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Large compilations of heterogeneous environmental observations are increasingly
available as public databases, allowing researchers to test hypotheses across
datasets. Statistical complexities arise when analyzing compiled data due to
unbalanced spatial sampling, variable environmental context, mixed measurement
techniques, and other reasons. Hierarchical Bayesian modeling is increasingly used in
environmental science to describe these complexities, however few studies explicitly
compare the utility of hierarchical Bayesian models to simpler and more commonly applied
methods. Here we demonstrate the utility of the hierarchical Bayesian approach with
application to a large compiled environmental dataset consisting of 5,741 marine vertical
organic carbon flux observations from 407 sampling locations spanning eight biomes
across the global ocean. We fit a global scale Bayesian hierarchical model that describes
the vertical profile of organic carbon flux with depth. Profile parameters within a particular
biome are assumed to share a common deviation from the global mean profile. Individual
station-level parameters are then modeled as deviations from the common biome-level
profile. The hierarchical approach is shown to have several benefits over simpler and more
common data aggregation methods. First, the hierarchical approach avoids statistical
complexities introduced due to unbalanced sampling and allows for flexible incorporation
of spatial heterogeneitites in model parameters. Second, the hierarchical approach uses
the whole dataset simultaneously to fit the model parameters which shares information
across datasets and reduces the uncertainty up to 95% in individual profiles. Third, the
Bayesian approach incorporates prior scientific information about model parameters; for
example, the non-negativity of chemical concentrations or mass-balance, which we apply
here. We explicitly quantify each of these properties in turn. We emphasize the generality of
the hierarchical Bayesian approach for diverse environmental applications and its
increasing feasibility for large datasets due to recent developments in Markov Chain
Monte Carlo algorithms and easy-to-use high-level software implementations.
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1 INTRODUCTION

The best test of a scientific hypothesis occurs when multiple
independently collected datasets are compared with its
predictions. This tenant underlies meta-analytic modeling
common in fields such as medicine (Brockwell and Gordon,
2001), ecology (Jonsen et al., 2003; Thorson et al., 2015),
social science (Draper, 1995), and astronomy (Sereno, 2016;
Sharma, 2017), but is only recently becoming popular in
environmental science (Clark, 2004; Clark and Gelfand, 2006;
Wikle et al., 2013; Sharkey and Winter, 2019). With data
compilation publications increasingly common in
environmental science, for example with several new journals
devoted to the topic (e.g., Earth System Science Data and
Geoscience Data Journal), Bayesian hierarchical models are
increasingly appropriate to analyze heterogeneous compiled
datasets. However, the benefits of Bayesian hierarchical models
are rarely explicitly quantified relative to simpler and more
commonly applied methods, which may be limiting adoption.
This paper intends to demonstrate the hierarchical Bayesian
approach and quantify its usefulness in an applied
environmental context, thus providing researchers with
examples to help guide methodological and software choices.

Compiling environmental datasets is challenging because
individual datasets often differ in size, environmental setting,
and/or sampling methods, which can introduce statistical
complexities when these characteristics quantitatively impact
target variables or parameters. Non-random patterns in
compiled datasets introduce statistical group correlation
structure whereby observations within an individual dataset
tend to be more similar in some respect than across datasets.
For example, chemical assays deployed across studies may differ
in accuracy that would induce bias when combining datasets
(Buesseler, 1991; Bianchi et al., 2012). Importantly, however,
different datasets may exhibit similar spatial-temporal patterns
of variability that can reveal underlying mechanisms if the group
structure can be properly accounted for. Group-level bias, known
as Simpson’s effect, can severely affect statistical estimates. In
extreme cases, the statistical relationship between two variables
can change sign if the group structure is ignored (Blyth, 1972;
Pearl, 2014). We are specifically interested in cases where
statistical heterogeneities across datasets complicate how
datasets within a compilation are aggregated for analysis. Thus
we differentiate the terms “compilation” and “aggregation” to
refer to a set of individually collected datasets and the way those
datasets are combined for analysis, respectively.

