −1 (1.00)

4EP* (PAC) 315,524 ± 312,464 400,297 ± 291,552 360,170 ± 341,195 408,875 ± 416,706 333,335 ± 344,618

%R −27 (0.8115) −14 (0.9786) −30 (0.7514) −6 (0.9994)

Acetic acid (PAC) 22,745 ± 55,311 25,071 ± 59,554 43,197 ± 111,130 41,778 ± 83,311 24,909 ± 43,100

%R −10 (1.00) −90 (0.8803) −84 (0.9053) −10 (1.00)

DEDS* (PAC) 6,616 ± 5,805 8,026 ± 6,348 5,416 ± 4,817 6,733 ± 5,712 5,931 ± 6,462

%R −21 (0.8608) 18 (0.9177) −2 (1.00) 10 (0.9891)

DMDS* (PAC) 16,186 ± 7,326 18,471 ± 9,665 14,811 ± 7,382 14,355 ± 8,652 24,097 ± 21,404

%R −14 (0.9657) 9 (0.9949) 11 (0.9848) −49 (0.1657)

DMTS* (PAC) 5,156 ± 5,205 7,302 ± 8,675 6,581 ± 7,398 3,644 ± 3,377 4,136 ± 5,366

%R −42(0.7509) −28 (0.9309) 29 (0.9154) 20 (0.9790)

Indole (PAC) 15,747 ± 15,056 16,486 ± 15,677 19,915 ± 21,246 17,636 ± 19,196 13,311 ± 17,403

%R −5 (0.9999) −26 (0.9196) −12 (0.9956) 16 (0.9884)

IsB (PAC) 362,361 ± 849,333 366,919 ± 887,485 361,165 ± 803,300 371,755 ± 845,689 375,740 ± 865,046

%R −1 (1.00) 0 (1.00) −5 (1.00) −4 (1.00)

p–Cresol (PAC) 1,529,173 ± 1,415,358 1,266,610 ± 1,144,601 1,648,778 ± 1,890,610 2,198,355 ± 1,816,109 1,333,436 ± 1,457,440

%R 17 (0.9578) −8 (0.9978) −44 (0.4001) 13 (0.9856)

Phenol (PAC) 2,054,211 ± 2,436,085 2,766,911 ± 3,266,006 2,404,184 ± 2,778,151 2,446,857 ± 3,470,660 2,366,274 ± 3,308,158

%R −35 (0.9290) −17 (0.9940) −19 (0.9919) −15 (0.9967)

PA (PAC) 30,393 ± 34,409 34,575 ± 57,908 43,120 ± 59,699 56,522 ± 104,674 25,664 ± 36,334

%R −14 (0.9993) −42 (0.9503) −86 (0.5721) 16 (0.9988)

Skatole (PAC) 351,819 ± 336,608 446,898 ± 394,217 367,570 ± 343,087 512,562 ± 447,024 477,183 ± 533,742

%R −27 (0.8885) −5 (0.9999) −46 (0.5287) −36 (0.7435)

%R is statistically significant when the p-value < 0.05 (signified by bold font if present). Negative (-) %R signifies generation.

*%R = percent reduction with respect to Control (untreated); PAC = peak area count (arbitrary unit); N/A = Below the detection limit; 4EP = 4-ethyl phenol; DEDS = Diethyl disulfide;

DMDS = Dimethyl disulfide; DMTS = Dimethyl trisulfide; IsB = isobutyric acid; PA = propanoic acid.

considering three types of manure sources were triplication,
are summarized in Table 4. The measurements over the 8-
week of the experiment for all four productions are listed in
Supplementary Material (WA: Supplementary Figures 37–71;
MTM: Supplementary Figures 72–80; Enviro Lagoon:
Supplementary Figures 81–89; Oxydol: Supplementary

Figures 90–98).
There was no significant reduction found for all of those

four products. All four manure additives treatments increased
NH3 emissions (p > 0.05). Oxydol and WA increased the H2S
emissions by 9∼13% (p > 0.05). There was no significant impact
on CO2 and N2O emissions, and more CH4 emissions were
generated for all four products. For odor concentrations, Enviro
Lagoon and MTM treatments decreased by 3% with a p-value of

0.9986 and 5% with a p-value of 0.9919, whereas Oxydol andWA
treatments increased by 8% with a p-value of 0.9600 and 1% with
a p-value of 1.00, respectively.

A similar lack of trend was observed for VOCs as in Trial 1.
There are random effects (p> 0.05) ofmitigation and generations
among the fatty acid, sulfide groups, and phenolic groups. But
overall, no statistical significance was found in Trial 2 as we
considering three manure sources as triplications.

In general, when we considered the manure sources are not
replications, the second approach of data analysis did not yield
consistent results to the %R in Trial 2 as shown in Table 5.
One similar trend observed is that manure additives often have
some degree of mitigation on one type of manure, but also
generation in emissions in another manure source. Different
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TABLE 5 | Trial 2-comparison of gaseous emissions from each of the three manure sources (farms) with their standard deviations.

Trial 2 Manure

source

Control Enviro Lagoon MTM Oxydol WA

NH3 flux (mg/h/m2 ) ± st. dev. Pit 1 257 ± 95.0 289 ± 162 272 ± 141 351 ± 300 337 ± 272

−12 (0.9801) −6 (0.9987) −37 (0.4651) −31 (0.6174)

Pit 2 210 ± 14 211 ± 31 210 ± 207 207 ± 15 228 ± 27

%R (p–value) 0 (1.00) 0 (1.00) 1 (0.9966) −9 (0.2423)

Outdoor 188 ± 63 197 ± 75 181 ± 53 189 ± 48 163 ± 23

−5 (0.9730) 4 (0.9919) −1 (1.00) 13 (0.5204)

H2S flux (mg/h/m2 ) ± st. dev. Pit 1 25.5 ± 25.0 25.5 ± 22.9 24.4 ± 22.3 28.8 ± 22.4 28.7 ± 24.8

0 (1.00) 4 (0.9996) −13 (0.9675) −13 (0.9735)

