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DISPATCH is a disaggregation algorithm of the low-resolution soil moisture (SM) estimates
derived from passive microwave observations. It provides disaggregated SM data at
typically 1 km resolution by using the soil evaporative efficiency (SEE) estimated from
optical/thermal data collected around solar noon. DISPATCH is based on the relationship
between the evapo-transpiration rate and the surface SM under non-energy-limited
conditions and hence is well adapted for semi-arid regions with generally low cloud
cover and sparse vegetation. The objective of this paper is to extend the spatio-temporal
coverage of DISPATCH data by 1) including more densely vegetated areas and 2)
assessing the usefulness of thermal data collected earlier in the morning. Especially,
we evaluate the performance of the Temperature Vegetation Dryness Index (TVDI) instead
of SEE in the DISPATCH algorithm over vegetated areas (called vegetation-extended
DISPATCH) and we quantify the increase in coverage using Sentinel-3 (overpass at around
09:30 am) instead of MODIS (overpass at around 10:30 am and 1:30 pm for Terra and
Aqua, respectively) data. In this study, DISPATCH is applied to 36 km resolution Soil
Moisture Active and Passive SM data over three 50 km by 50 km areas in Spain and France
to assess the effectiveness of the approach over temperate and semi-arid regions. The use
of TVDI within DISPATCH increases the coverage of disaggregated images by 9 and 14%
over the temperate and semi-arid sites, respectively. Moreover, including the vegetated
pixels in the validation areas increases the overall correlation between satellite and in situ
SM from 0.36 to 0.43 and from 0.41 to 0.79 for the temperate and semi-arid regions,
respectively. The use of Sentinel-3 can increase the spatio-temporal coverage by up to
44% over the considered MODIS tile, while the overlapping disaggregated data sets
derived from Sentinel-3 and MODIS land surface temperature data are strongly correlated
(around 0.7). Additionally, the correlation between satellite and in situ SM is significantly
better for DISPATCH (0.39–0.80) than for the Copernicus Sentinel-1-based (−0.03 to 0.69)
and SMAP/S1 (0.37–0.74) product over the three studies (temperate and semi-arid) areas,
with an increase in yearly valid retrievals for the vegetation-extended DISPATCH algorithm.
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1 INTRODUCTION

Soil moisture (SM) is an important element in the hydrologic
cycle, especially influencing precipitation, infiltration, and runoff
(Hamlet et al., 2007). SM is thus useful for different applications
such as meteorology (Dirmeyer, 2000), climatology (Douville,
2004), hydrology (Chen et al., 2011) and agriculture (Guérif and
Duke, 2000). SM has a very high spatio-temporal variability and
to approximate such a variability of SM, in situmeasurements are
not applicable on a global basis. Instead remote sensing
techniques have a strong potential to provide SM estimates at
multiple scales globally.

Currently, L-band radiometry is acknowledged as one of the
most efficient technique to retrieve the surface SM on a global
scale. Based on L-band radiometer, Soil Moisture and Ocean
Salinity (SMOS, Kerr et al., 2012) satellite was launched by
European Space Agency (ESA) on November 2, 2009 and Soil
Moisture Active Passive (SMAP, Entekhabi et al., 2010) was
launched by National Aeronautics and Space Administration
(NASA) on January 31, 2015. Both satellites provide SM at a
sensing depth of 3–5 cm with a spatial resolution of about 40 km
and a revisit cycle of about 3 days on a global basis. Since L-band
emission is highly sensitive to SM and relatively less sensitive to
soil roughness and vegetation optical-depth (Wigneron et al.,
2017), it can be used to derive SM with high precision.