Simpson’s effect can be avoided by explicitly accounting for
group structure in the analysis. The simplest method is by post-
hoc analysis of individual analyses, or meta-analysis. Meta-
analysis is common when researchers have access to the
results of individual studies but not the underlying data
themselves; for example, via reported means and confidence
intervals. When the underlying data are available, the more
powerful method is hierarchical analysis that analyzes the

compiled data simultaneously while allowing for random
effects at the individual dataset-level (Gelman and Hill, 2006).
Hierarchical analysis has two major advantages: One is increased
statistical power as more data are used to infer the parameters
which share information across groups, thus increasing the
degrees of freedom used in estimating any one parameter
(Jonsen et al., 2003; Gelman and Hill, 2006). Another
advantage is that parameters exhibit regression to the group-
level mean parameters, a phenomenon referred to in statistics as
shrinkage, which reduces the variance of parameter estimates
(Gelman and Hill, 2006). We note that these benefits apply to
hierarchical models estimated via Bayesian or classical methods.

The Bayesian formulation of hierarchical models is
particularly appropriate for environmental applications for at
least two reasons. First, Bayesian analysis allows for consistent
incorporation of quantitative prior information about the range
and/or distribution of model parameters or measurements. This
is important in many environmental contexts; for example, when
chemical concentrations or rate parameters are assumed non-
negative. In a Bayesian analysis, these constraints are naturally
carried forward via Bayes’ theorem using successive conditional
probabilities. Second, all parameters in a Bayesian analysis are
treated as probability distributions, instead of point estimates
with confidence intervals, and can be directly manipulated in
subsequent calculations via the rules of probability. These benefits
are unique to the Bayesian approach. Classical approaches to
hierarchical models, for example as implemented in the R
packages lme4 and nlme, do not permit the inclusion of prior
information and do not yield probability distributions for the
fitted model parameters (Bates et al., 2013; Pinheiro et al., 2019).
For excellent introductions to applied Bayesian analysis see Sivia
and Skilling (2006) or Gelman et al. (2013).

Herein, we analyze a public database of marine organic carbon
flux measurements to explicitly demonstrate the benefits of
hierarchical Bayesian analysis when estimating parameters of a
statistical model with heterogeneous compiled datasets. Our
hierarchical carbon flux model treats large-scale spatial
variability via a fitted biome-level effect and treats smaller
scale variability via station-level effects, including possible
effects due to sampling method and sub-biome-scale spatial/
temporal variability. To study the approach in a hypothesis-
testing framework, we estimate biome-level mean parameters to
assess the evidence for differences in the parameters of the flux
profile across biomes. This structure is based on our
oceanographic understanding of marine biomes. The
distribution of upwelling and downwelling locations in the
ocean creates distinct regimes of organic carbon flux, thus
motivating our particular biome structure (Teng et al., 2014;
Bisson et al., 2018; Cael et al., 2018). Boundaries follow previous
studies that demonstrated biome-level structure in carbon flux
parameters via a biogeochemical inverse-model that was
optimized against a global database of dissolved inorganic
carbon and phosphate measurements (DeVries and Primeau,
2011; Primeau et al., 2013; Teng et al., 2014). Statistically
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aggregating the parameters by biome thus provides a direct way
to compare the empirical parameter estimates to those simulated
by an oceanographic model. Other scientific questions may
motivate aggregation at different spatial scales with different
spatial boundaries.

We compare the hierarchical approach to two simpler
aggregation methods often applied to compiled datasets. In
one method, we aggregate the data to the biome level and fit a
single profile for each biome, which we refer to as data
aggregation. In the second method, we perform a meta-
analysis where we first estimate an individual profile for every
station and then post-hoc average those profiles by biome using
the inverse of the parameter uncertainty as weights. We refer to
this method as parameter aggregation. We quantify differences
with the methods and demonstrate the attractive properties of the
hierarchical Bayesian approach. Our goal is not to establish a final
model for marine carbon fluxes or set of parameters; rather, we
aim to study the quantitative differences in the Bayesian
hierarchical approach over simpler and more common
methods used to aggregate datasets at a desired spatial-
temporal scale. We also discuss practical aspects of
implementing hierarchical Bayesian models via recent software
technology developments: We outline our implementation in the
easy-to-use probabilistic programming language, Stan (Carpenter
et al., 2017), and the high-level user interface package brms
(Burkner, 2017).