Pit 2 1.94 ± 2.34 1.53 ± 2.28 1.18 ± 0.91 1.68 ± 1.67 1.99 ± 1.24

%R (p-value) 21 (0.9619) 39 (0.7253) 13 (0.9934) −2 (1.00)

Outdoor 6.66 ± 9.08 6.71 ± 9.06 7.72 ± 9.06 7.72 ± 10.3 6.40 ± 7.56

−1 (1.00) −16 (0.9894) −17 (0.9860) 4 (1.00)

CO2 flux (mg/h/m2 ) ± st. dev. Pit 1 2,636 ± 485 2,663 ± 507 2,555 ± 479 2,630 ± 507 2,480 ± 424

−1 (0.9996) 3 (0.9741) 0 (1.00) 6 (0.7813)

Pit 2 2,586 ± 458 2,530 ± 569 2,607 ± 468 2,512 ± 477 2,511 ± 419

%R (p-value) 2 (0.9925) −1 (0.9999) 3 (0.9780) 3 (0.9769)

Outdoor 2,482 ± 392 2,575 ± 457 2,482 ± 346 2,590 ± 453 2,338 ± 514

−4 (0.8720) 0 (1.00) −4 (0.8030) 6 (0.5858)

CH4 flux (mg/h/m2 ) ± st. dev. Pit 1 529 ± 172 647 ± 186 547 ± 170 637 ± 295 625 ± 207

−22 (0.7535) −3 (0.9998) −20 (0.8111) −18 (0.8679)

Pit 2 33.5 ± 9.49 34.3 ± 9.49 32.5 ± 9.55 38.3 ± 9.11 34.3 ± 7.86

%R (p-value) −3 (0.9992) 3 (0.9998) −14 (0.8100) −3 (0.9995)

Outdoor 325 ± 74.2 373 ± 73.0 345 ± 61.4 362 ± 55.4 347 ± 61.4

−15 (0.6109) −6 (0.9126) −11 (0.8020) −3 (0.9660)

N2O flux (mg/h/m2 ) ± st. dev. Pit 1 0.85 ± 0.27 0.88 ± 0.32 0.79 ± 0.27 0.80 ± 0.30 0.84 ± 0.31

−3 (0.9971) 7 (0.9552) 5 (0.9865) 1 (1.00)

Pit 2 0.86 ± 0.27 0.93 ± 0.34 0.91 ± 0.28 0.89 ± 0.29 0.91 ± 0.33

%R (p-value) −8 (0.9398) −6 (0.9830) −3 (0.9918) −5 (0.9843)

Outdoor 0.78 ± 0.30 0.85 ± 0.38 0.81 ± 0.30 0.82 ± 0.29 0.82 ± 0.30

−9 (0.9404) −4 (0.9973) 5 (0.9931) −5 (0.9942)

Odor concentration (OU/m3) ±

st. dev.

Pit 1 3,898 ± 2,061 3,747 ± 2,388 3,546 ± 1,820 4,073 ± 1,345 3,614 ± 2,056

4 (0.9994) 9 (0.9835) −5 (0.9989) 7 (0.9927)

Pit 2 2,487 ± 1,494 2,204 ± 1,343 2,088 ± 1,621 2,233 ± 1,496 2,556 ± 1,014

%R (p–value) 11 (0.9750) 16 (0.9162) 10 (0.9833) −3 (0.9999)

Outdoor 2,915 ± 1,960 3,035 ± 1,836 3,179 ± 2,144 3,742 ± 2,440 3,236 ± 1,733

−4 (0.9990) −9 (0.9801) −28 (0.4156) −11 (0.9594)

4EP* (PAC) ± st. dev. Pit 1 264,499 ± 262,741 275,364 ± 308,681 229,382 ± 245,650 418,202 ± 478,103 301,198 ± 471,300

−4 (1.00) 13 (0.9990) −58 (0.7919) −14 (0.9988)

Pit 2 173,737 ± 58,676 466,087 ± 246,690 383,589 ± 209,298 252,275 ± 255,243 307,733 ± 298,910

%R (p-value) −168 (0.0685) −121 (0.3033) −45 (0.9464) −77 (0.7190)

Outdoor 508,336 ± 424,126 459,440 ± 310,439 467,540 ± 494,977 556,149 ± 473,179 391,073 ± 270,197

10 (0.9912) 8 (0.9956) −9 (0.9919) 23 (0.9160)

Acetic acid (PAC) ± st. dev. Pit 1 18,290 ± 34,022 11,448 ± 21,551 22,167 ± 33,256 32,119 ± 56,196 19,696 ± 26,224

37 (0.9945) −21 (0.9994) −76 (0.9284) −8 (1.00)

Pit 2 44,893 ± 89,002 50,967 ± 99,429 82,861 ± 184,242 92,648 ± 121,001 53,577 ± 61,757

%R (p-value) −14 (1.00) −85 (0.9688) −106 (0.9304) −19 (0.9999)

Outdoor 5,051 ± 5,661 24,561 ± 53,167 24,561 ± 53,167 566 ± 698 1,453 ± 1,693

−153 (0.9643) −386 (0.4762) 89 (0.9954) 71 (0.9980)

DEDS* (PAC) ± st. dev. Pit 1 7,983 ± 6,082 8,614 ± 5,013 6,473 ± 5,013 8,143 ± 6,611 7,495 ± 7,945

−8 (0.9990) 19 (0.9714) −2 (1.00) 6 (0.9996)

(Continued)
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TABLE 5 | Continued

Trial 2 Manure

source

Control Enviro Lagoon MTM Oxydol WA

Pit 2 4,791 ± 5,559 6,902 ± 6,602 5,003 ± 4,802 4,426 ± 5,363 2,815 ± 6,014

%R (p-value) −44 (0.9272) −4 (1.00) 8 (0.9999) 41 (0.9418)

Outdoor 7,073 ± 6,056 8,561 ± 6,189 4,772 ± 5,108 7,630 ± 5,046 7,484 ± 4,610

−21 (0.9574) 33 (0.8223) −8 (0.9990) −6 (0.9997)

DMDS* (PAC) ± st. dev. Pit 1 17,464 ± 7,628 26,013 ± 10,680 19,790 ± 6,951 11,572 ± 7,009 28,888 ± 22,763