2 METHODS

Data
The organic carbon flux observations take the form of depth-
referenced point measurements where the vertical settling flux of
organic carbon (in mmol m−2 day−1) is captured via deployed
oceanographic equipment called sediment traps. A profile is a set
of such measurements collected simultaneously at a particular
station location, yielding a unique timestamp and latitude/
longitude designation. A sediment trap is typically deployed
for a number of days to weeks with the total captured flux
averaged over the deployed period. We analyzed a database of
such profiles published in Mouw et al. (2016). We selected

profiles that have observations of organic carbon flux at more
than two depths per individual station and time, yielding 5,741
observations across 407 locations, spanning years 1976–2012 (see
Figure 1). Some locations have multiple profiles where the same
location has been sampled repeatedly - the Bermuda Atlantic
Time Series (BATS), CARIACO, Ocean Station Papa, Haiwaii
Ocean Time Series (HOTS), and K2 stations, which constitute 14,
10, 7, 3, and 2% of the total number of measurements, respectively
(Mouw et al., 2016). Auxiliary data defining 12 marine ecological
biomes were taken from Teng et al. (2014). Boundaries of the
biomes are defined according to 0.4 mmol m−3 contours of the
mean annual climatological surface phosphate concentration. Of
the 12 global biome definitions, eight were sufficiently
represented in the Mouw et al. (2016) database to be included
in the analysis (Figure 1). We use monthly climatologies of
satellite-observed ocean chlorophyll to estimate the depth of
the base of the euphotic zone according to Lee et al. (2007)
for use as a reference depth in the profile modeling,
explained below.

Statistical Modeling
We first describe the analysis and estimation of an individual
profile which constitutes the base level of analysis. We then
describe methods for aggregating profiles at the regional and
global scale, starting with simple data aggregation at the biome
level, then parameter aggregation of individually estimated
profiles, then onto simultaneous estimation of a global
hierarchical Bayesian model.

Model for a Single Organic Carbon Flux
Profile
Individual profiles are modeled by a power-law curve known in
oceanography as the Martin curve (Martin et al., 1987), which
describes the steady state organic carbon flux attenuation with
depth. The flux of organic carbon in moles per area per time at
depth z takes the form

F(z) � F0( z
z0
)

b

(1)

where z0 is a reference depth taken as the base of the euphotic
layer (where sufficient light is available for phytoplankton to
perform photosynthesis and take up dissolved inorganic carbon).
We approximate z0 using satellite chlorophyll data (Lee et al.,
2007). F0 � F(z0) is the flux at the reference depth and the
exponent b controls the carbon flux attenuation with depth.
This curve is obtained from the steady state solution of the
following one-dimensional partial differential equation

zC
zt

+ z

zz
u(z)C � −κC (2)

where κ is the rate of organic carbon remineralization, u(z) is the
depth-dependence particle sinking rate with u(z) � c0 + cz
(Kriest and Oschlies, 2008). The attenuation coefficient in Eq.
1 is then defined as b � κ/c. In the ocean we expect the profile
parameters b and F0 to vary in time and space. We assume b will

FIGURE 1 | Biogeochemical provinces with station locations of
sediment trap observations overlain. Locations are shown for profiles with
more than two observations at a profile location at a particular time.
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be non-positive because particulate organic carbon cannot be
produced below the euphotic zone and will only attenuate with
depth. This assumption implies constraints on the priors of the
Bayesian analysis, explained below.

We estimate the parameters F0 and b for a profile at a
particular location given vertical measurements of F(z).
Taking the logarithm of Eq. 1 gives

log[F(z)] � a + b log( z
z0
) (3)

where a � log(F0). Equation 3 allows the estimation of a and b
via simple linear regression, where b is the slope and a is the
intercept.

Data Aggregation
Our first method of analysis directly aggregates the data to the
group structure of interest. We aggregate the data into biomes
and fit a single profile to the biome-level data. We report the fitted
a and b parameters for each of the eight biomes and their
associated uncertainties.

Parameter Aggregation
We perform a second analysis where we preserve profiles and fit
individual a and b parameters to individually observed profiles.
We perform a meta-analysis of the individual profiles by
averaging the a and b parameters by biome post-hoc. We use
inverse-variance weighted averaging, where parameters are
averaged at the biome level according to the inverse of their
respective uncertainties. The weighted averages take the form

aw(j) � ∑
i

wa(i, j)a(i, j) (4)

bw(j) � ∑
i

wb(i, j)b(i, j) (5)

where bw(j) and aw(j) are the average slope and intercept,
respectively, for a particular biome j. In the above sums, the
index i runs over the individual profiles within the jth biome, i.e.
b(i, j) and a(i, j) are the individually estimated slopes and
intercepts. We take wa(i, j)∝ σ−2a (i, j) and wb(i, j)∝ σ−2b (i, j),
where σ2a(i, j) and σ2b(i, j) are the variances of the individually
estimated parameters, with ∑

i
wa(i, j) � ∑

i
wb(i, j) � 1.

The biome-level weighted variances are

σ2w,a(j) � ∑
i

wa(i, j)[a(i, j) − aw(j)]2 (6)

σ2
w,b(j) � ∑

i

wb(i, j)[b(i, j) − bw(j)]2 (7)

for the intercept and slope, respectively.

Bayesian Hierarchical Model
Our third approach involves fitting a single, global-scale
hierarchical Bayesian model that captures variance due to
biome, within-biome location, and timestamp in a single
statistical framework. We follow Primeau (2006) who first
proposed a hierarchical model for organic carbon flux
observations based on a more limited dataset. In general,

hierarchical Bayesian models can be represented as a directed
acyclic graph (DAG) with successive conditional probabilities
flowing from a priori assumptions on the base level of model
parameters. The basic structure of the DAG for our model is
shown in Figure 2.

At the top level of the model, we assume the mean global
Martin curve profile is described by the parameters a and b. For
the particle flux to attenuate with increasing depth, we impose the
constraint that all b parameters must be non-positive via
truncated non-positive Gaussian probability distributions. At
the biome-level of the model, the mean profile parameters
differ from the global mean profile according to normal
distributions, conditional on the global parameters.
Specifically, the biome-specific mean parameters for biome j,
denoted a(j) and b(j), have distributions

a(j)∣∣∣∣a ∼ N (a, ϕa) (8)

b(j)∣∣∣∣b ∼ N p(b, ϕb) (9)

where the global variables a and b are used as inputs to the second
level of the model. Parameters ϕa and ϕb are the variances of a and
b, respectively. The truncated non-positive normal distribution is
denoted with N p. The notation for conditional distributions
given as x|y is shorthand for p(x|y).

For the station-level, we add an additional level to the model,
conditional on the prior two. The station-level parameters, a(i, j)
and b(i, j), have distributions

a(i, j)∣∣∣∣∣∣∣∣a(j), a ∼ N [a(j), ϕa(j)] (10)

b(i, j)∣∣∣∣b(j), b ∼ N p[b(j), ϕb(j)] (11)

where ϕa(j) and ϕb(j) are the variances of the station-level
parameters within a particular biome. We specify uniform
priors for the biome and station-level parameter variances and
estimate their posterior distribution from the data
simultaneously with the as and bs. We tested for sensitivity
to the uniform prior by also fitting a model where p(ϕ)∝ ϕ−1,
known as a Jeffrey’s prior, and found no appreciable statistical
difference in the results under the two priors. This is
consistent with the relatively large n of this study, in which
case the data overwhelm differences in priors, provided the
posterior is not close to an absolute bound. For smaller
samples sizes, we note that hierarchical models can be
sensitive to the choice of prior on the hierarchical variances
(Gelman and Hill, 2006).

Finally, the data-level of the analysis assumes errors on
individual flux measurements follow

y(i, j, z)∣∣∣∣a, a(j), a(i, j), b, b(j), b(i, j) ∼ N[a(i, j) + b(i, j)log( z
z0(i, j)), ϕy]

(12)

where y(i, j, z) is the log of the observed flux at station i in biome j
at depth z, and ϕy is the error variance of individual
measurements. The conditional probabilities are written out
semi-explicitly to demonstrate the sequential conditional
probability distributions characteristic of hierarchical Bayesian
models. The variance parameters were assumed implicitly in the

Frontiers in Environmental Science | www.frontiersin.org March 2021 | Volume 9 | Article 4916364

Britten et al. Benefits of Bayesian Hierarchical Methods

https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


description above. We note that the above model structure
assumes that lower level probability distributions can be
evaluated as conditionally independent, given values defined at
upper levels, also referred to as exchangability. In the
environmental realm, this assumption is rarely satisfied
precisely due to inherent spatial and temporal correlations at
many scales of environmental variability. However, our choice of
biome definition follows from previous work demonstrating
distinct ocean biogeochemical provinces (DeVries, 2014; Teng
et al., 2014) where carbon flux processes follow more similar
patterns within biomes than across biomes. Below we examine
the model residuals across biomes to assess this assumption.