−49 (0.6226) −13 (0.9951) 34 (0.8645) −65 (0.3414)

Pit 2 18,606 ± 7,081 18,134 ± 6,864 14,393 ± 4,084 19,103 ± 11,924 30,706 ± 27,236

%R (p-value) 3 (1.00) 23 (0.9740) −3 (1.00) −65 (0.4326)

Outdoor 12,490 ± 6,622 11,267 ± 4,617 10,249 ± 7,859 12,390 ± 3,952 12,695 ± 4,539

10 (0.9910) 18 (0.9197) 1 (1.00) −2 (1.00)

DMTS* (PAC) ± st. dev. Pit 1 6,449 ± 4,563 6,425 ± 4,517 8,172 ± 8,532 2,834 ± 1,966 7,617 ± 6,919

0 (1.00) −27 (0.9730) 56 (0.7088) −18 (0.9937)

Pit 2 3,751 ± 4,520 1,0436 ± 13,954 6,320 ±6,172 4,341 ± 5,068 2,063 ± 4,580

%R (p-value) −178 (0.3288) −68 (0.9464) −16 (0.9998) 45 (0.9884)

Outdoor 5,270 ± 6,603 5,045 ± 3,773 5,251 ± 7,995 3,759 ± 2,571 2,721± 2,181

4 (1.00) 0 (1.00) 29 (0.9775) 48 (0.8660)

Indole (PAC) ± st. dev. Pit 1 20,021 ± 20,685 13,717 ± 12,859 18,705 ± 18,372 16,895 ± 26,463 21,329 ± 27,056

31 (0.9601) 7 (0.9999) 16 (0.9971) −7 (0.9999)

Pit 2 16,900 ± 12,592 26,016 ± 19,743 30,937 ± 28,231 28,242 ± 15,101 11,942 ± 10,116

%R (p-value) 31 (0.9601) 7 (0.9999) 16 (0.9971) −7 (0.9999)

Outdoor 10,321 ± 10,118 9,724 ± 9,360 10,104 ± 9,905 7,772 ± 6,484 6,662 ± 5,886

6 (0.8511) 2 (0.5482) 25 (0.7286) 35 (0.9822)

Isobutyric acid (PAC) ± st.

dev.

Pit 1 217,723 ± 582,682 238,743 ± 531,079 247,671 ± 562,042 295,883 ± 627,015 310,527 ± 797,894

−10 (1.00) −14 (0.9999) −36 (0.9977) −43 (0.9955)

Pit 2 348,985 ± 892,041 326,888 ± 840,012 315,408 ± 804,025 335,036 ± 864,325 389,754 ± 1,018,264

%R (p-value) 6 (1.00) 10 (1.00) 4 (1.00) −12 (1.00)

Outdoor 520,376 ± 1,087,338 535,126 ± 1,243,912 520,417 ± 1,054,417 514,345 ± 1,085,674 426,939 ± 881,554

−3 (1.00) 0 (1.00) 1 (1.00) 18 (0.9995)

P-cresol (PAC) ± st. dev. Pit 1 1,157,879 ± 1,251,761 990,549 ± 1,182,166 1,195,216 ± 1,425,154 1,054,019 ± 1,109,347 1,272,492 ± 2,032,069

14 (0.9985) −3 (1.00) 9 (0.9998) −10 (0.9997)

Pit 2 1,939,021 ± 948,842 1,533,312 ± 1,216,556 1,421,606 ± 1,178,315 3,323,033 ± 1,414,225 1,264,592 ± 1,063,902

%R (p-value) 21 (0.9466) 27 (0.8801) −71 (0.1124) 35 (0.7386)

Outdoor 1,490,619 ± 1,940,009 1,275,968 ± 1,121,891 2,329,513 ± 2,738,851 2,218,014 ± 2,159,586 1,463,223 ± 1,299,686

14 (0.9972) −56 (0.6912) −49 (0.7897) 2 (1.00)

Phenol (PAC) ± st. dev. Pit 1 1,103,816 ± 835,232 1,164,209 ± 960,538 650,525 ± 811,873 479,278 ± 510,677 1,161,132 ± 1,375,503

−5(0.9999) 41 (0.8039) 57 (0.5575) −5 (0.9999)

Pit 2 4,412,143 ± 2,910,423 6,525,652 ± 3,054,830 5,432,687 ± 2,403,042 6,504,135 ± 3,304,190 5,722,162 ± 3,771,118

%R (p-value) −48 (0.5660) −23 (0.9487) −47 (0.5756) −30 (0.8819)

Outdoor 646,675 ± 824,836 610,871 ± 631,507 1,129,340 ± 1,752,613 357,157 ± 413,890 215,529 ± 167,396

6 (1.00) −75 (0.8420) 45 (0.9717) 67 (0.8889)

Propionic acid (PAC) ± st.

dev.

Pit 1 23,044 ± 28,932 43,620 ± 84,769 51,543 ± 83,396 83,344 ± 166,798 33,937 ± 57,145

−89 (0.9905) −124 (0.9682) −262 (0.6664) −47 (0.9992)

Pit 2 33,177 ± 39,307 30,769 ± 45,513 36,745 ± 56,745 60,093 ± 69,224 20,217 ± 19,327

%R (p-value) 7 (1.00) −11 (0.9999) −81 (0.8019) −47 (0.9992)

Outdoor 34,958 ± 37,600 29,336 ± 40,240 41,071 ± 37,402 26,130 ± 38,658 22,838 ± 24,028

16 (0.9960) −17 (0.9945) 25 (0.9779) 35 (0.9321)

Skatole (PAC) ± st. dev. pit 1 285,740 ± 221,045 370,655 ± 323,806 190,971 ± 182,813 483,969 ± 386,006 446,497 ± 521,668

−30 (0.9500) 33 (0.9271) −69 (0.4562) −56 (0.6525)

Pit 2 597,053 ± 445,997 784,215 ± 420,112 675,648 ± 364,606 873,957 ± 461,121 779,632 ± 644,116

%R (p-value) −31 (0.8640) −13 (0.9938) −46 (0.6043) −31 (0.8741)

Outdoor 172,663 ± 118,789 185,825 ± 121,252 236,092 ± 237,760 179,762 ± 134,813 205,420 ± 242,875

−8 (0.9992) −37 (0.7729) −4 (0.9999) −19 (0.9797)

%R is statistically significant when the p-value < 0.05 (signified by bold font if present). Negative (-) %R signifies generation.