The hierarchical Bayesian model is fit via Markov Chain
Monte Carlo (MCMC) sampling. MCMC repeatedly draws
correlated random samples from the prior distribution of
model parameters and runs them through the graph of
conditional probabilities. MCMC sampling provides samples
from the posterior distribution which characterizes the
distribution of the model parameters after the data are taken
into account. Sampling is required because no closed form
solution is available for the hierarchical Bayesian regression
with unknown variances and truncated normal distributions.
We note that analytical forms for hierarchical model
posteriors are available under particular statistical assumptions
(Gelman and Hill, 2006); however, the MCMC approach applied
here is fast and flexible and will yield robust inferences on a wider
class of models. The high-level model interface provided by brms
makes the model easy to implement and modify (Burkner, 2017).
The brms implementation uses the general-purpose MCMC
software package “Stan” to perform the sampling (Carpenter
et al., 2017) which applies an advanced HamiltonianMonte Carlo
algorithm which has proven to be considerably faster than

previously available MCMC software (Monnahan et al., 2016;
Betancourt, 2017). The R, brms, and Stan code to fit the model is
provided on GitHub (https://github.com/gregbritten/Britten_et_
al_Frontiers_2019).

3 RESULTS

Comparing data-aggregation to parameter-aggregation methods,
we find that the data-aggregation method yields a(j) and b(j)
parameters of larger magnitude and smaller uncertainty than
parameter-aggregation across all biomes (Figure 3; Table 1).
Averaging across biomes, the a(j) parameters estimated via data-
aggregation were 15% more positive than those estimated via
parameter aggregation, while the b(j) parameters were 39% more
negative. Uncertainty intervals, on the other hand, were much
larger in width for parameter aggregation. Uncertainty intervals
for a(j) via parameter aggregation were over 10 times wider than
for data aggregation, while intervals for b(j) estimates were
7.5 times wider, on average.

Uncertainty intervals for the hierarchical analysis were wider
to that of the data-aggregation method, while both the
hierarchical analysis and data-aggregation method both
showed several-fold narrower uncertainty than parameter
aggregation. The smaller uncertainty of the hierarchical and
data aggregation methods reflects the greater power in using a
larger number of observations to estimate parameters relative to
parameter aggregation (Figure 4; Table 1). In contrast to
parameter-aggregation and data-aggregation, we saw no
consistent positive or negative directional difference in the
hierarchical estimates relative to the others. For example, a(j)
and b(j) parameters were both greater in magnitude for the

FIGURE 2 | The directed acyclic graph (DAG) structure of the Bayesian hierarchical model. At level (1), the global-level parameters describe the mean profile across
all biomes and stations. At level (2), the biome-level parameters are sampled conditional on the global level parameters in level (1). Level (3) samples parameters at the
station-level of analysis from the biome-level distribution. Level (4) is the data-level of analysis, which constitutes the likelihood function of the observations, where the
probability of the individual observations is evaluated conditional on the hierarchical network of parameters sampled previously.
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Northern Indian Ocean (NInd) biome region using the
hierarchical estimate, while a and b(j) were both smaller in
magnitude for the North Atlantic (NAtl) using the hierarchical
approach.