*%R = percent reduction with respect to Control (untreated); PAC = peak area count (arbitrary unit); N/A = Below the detection limit; 4EP = 4-ethyl phenol; DEDS = Diethyl disulfide;

DMDS = Dimethyl disulfide; DMTS = Dimethyl trisulfide.
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TABLE 6 | Trial 3-Comparison of averaged gaseous emissions from three manure sources (farms) with their standard deviations.

Trial 3 Control MM Penergetic G Sludge Away

NH3 (mg/h/m2 ) 499 ± 328 472 ± 324 521 ± 346 524 ± 309

%R 5 (0.9760) −4 (0.9861) −5 (0.9781)

H2S (mg/h/m2 ) 42.6 ± 44.3 35.0 ± 41.4 32.1 ± 43.8 45.0 ± 54.4

%R 18 (0.8519) 25 (0.6747) −6 (0.9936)

CO2 (mg/h/m2) 3,719 ± 2,095 3,865 ± 2,140 3,874 ± 2,183 3,662 ± 1,799

%R −4 (0.9890) −4 (0.9868) 2 (0.9993)

CH4 (mg/h/m2 ) 1,431 ± 1,139 1,877 ± 1,656 1,967± 1414 1,545 ± 908

%R −31 (0.5091) −37 (0.3452) −8 (0.9848)

N2O (mg/h/m2) 1.24 ± 0.95 1.20 ± 0.97 1.13 ± 0.93 1.12 ± 0.91

%R 3 (0.9989) 9 (0.9765) 10 (0.9697)

Odor (OU/m3) 5,327 ± 1,960 5,274 ± 1,546 5,178 ± 1,546 5,166 ± 1,425

%R 1 (0.9950) 3 (0.9885) 3 (0.9856)

4EP* (PAC) 535,075 ± 472,795 535,756 ± 583,474 571,498 ± 646,729 585,506 ± 537,207

%R 0 (1.00) −7 (0.9953) −9 (0.9877)

Acetic acid (PAC) 23,342 ± 28,898 20,914 ± 20,322 16,683 ± 37,832 19,641 ± 22,376

%R 10 (0.9898) 29 (0.8336) 16 (0.9657)

DEDS* (PAC) 16,055 ± 7,681 20,318 ± 12,152 19,059 ± 7,697 19,045 ± 5,464

%R −27 (0.3362) −19 (0.6351) −19 (0.6387)

DMDS* (PAC) 9,683 ± 5,222 12,145 ± 9,519 11,740 ± 6,630 15,336 ± 19,405

%R −25 (0.8800) −21 (0.9255) −58 (0.3284)

DMTS* (PAC) 6,410 ± 3,962 6,652 ± 4,259 7,374 ± 4,233 6,667 ± 3,892

%R −4 (0.9971) −15 (0.9971) −4 (0.9965)

Indole (PAC) 22,622 ± 28,450 28,133 ± 53,123 35,317 ± 67,489 19,938 ± 23,026

%R −24 (0.9708) −56 (0.7381) 12 (0.9964)

IsB (PAC) 30,041 ± 37,914 28,461 ± 37,042 26,025 ± 50,780 38,675 ± 54,742

%R 5 (0.9992) 13 (0.9880) −29 (0.8964)

IsV (PAC) 44,428 ± 41,204 51,481 ± 57,988 43,732 ± 65,978 108,720 ± 169,837

%R −16 (0.9945) 2 (1.00) −145 (0.1132)

p-Cresol (PAC) 3,258,433 ± 4,389,300 1,885,515 ± 2,221,119 3,147,694 ± 5,532,756 3,312,823 ± 4,372,801

%R 42 (0.6819) 3 (0.9997) −2 (1.00)

Phenol (PAC) 799,378 ± 836,566 2,814,616 ± 7,842,467 983,504 ± 1,416,374 1,546,183 ± 2,421,635

%R −252 (0.3338) −23.0 (0.9987) −93.4 (0.9231)

PA (PAC) 37,670 ± 51,824 37,897 ± 58,272 41,567 ± 107,198 53,339 ± 70,261

%R −1 (1.00) −10 (0.9979) −42 (0.8880)

Skatole (PAC) 745,597 ± 550,321 930,146 ± 860,934 845,938 ± 872,312 820,813 ± 672,384

%R −25 (0.7951) −14 (0.959) −10 (0.9820)

%R is statistically significant when the p-value < 0.05 (signified by bold font if present). Negative (-)%R signifies generation.

*%R = percent reduction with respect to Control (untreated); PAC = peak area count (arbitrary unit); N/A = Below the detection limit; 4EP = 4-ethyl phenol; DEDS = Diethyl disulfide;

DMDS = Dimethyl disulfide; DMTS = Dimethyl trisulfide; IsB = isobutyric acid, PA = propanoic acid; IsV = isovaleric acid.

targeted gases alsomight be the opposite results for the same kind
of manure. Nevertheless, no matter which data analysis approach
was used, the results were not statistically significant and lacked
clear trends.

Trial 3 (MM, Penergetic G, Sludge Away)
The three products included in the third Trial were MM,
Penergetic G, and Sludge Away. The measurements over the
8-week of the experiment for the three productions are listed
in Supplementary Material (Sludge Away: Supplementary

Figures 99–107; Penergetic G: Supplementary Figures 108–116;
MM: Supplementary Figures 117–125). When we consider

the manure to be replicated, there was no overall statistical
significance to %R in any of the products tested in Trial 3,
as shown in Table 6. For NH3 emissions, MM showed a 5%
reduction, whereas Penergetic G and Sludge Away showed 4
and 5% generations, respectively. For H2S emission, MM and
Penergetic G showed 18 and 25% reductions, Sludge Away still
had 6% generation. For GHG emissions, MM showed a 4%
generation in CO2 emission, a 31% generation in CH4 emission,
and a 3% reduction in N2O; Penergetic G had a 4% generation
in CO2 emission, a 37% generation in CH4 emission, and a 9%
reduction in N2O emission. For odor, there was no statistical
effect associated with all three products (≤3%R). For VOC
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TABLE 7 | Trial 3-comparison of gaseous emissions from each of the 3 manure sources (farms) with their standard deviations.

Trial 3 Manure source Control MM Penergetic G Sludge away

NH3 flux (mg/h/m2 ) ± st. dev. Pit 1 270 ± 180 257 ± 154 302 ± 132 344 ± 169

5 (0.9893) −12 (0.8624) −28 (0.2789)

Pit 2 824 ± 327 784 ± 354 859 ± 393 850 ± 288

%R (p-value) 5 (0.9851) −4 (0.9900) −3 (0.9960)

Pit 3 402 ± 133 375 ± 132 401 ± 125 379 ± 128

7(0.8842) 0 (1.00) 6 (0.9207)

H2S flux (mg/h/m2 ) ± st. dev. Pit 1 22.3 ± 24.4 21.7 ± 15.6 13.8 ± 15.9 25.6 ± 18.6

3 (0.9996) 38 (0.5233) −15 (0.9484)

Pit 2 88.4 ± 45.2 63.2 ± 60.8 67.9 ± 59.8 93.7 ± 70.7

%R (p-value) 29 (0.5991) 23 (0.7416) −6 (0.9938)

Pit 3 17.0 ± 12.3 20.3 ± 13.2 14.5 ± 10.7 15.8 ± 9.59

−19 (0.8532) 15 (0.9249) 7 (0.9904)

CO2 flux (mg/h/m2 ) ± st. dev. Pit 1 5,048 ± 2,961 4,941 ± 2,762 5,001 ± 3,138 4,632 ± 2,456

2 (0.9994) 1 (1.00) 8 (0.9701)

Pit 2 3,390 ± 1,237 3,752 ± 1,934 3,795 ± 1,482 3,372 ± 1,288

%R (p-value) −11 (0.8910) −12 (0.8547) 1 (1.00)

Pit 3 2,720 ± 924 2,901 ± 1,132 2,825 ± 948 2,981 ± 1,114

−7 (0.9339) −4 (0.9857) −4 (0.9857)

CH4 flux (mg/h/m2 ) ± st. dev. Pit 1 1,771 ± 1,743 2,301 ± 2,142 2,386 ± 1,988 1,646 ± 1,143

−30 (0.8750) −35 (0.8181) 7 (0.9979)

Pit 2 1,342 ± 810 2,089 ± 1,828 2,129 ± 1,270 1,507 ± 911

%R (p-value) −56 (0.2598) −59 (0.3156) −12 (0.9826)

Pit 3 1,181 ± 599 1,242 ± 605 1,386 ± 626 1,482 ± 745

−5 (0.9975) −17 (0.9906) −25 (0.7840)

N2O flux (mg/h/m2 ) ± st. dev. Pit 1 1.31 ± 1.01 1.25 ± 1.04 1.11 ± 0.94 1.12 ± 0.94

4 (0.9995) 15 (0.9786) 15 (0.9806)

Pit 2 1.24 ± 0.99 1.15 ± 0.99 1.16 ± 1.02 1.19 ± 1.03

%R (p-value) 7 (0.9981) 7 (0.9986) 5 (0.9995)

Pit 3 1.17 ± 0.99 1.20 ± 1.01 1.11 ± 0.96 1.05 ± 0.85

−2 (0.9999) 5 (0.9947) 10 (0.9947)

Odor concentration (OU/m3) ± st. dev. Pit 1 4,725 ± 981 4,967 ± 972 4,810 ± 1,143 4,655 ± 1,060

−5 (0.9610) −2 (0.9981) 1 (0.9990)

Pit 2 6,457 ± 2,429 5,587 ± 1,915 5,907 ± 2,089 5,474 ± 1,567

%R (p-value) 13 (0.8167) 9 (0.9447) 15 (0.7562)

Pit 3 4,800 ± 1,888 5,270 ± 1,739 4,816 ± 1,276 5,368 ± 1,626

−10 (0.9381) 0 (1.00) −12 (0.8970)

4EP* (PAC) ± st. dev. Pit 1 103,325 ± 30,556 239,533 ± 113,100 153,907 ± 110,400 270,541 ± 162,902

−132 (0.084) −49 (0.7916) −162 (0.0241)

Pit 2 950,935 ± 464,587 875,791 ± 827,157 978,295 ± 763,987 1,094,951 ± 547,226

%R (p-value) 8 (0.9848) −3 (0.9997) −15 (0.9600)

Pit 3 550,966 ± 326,689 491,942 ± 432,430 582,293 ± 624,390 391,026 ± 411,127

11 (0.9905) −6 (0.9985) 29 (0.8496)

Acetic acid (PAC) ± st. dev. Pit 1 14,052 ± 12,374 25,320 ± 17,576 10,099 ± 14,439 11,225 ± 16,849

−80(0.4756) 28 (0.9556) 20 (0.9829)

Pit 2 42,720 ± 34,584 7,134 ± 8,061 13,489 ± 11,997 36,287 ± 25,169

%R (p-value) 83 (0.0200) 68 (0.0703) 15 (0.9409)

Pit 3 13,253 ± 27,395 30,288 ± 25,365 26,460 ± 64,651 11,410 ± 15,897

−129 (0.7872) −100 (0.8867) 14 (0.9996)

DEDS* (PAC) ± st. dev. Pit 1 18,040 ± 3,544 20,408 ± 10,275 20,147 ± 8,565 19,106 ± 3,647

−13 (0.8969) −12 (0.9243) −6 (0.9890)

Pit 2 12,364 ± 8,751 15,163 ± 4,437 18,809 ± 9,327 19,251 ± 5,847

%R (p-value) −23 (0.8765) −52 (0.3317) −56 (0.2767)

Pit 3 17,763 ± 9,016 25,383 ± 17,328 18,222 ± 5,663 18,777 ± 7,103

−43 (0.4944) −3 (0.9998) −6 (0.9975)