From a hypothesis-testing perspective, we evaluated the
evidence for biome-level differences in profile parameters by
comparing the overlap between posterior probability intervals
for the biome-level a and b parameters (Table 1). Due to the large
uncertainties yielded via parameter aggregation, we find only
weak statistical evidence for biome-level differences for a and b.
With the exception of NPacGyre and NInd, the 2σ uncertainty in
a and b was on the order of 50%, or greater, relative to the mean,
indicating that parameter aggregation can only detect the largest
underlying biome-level differences. In contrast, uncertainty
estimates for a and b via data aggregation and the hierarchical
model were less than 15% of the mean, on average, indicating
much stronger statistical separation. Importantly, however,
hypothesis-tests (performed by evaluating the degree of
overlap in the posterior probability distributions) from data
aggregation vs. the hierarchical model result in different
conclusions; for example, a test comparing b(j) for NInd vs.
EqPac at the biome level would indicate strong statistical support

for a larger b(j) in EqPac relative to NInd based on data
aggregation, while the full hierarchical model supports the
opposite, thus demonstrating the importance of treating group
structure in estimating and interpreting model parameters.

Beyond the biome-level mean parameters, we find that the
hierarchical model exhibits the expected shrinkage of parameter
estimates where the variance of the station-level parameters
within biomes, a(i, j) and b(i, j), are reduced in the
hierarchical model (Figure 5). We quantify shrinkage by the
reduction in variance seen in the station-level mean parameters
fitted in the hierarchical context, relative to fitting individual
profiles. We find that variance in station-level a(i, j) parameters
was reduced by between 73% and 95% across biomes with a mean
of 87% when fitting the hierarchical model relative to fitting
individually. Variance was reduced by more than 95% across all
biomes for station-level b(i, j) parameters.

The effects of informative prior distributions are shown in
Figure 6 where we compare our estimates of the distribution of
b(i, j) to fits without imposing a non-positive b. Without the
constraint, all the posterior distributions contain a fraction of
positive b(i, j). This fraction was less than 1/1,000 for five out of
eight biomes (NPac, SO, NInd, EqPac, and EqAtl). For the

FIGURE 3 | Results from data-aggregation and parameter-aggregation fits. For each biome, an individually fitted profile is shown in shaded black lines. The green
dotted line is the parameter-aggregation fit (i.e., the uncertainty-weighted average of individual lines). The red dotted line is the fit for the data-aggregation method.

TABLE 1 | Estimates for biome-level profile parameters across the three methods.

NPac NPacGyre SO NAtlGyre NInd NAtl EqPac EqAtl

DA a(j) 3.32 (0.05) 2.76 (0.09) 2.54 (0.11) 3.74 (0.04) 3.52 (0.07) 4.68 (0.18) 4.34 (0.06) 2.98 (0.14)
DA b(j) −0.67 (0.02) −0.59 (0.03) −0.75 (0.05) −0.73 (0.02) −0.48 (0.03) −1.08 (0.06) −1.06 (0.02) −0.42 (0.05)
PA a(j) 3.04 (1.40) 2.33 (0.37) 2.15 (2.50) 3.60 (1.01) 2.69 (0.46) 3.59 (2.18) 3.82 (1.16) 2.47 (1.36)
PA b(j) −0.51 (0.13) −0.35 (0.07) −0.68 (0.95) −0.59 (0.27) −0.27 (0.09) −0.53 (0.17) −0.33 (0.33) −0.28 (0.12)
HM a(j) 3.69 (0.04) 2.64 (0.17) 3.21 (0.36) 2.81 (0.11) 3.81 (0.17) 1.81 (0.13) 2.58 (0.07) 3.56 (0.36)
HM b(j) −0.55 (0.02) −0.30 (0.06) −0.84 (0.13) −0.23 (0.04) −0.82 (0.06) −0.21 (0.05) −0.49 (0.02) −0.67 (0.12)

DA indicates data-aggregation, PA parameter-aggregation, and HM indicates hierarchical model. The mean of the posterior distribution is given with the posterior standard deviation in
parentheses.
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remaining NPacGyre, NAtlGyre, and NAtl biomes, the fraction
was 3.7, 7.1, and 13.2%, respectively, indicating that the
scientifically motivated prior distributions were required to
constrain b(i, j) into realistic non-positive values for these
regions. This result reflects the importance of using

scientifically informed prior distributions for constraining
sampling noise in the observations.