(Continued)
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TABLE 7 | Continued

Trial 3 Manure source Control MM Penergetic G Sludge away

DMDS* (PAC) ± st. dev. Pit 1 11,128 ± 6,414 10,972 ± 6,966 11,163 ± 7,198 11,445 ± 7,162

1 (1.00) 0 (1.00) −3 (0.9997)

Pit 2 7,740 ± 4,979 7,849 ± 2,565 11,255 ± 8,096 9,406 ± 3,704

%R (p-value) −1 (1.00) −45 (0.5063) −22 (0.9087)

Pit 3 10,181 ± 4,083 17,613 ± 13,630 12,803 ± 5,013 25,156 ± 31,694

−73 (0.8236) −26 (0.9900) −147 (0.3239)

DMTS (PAC) ± st. dev. Pit 1 6,982 ± 1,756 6,069 ± 3,577 7,444 ± 4,170 6,614 ± 2,870

13 (9322) −7 (0.9902) 5 (0.9950)

Pit 2 5,879 ± 5,069 7,189 ± 4,739 7,082 ± 5,746 5,246 ± 4,570

%R (p-value) −22 (0.9546) −20 (0.9642) 11 (0.9944)

Pit 3 6,371 ± 4,703 6,698 ± 4,861 7,597 ± 2,884 8,142 ± 3,981

−5 (0.9986) −19 (0.9350) −28 (0.8309)

Indole (PAC) ± st. dev. Pit 1 6,273 ± 1,910 16,661 ± 11,508 11,469 ± 10,068 14,841 ± 8,298

−166 (0.0604) −83 (0.5555) −137 (0.153)

Pit 2 50,397 ± 35,585 55,255 ± 88,181 46,877 ± 60,303 35,485 ± 34,616

%R (p-value) −10 (0.9968) 7 (0.9988) 30 (0.9211)

Pit 3 11,196 ± 7,290 12,484 ± 9,643 47,607 ± 101,255 9,489 ± 6,657

−11 (0.9999) −325 (0.4612) 15 (0.9999)

Isobutyric acid (PAC) ± st. dev. Pit 1 42,030 ± 35,130 53,020 ± 35,039 48,075 ± 82,667 46,633 ± 54,415

−26 (0.9661) −14 (0.9940) −11 (0.9973)

Pit 2 46,646 ± 45,478 32,364 ± 40,597 27,825 ± 19,791 67,191 ± 65,983

%R (p-value) 31 (0.9033) 40 (0.8060) −44 (0.7618)

Pit 3 1,446 ± 2,650 N/A 2,175 ± 6,152 2,203 ± 3,082

100 −50 (0.9768) −52 (0.9741)

Isovaleric acid (PAC) ± st. dev. Pit 1 62,604 ± 39,504 90,932 ± 49,936 79,106 ± 102,217 101,829 ± 98,672

−45 (0.8060) −26 (0.9528) −63 (0.6056)

Pit 2 61,056 ± 41,550 48,114 ± 65,610 42,409 ± 31,482 207,988 ± 250,536

%R (p-value) 21 (0.9974) 31 (0.9924) −241 (0.9924)

Pit 3 9,624 ± 14,615 15,398 ± 31,156 9,682 ± 10,317 16,345 ± 34,685

−60 (0.9682) −1 (1.00) −70 (0.9513)

P-cresol (PAC) ± st. dev. Pit 1 244,552 ± 200,288 760,927 ± 263,992 402,709 ± 414,911 995,238 ± 676,960

−211 (0.0878) −65 (0.873) −307 (0.0067)

Pit 2 8,319,774 ± 4,290,638 3,856,350 ± 2,965,233 7,781,386 ± 7,835,989 8,032,055 ± 4,839,862

%R (p-value) 54 (0.2928) 6 (0.9963) 3 (0.9994)

Pit 3 1,210,973 ± 635,523 1,039,267 ± 802,786 1,258,988 ± 1,333,730 911,175 ± 872,773

14 (0.9773) −4 (0.9995) 25 (0.8944)

Phenol (PAC) ± st. dev. Pit 1 631,754 ± 284,180 1,241,418 ± 800,840 961,757 ± 297,353 1,570,707 ± 567,309

−97 (0.0933) −52 (0.5582) −149 (0.0044)

Pit 2 1,501,318 ± 1,085,634 7,060,285 ± 13,032,311 1,826,114 ± 2,205,721 2,828,552 ± 3,876,724

%R (p-value) −370 (0.3151) −22 (0.9996) −88 (0.9746)

Pit 3 265,062 ± 344,421 142,145 ± 106,434 162,641 ± 236,362 239,289 ± 292,553

46 (0.7200) 39 (0.8162) 10 (0.9961)

Propionic acid (PAC) ± st. dev. Pit 1 51,961 ± 56,942 88,866 ± 77,687 95,954 ± 179,436 85,769 ± 96,087

−71 (0.8981) −85 (0.8405) −65 (0.9192)

Pit 2 52,889 ± 62,535 16,197 ± 19,266 20,213 ± 15,009 54,183 ± 45,336

%R (p-value) 69 (0.3024) 62 (0.4013) −2 (0.9999)

Pit 3 8,160 ± 13,345 8,627 ± 16,254 8,533 ± 13,652 20,065 ± 49,641

−6 (1.00) −5 (1.00) −146 (0.8346)

Skatole (PAC) ± st. dev. Pit 1 350,734 ± 123,349 504,306 ± 330,762 431,247 ± 285,926 486,758 ± 189,994

−44 (0.5976) −23 (0.9116) −39 (0.6850)

Pit 2 1,238,345 ± 548,016 1,585,219 ± 1,150,551 1,444,474 ± 1,124,639 1,481,592 ± 754,456

%R (p-value) −28 (0.7976) −17 (0.9476) −20 (0.9178)

Pit 3 647,713 ± 461,439 700,912 ± 494,467 662,094 ± 713,471 8,494,090 ± 362,816

−8 (0.9944) −2 (0.9999) 24 (0.8880)

%R is statistically significant when the p-value < 0.05 (signified by bold font). Negative (-) %R signifies generation.

*%R = percent reduction with respect to Control (untreated); PAC = peak area count (arbitrary unit); N/A = Below the detection limit; 4EP = 4-ethyl phenol; DEDS = Diethyl disulfide;

DMDS = Dimethyl disulfide; DMTS = Dimethyl trisulfide.
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emissions, no statistically significant %Rwas found, similar to the
lack of trends observed in the first two Trials.

In general, when we considered the manure sources are not
replications, we found the statistical significance of %R for one
product and one manure, and one VOC, as shown in Table 7.
MM showed an 83% reduction with a p-value of 0.02 in acetic
acid emitted from the manure of pit 2. However, a statistically
significant generation was also observed. Sludge Away showed
307% generation with a p-value of 0.0067 and 149% generation
with a p-value of 0.0044 in p-cresol and phenol, respectively,
emitted from the manure of deep pit 1.

In general, the lack of statistical significance and trends was
observed for the remainder of targeted gases. For NH3 emissions,
MM showed 5% reductions for manure from pit 1 and 2, a 7%
reduction for manure in pit 3; Penergetic G showed 12% and
4% generations in manure from pit 1 and 2, respectively, and
no impact on emission for pit 3; Sludge Away showed 28 and
3% generations in manure from pit 1 and 2, a 6% reduction for
manure from pit 3. For H2S emissions, MM showed 3% and
29% reductions in manure from pit 1 and 2, a 19% generation
in manure from pit 3; Penergetic G showed 38, 23, and 15%
reductions in manure from pit 1, 2, and 3, respectively; Sludge
Away showed 15 and 6% generations in manure from pit 1 and
2, a 7% reduction in manure from pit 3. For GHG emissions,
MM, Penergetic G, and Sludge Away showed 2, 1, and 8%
reduction in CO2 emissions, respectively, in manure from pit
1; MM and Penergetic had 11 and 12% generations in CO2

emissions emitted from pit 2, and Sludge Away showed 1%
reduction; MM, Penergetic G, and Sludge Away showed 7, 4, and
4% generations in CO2 emissions from pit 3. All three products
showed generations in CH4 emissions, except manure from pit
1 treated with Sludge Away with a 7% reduction. All three
products showed reductions in all manure sources, excepted a
2% generation in manure from pit 3 treated with MM. Odor and
VOCs shared a similar lack of trends like the first two Trials in
which emissions were reduced in one or two types of manure but
also generated in other types of manure sources.

Trial 4 (LLMO-SST)
One product, LLMO-SST, was tested in the last Trial. H2S
emissions and selected VOCs were not detected in this
Trial (Supplementary Figures 126–130). When we consider the
manure to be replicated, there was no statistically significant
%R found, as shown in Table 8. LLMO showed a 5% reduction
in NH3 emission, a 3% reduction in CO2 emission, a 13%
generation in CH4 emission, no impact on N2O emission, and a
1% reduction in odor concentration. For VOCs, we still observed
the random pattern in which some gases were reduced, and other
gases were generated.

Table 9 below summarized the results analyzed by each
manure source for Trial 4. For NH3 emissions, LLMO showed
a 24% generation with a p-value of 0.0272 in manure from pit 1,
but a 20% reduction with a p-value of 0.0101 in manure from pit
2. The rest of the detected gases still did not show any statistical
significance, except for a 57% reduction with a p-value of 0.0381
for skatole emission from pit 3.

TABLE 8 | Trial 4-comparison of averaged gaseous emissions from three manure

sources (farms) with their standard deviations.

Trial 4 Control LLMO

NH3 (mg/h/m2) 128 ± 50.5 122 ± 37.1

%R 5 (0.5143)

CO2 (mg/h/m2 ) 2,084 ± 585 2,029 ± 421

%R 3 (0.6008)

CH4 (mg/h/m2) 347 ± 311 390 ± 374

%R −13 (0.6591)

N2O (mg/h/m2 ) 0.87 ± 0.28 0.87 ± 0.29

%R 0 (0.9532)

Odor (OU/m3 ) 3,102 ± 1,447 3,066 ± 1,491

%R 1 (0.9291)

4EP* (PAC) 160,294 ± 120,122 132,522 ± 146,228

%R 17 (0.4349)

Indole (PAC) 27,332 ± 111,018 5,349 ±8,017

%R 80 (0.3357)

p-Cresol (PAC) 761,873 ± 737,937 570,982 ± 683,040

%R 25 (0.3448)

Phenol (PAC) 302,851 ± 371,239 420,707 ± 768,945

%R −39 (0.4880)

Skatole (PAC) 227,858 ± 153,010 175,769 ± 199,646

%R 23 (0.2946)

%R is statistically significant when the p-value < 0.05 (signified by bold font if present).

Negative (-) %R signifies generation.

*%R = percent reduction with respect to Control (untreated); PAC = peak area count

(arbitrary unit); N/A = Below the detection limit; 4EP = 4-ethyl phenol.

DISCUSSION

The results of this pilot-scale study aimed to be fair in the
presentation of results pertaining to each of the commercial
products that were tested in a particular set of conditions.
The presented results could help the farmers and the
swine industry to find the detailed performance data of
all the targeted gases for the particular tested product.
The results also provided the important metric of the
popular technology used by some U.S. farmers to mitigate
gaseous emission for the environmental regulatory agencies
and researchers.

The side-by-side comparison of the 12 manure additives
tested in this study did not show that treatment with any
product resulted in statistically significant and comprehensive
reductions to emissions of targeted gases such as NH3, H2S,
GHGs, VOCs, and odor. Very similar findings were reported on
the pilot-scale study of manure additives conducted almost 20
years ago (Heber et al., 2001). Maurer et al. (2016) summarized
the performance data for technologies to control gaseous
emissions in which manure additives have shown inconsistent
performance, and little or no data was available for testing
on farm/field scales. The lack of consistent, significant, and
comprehensive performance in mitigating gaseous emissions at
lab-scale is often precluding the continuation of testing and
scaling to the pilot- and farm-trials. This is also the major
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TABLE 9 | Trial 4-comparison of gaseous emissions from each of the three

manure sources (farms) with their standard deviations.