Residuals of the data-aggregation and hierarchical model fit
are shown in Figure 7. (Note that hierarchical model residuals are
evaluated relative to the mean of the posterior predictions for

FIGURE 4 | Estimates of a (panel set (A) and b (panel set (B) for all three methods. Top rows of a and b give the frequency distribution of parameters based on
individual (non-hierarchical) estimates. Blue dashed line is the parameter-aggregation estimate for the biome-level mean (i.e., the uncertainty weighted average of the
distribution). The red dashed line is the biome-level estimate via data aggregation. The middle rows give the distribution of station-level parameters for the hierarchical fit.
Bottom rows give the distribution for the biome-level parameters for the hierarchical fit.
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individual observations.) In both models, the error distribution of
individual observations within biomes are assumed to be
independent draws from a Gaussian distribution. Residuals
from data-aggregation method, however (Figure 7A), show
obvious deviations from Gaussianity, with bimodal and
skewed structure, while the hierarchical residual show more
central symmetry, despite some evidence for heavier tails than
would be expected from a normal distribution (e.g., the North
Pacific). This poor residual structure for the data-aggregation
method suggests the Gaussian assumptions are poorly met
without taking into account the station-level variability within

biomes. This is important since the data-aggregation showed
lower uncertainty for several parameter estimates at the biome-
level (Figure 4; Table 1), yet apparently did so via less
appropriate statistical assumptions on the distribution of
within-biome measurements. The hierarchical model explicitly
captures this variability via explicit distributional assumptions on
within-biome parameter variability, while simultaneously
providing profile- and global-level inference.

4 DISCUSSION

The growing public availability of environmental data
compilations has highlighted the importance of modeling
statistical heterogeneities that arise across environmental
datasets for analytical or contextual reasons. Bayesian
hierarchical modeling is well-suited for this purpose, however
its benefits over simpler methods have been rarely quantified in

applied settings. This study explicitly quantified these benefits
point-by-point using a representative dataset, thus aiding
researchers in their choice of the appropriate method for
aggregated analysis of heterogeneous environmental data
compilations.

The tendency for individual profiles to borrow information in
the hierarchical model is determined by the distributional
assumptions made about the parameters and their hierarchical
structure. We adopted Gaussian assumptions for the parameter
distributions and for the distributions of errors on the log-
transformed organic flux observations. The former assumption

FIGURE 5 | Shrinkage of station estimates toward the biome-level
values. Results are shown for a (left panel) and b (right panel). Within panels,
mean station-level parameter estimates are shown for the individual and
hierarchical analysis. Biome groups have distinct colors and are
horizontally offset relative to one another for visualization. Lines connect
individual stations estimated with both approaches.

FIGURE 6 | Effects of informative prior distributions on posterior model parameters. Shown are posterior distributions for b based on two forms of the model: gray
histograms show posteriors for the model with the prior constraint that b is non-positive; red histograms show posteriors without the prior constraint.
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is supported by an examination of the distribution of individual
(non-hierarchical) estimates (Figure 4). The latter assumption is
supported by our oceanographic understanding of marine biomes
cited previously (Teng et al., 2014; Bisson et al., 2018; Cael et al.,
2018), including previous statistical analysis of carbon flux
observations (Bisson et al., 2018; Cael et al., 2018). The
biome-level assumption is further supported by the
examination of model residuals (Figure 7). However, more
sophisticated hierarchical structures and distributions may also

be appropriate for the data; for example, finer scale spatial
aggregation may be appropriate, or alternative distributional
assumptions on the slopes and intercepts. We note that both
data-aggregation and the hierarchical analysis have the advantage
of simultaneously using a greater number of observations in
estimating the biome-level profiles. However, the data-
aggregation method achieves low uncertainty via overly
restrictive assumptions on the distribution of individual
observations (Figure 7). The Bayesian hierarchical analysis

FIGURE 7 | Distribution of data-level residuals for the data-aggregation method (A) and the hierarchical analysis (B). Residuals are evaluated at each latitude,
longitude, depth combination, organized by biome-group. Residuals are for the hierarchical analysis are evaluated as the posterior mean prediction minus the
observation.
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achieves its level of confidence while appropriately treating
group-level and within-group structure within the model
hierarchy.

While hierarchical models can be fit via frequentist inference,
the Bayesian approach allowed us to naturally incorporate
chemically realistic non-positivity constraints on b via prior
distributions on model parameters. The b< 0 constraint was
motivated by the expected attenuation of the flux with depth,
as particulate organic carbon is continuously remineralized (and
no longer produced) as it sinks toward the ocean floor.
Implementing the constraint was straightforward in this
framework where positive values are given zero prior
probability at the appropriate levels in the hierarchy of
parameters, which is propagated forward via Bayes’ theorem
in the MCMC. This constraint reduced the posterior
uncertainty in model parameters and excluded nonphysical
values from the estimation. The simplicity contrasts with the
frequentist approach to hierarchical model estimation (Zuur
et al., 2009; Bates et al., 2013; Faraway, 2016; Pinheiro et al.,
2019) where the b< 0 constraint would be more challenging to
implement and where distributional assumptions are highly
constrained. Another benefit of Bayesian analysis is the direct
interpretation of the posterior distributions as probabilities which
can be propagated into subsequent calculations with the model
parameters; for example in generating carbon flux predictions at a
particular location. The increasing variety of advanced software
technology makes Bayesian analysis increasingly attractive for use
across the environmental sciences. Programmatically simple
interfaces are easy to use, even for those with limited
programming experience (Burkner, 2017; Carpenter et al., 2017).

It is important to note that some complexities in the data are
not accounted for in this particular hierarchical model. A
common bias in oceanography occurs via non-random
sampling, where field campaigns target areas or events of
specific interest, such as regions of high biological productivity
(Briggs et al., 2011; Rembauville et al., 2015). This gives rise to
systematic biases in observed carbon fluxmagnitude at the base of
the euphotic zone; for example, due to the established positive
correlation between primary productivity and sinking flux (Britten
and Primeau, 2016). The model could be extended to capture this
bias by introducing additional parameters; for example, with a

model of the form log[F(z)] � a + b log( z
z0
) + dP, where P is the

primary production estimated from satellite observations, that may
help correct a bias on the intercept arising from over-sampling of
highly productive regions. A more comprehensive model may also
attempt to capture effects due to temperature (Marsay et al., 2015),
seasonality (Briggs et al., 2011), mineral ballasting (Britten et al.,
2017), among others. We encourage these extensions (work that is
in progress by the authors), while reiterating that our purpose here
was to assess the utility of the hierarchical Bayesian model for
performing aggregated analysis, relative to simpler analytical
approaches.

In terms of oceanographic results, we note differences in the
biome-level parameters estimated here relative to those estimated
via a biogeochemical inverse models (Teng et al., 2014). The

largest relative differences appear to occur in low productivity
areas; for eample in NAtlGyre and NPacGyre where we estimated
b � −0.23 and b � −0.30, while (Teng et al., 2014) estimated b �
−0.64 and b � −0.51, respectively. The cause of these differences
is not clear and may be partly due to the biases mentioned above,
issues related to hydrodynamic undersampling of sinking flux by
sediment traps (Buesseler et al., 2007), or errors in the
oceanographic inverse model. The oceanographic model in
(Teng et al., 2014) resolves the mean annual carbon flux in
each biome region, thus the biome aggregation allows a more
direct comparison of flux parameters estimated from themodel to
those estimated from observations. Discrepancies between
model-based and observational parameters at this scale
provide the opportunity to better understand errors in the
model or observations. Other spatial aggregations can be used
to elucidate relationships at other spatial-temporal scales. A
process-based study systematically comparing the biome-level
parameters estimated via model-based and statistical methods is
outside the scope of this paper, which would require testing
additional statistical parameterizations of the model. We hope
this paper helps pave the way for those efforts.

5 CONCLUSION

In summary, our case study has quantified the practical utility of
hierarchical Bayesian analysis for performing aggregated
analysis on environmental data compilations that contain
statistical heterogeneities due to sample size, sampling
methodology, time, space, and other potential sources of
variation. These heterogeneities are common in
environmental datasets and will be an increasing challenge as
the publication of compiled datasets continues to increase in
popularity. We argue that hierarchical Bayesian analysis is well-
suited to handle these heterogeneities in accounting for group-
level correlation while allowing the incorporation of a priori
knowledge on the model parameters. Easy-to-use software tools
are now readily available to implement hierarchical Bayesian
analysis without expertise in computational statistics. We hope
this case study provides a reference for environmental
researchers faced with a choice of methods for analyzing
heterogeneous compiled datasets.
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