Trial 4 Manure

source

Control LLMO

NH3 flux (mg/h/m2 ) ± st. dev. Pit 1 86.2 ± 22.0 107 ± 27.5

−24 (0.0272)

Pit 2 182 ± 42.6 146 ± 38.7

%R (p-value) 20 (0.0101)

Pit 3 117 ± 25.5 114 ± 33.6

2(0.7894)

CO2 flux (mg/h/m2 ) ± st. dev. Pit 1 2,256 ± 720 2,142 ± 524

5 (0.5263)

Pit 2 2,060 ± 637 1,932 ± 382

%R (p-value) 6 (0.5099)

Pit 3 1,936 ± 375 2,014 ± 371

−4 (0.6119)

CH4 flux (mg/h/m2 ) ± st. dev. Pit 1 644 ± 397 772 ± 447

−20 (0.4562)

Pit 2 168 ± 51 160 ± 61

%R (p-value) 5 (0.7773)

Pit 3 229 ± 63 238 ± 64

−4 (0.7787)

N2O flux (mg/h/m2 ) ± st. dev. Pit 1 0.85 ± 0.29 0.94 ± 0.32

−11 (0.1403)

Pit 2 0.83 ± 0.26 0.83 ± 0.26

%R (p-value) 0 (0.9982)

Pit 3 0.93 ± 0.31 0.83 ± 0.30

11 (0.1334)

Odor concentration (OU/m3)

± st. dev.

Pit 1 2,864 ± 1,832 3,494 ± 1,272

−22 (0.2201)

Pit 2 3,313 ± 1,429 2,985 ± 1,581

%R (p-value) 10 (0.6784)

Pit 3 3,129 ± 1,168 2,719 ± 1,682

13 (0.5895)

4EP* (PAC) ± st. dev. Pit 1 114,423 ± 106,615 104,903 ± 99,961

8 (0.7671)

Pit 2 202,510 ± 152,615 200,741 ± 208,891

%R (p-value) 1 (0.9833)

Pit 3 163,949 ± 91,080 91,922 ± 92,496

44 (0.1485)

Indole (PAC) ± st. dev. Pit 1 3,848 ± 3,823 6,227 ± 6,257

−62 (0.3790)

Pit 2 76,381 ± 190,653 8,971 ± 11,371

%R (p-value) 88 (0.3317)

Pit 3 1,768 ± 2,542 849 ± 1,923

52 (0.4428)

p-Cresol (PAC) ± st. dev. Pit 1 439,151 ± 509,045 701,402 ± 817,918

−60 (0.3837)

Pit 2 664,168 ± 606,317 599,360 ± 724,727

%R (p-value) 10 (0.8439)

Pit 3 1,182,300 ± 911,344 412,185 ± 538,082

65 (0.0688)

Phenol (PAC) ± st. dev. Pit 1 227,636 ± 172,740 284,373 ± 206,643

−25 (0.4656)

(Continued)

TABLE 9 | Continued

Trial 4 Manure

source

Control LLMO

Pit 2 648,720 ± 442,547 960,668 ±

1,165,643

%R (p-value) −48 (0.4394)

Pit 3 32,196 ± 15,704 17,081 ± 26,464

47 (0.1832)

Skatole (PAC) ± st. dev. Pit 1 225,228 ± 150,751 222,264 ± 138,227

1 (0.9404)

Pit 2 289,066 ± 191,910 231,892 ± 297,051

%R (p-value) 20 (0.6651)

Pit 3 169,282 ± 95,702 73,152 ± 74,249

57 (0.0381)

%R is statistically significant when the p-value < 0.05 (signified by bold font). Negative (-)

%R signifies generation.

*%R, percent reduction with respected Control (untreated); PAC, peak area count

(arbitrary unit); N/A, Below the detection limit; 4EP, 4-ethyl phenol.

recommendation from this research, i.e., the results for the 12
manure additives tested in this study do not warrant scaling up
tests and studies.

However, the experimental manure additives evaluated in
recent years have shown the potential to mitigate the emissions
from manure. Maurer et al. (2017b) showed up to 68%
reduction of NH3 and 80–90% reduction on the various types
of VOCs by using soybean peroxidase with calcium peroxide in
a pilot-scale study. The same additive (soybean peroxidase +

calcium peroxide) was found to be effectively mitigating NH3,
H2S, and some targeted VOCs on the farm-scale study (Maurer
et al., 2017d). In recent years of studies of using the various
types of biochar as manure additives, there are many significant
reductions of targeted gases reported. Biochar made from pine
could mitigate NH3 but the generation of CH4 (Maurer et al.,
2017c). Biochar made from corn stover and red oak could
mitigate NH3 and some targeted VOCs (Meiirkhanuly et al.,
2020b). Chen et al. (2020a) showed a significant reduction of H2S
emissions during the manure agitation.

Manure additives, especially the ones with physical and
chemical modes of treatment, still have the potential to
comprehensively mitigate gaseous emissions from swinemanure.
However, the impact of these manure additives such as (biochar,
soybean peroxide) still needed further research on larger scales
and farms with different manure management systems. Most
recently, research has shown that biochar-treated manure can
have beneficial agronomic effects, as reported by Banik et al.
(2020). There is an early indication that biochar-manure mixture
has the potential to further improve the nitrogen and carbon
cycling and sustainability of animal and crop production.

CONCLUSIONS

The following conclusions can be made based on the results of
this research:
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1. This pilot-scale study of 12 marketed manure additive
products did not show a consistent, comprehensive,
and overall statistically significant reduction for
mitigation of gaseous emissions from swine manure
for targeted gases including NH3, H2S, GHGs, VOCs,
and odor.

2. The more detailed analysis based on separating each treated
manure indicates large variability in performance ranging
from mitigation to generation of targeted gaseous emissions.

3. Manure additives tested based on microbial
mode action did not show consistent effects in
mitigating emissions.

4. The manufacturer-prescribed dosages of products were not
effective in pilot-scale testing that used manure from different
swine farms and storage systems.

5. Based on the lack of mitigating effect of gaseous emissions
in this pilot-scale study, testing of these 12 manure additives
products on farms is not recommended.
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