Passive (including L-band) microwave-derived SM products
are regularly evaluated and are found to be suitable for hydro-
climatic applications (Wanders et al., 2014; Lievens et al., 2015).
But for most of the hydrological and agricultural purposes, SM
data are required at a much higher (i.e., at least kilometric) spatial
resolution. Active microwave (e.g., Synthetic Aperture Radar) can
be used to derive SM at kilometric or sub-kilometric spatial
resolution (Wegmuller and Werner, 1997; Bauer-
Marschallinger et al., 2018). However, the major disadvantage
of the radar techniques is the high sensitivity of the surface
backscatter to disturbing factors such as notably vegetation
structure (Waite and MacDonald, 1971), soil roughness
(Verhoest et al., 2008) and topography (Atwood et al., 2014).
Consequently, to overcome the limitation of both microwave
techniques, various researches have been done in the past to
combine active and passive microwave data (Narayan et al., 2006;
Piles et al., 2009; Das et al., 2010). In particular, based on this
technique, NASA recently developed a method that provides SM
at 9 and 3 km resolution from SMAP data (Jagdhuber et al., 2017;
Lievens et al., 2017; Das et al., 2018).

Alternatively, optical/thermal sensors such as Moderate
resolution Imaging Spectroradiometer (MODIS) are
extensively used to retrieve SM proxies from land surface
temperature (LST) and normalized vegetation index (NDVI)
(Peng et al., 2015a; Zhang and Zhou, 2016). The triangle
(Carlson, 2007) or trapezoid (Moran et al., 1994) method is
built by assuming that it covers the sensitivity of LST for fully
vegetated areas and bare soil conditions. The fully dry and well-
watered surface conditions can be determined as edges of the
LST-NDVI feature space. Based on the LST-NDVI approach,
various moisture index methods have been proposed like the crop
water stress index (CWSI, Moran et al., 1994), the vegetation

condition index (VCI, Kogan, 1995), the normalized difference
water index (NDWI, Gao, 1996) and the temperature vegetation
dryness index (TVDI) (Sandholt et al., 2002). The TVDI in
particular is a land surface dryness index used to calculate
water-stress condition.

Further, an optical-derived SM proxy is used to disaggregate
passive microwave derived SM data by establishing a link between
LST and SM through the evapotranspiration process (Merlin
et al., 2005; Kim and Hogue, 2012; Peng et al., 2015a; Peng et al.,
2015b). Based on this, the DISPATCH method (Merlin et al.,
2012; Merlin et al., 2013) was developed. DISPATCH estimates
the soil evaporative efficiency (SEE, defined as the ratio of actual
to potential soil evaporation) from optical/thermal data and
expresses the disaggregated SM through a downscaling
relationship between the SM observed at low resolution (LR)
and the SEE derived at high resolution (HR). Given that SEE has a
mostly linear relationship with soil temperature (Merlin et al.,
2013), SEE is estimated as the optical-derived soil temperature
normalized by its maximum and minimum values corresponding
to dry and wet soil conditions in the LST-NDVI feature space
(Merlin et al., 2012). For routine application of DISPATCH, the
C4DIS processor was implemented at the Centre Aval de
Traitement des données SMOS (CATDS) as a level-4 SM
product (Molero et al., 2016). C4DIS processor provides SM at
1 km resolution product on a daily-global basis using LR SMOS
SM and HR MODIS data. The C4DIS was recently adapted to
integrate SMAP and Sentinel-3 data in replacement of SMOS and
MODIS data, respectively.

Various researches have shown that the application of
DISPATCH to SMAP or SMOS data provides a 1 km
resolution SM product with satisfying accuracy in arid and
semi-arid regions (Malbéteau et al., 2016; Molero et al., 2016;
Colliander et al., 2017; Mishra et al., 2018). However DISPATCH,
like all the optical-based SM disaggregation methods, has two
main intrinsic limitations: 1) the soil surface temperature that is
related to the surface (0–5 cm) SM cannot be retrieved
underneath the vegetation cover and 2) optical/thermal data
are unavailable in cloudy conditions. Such constraints
significantly reduce the spatio-temporal coverage of optical-
disaggregated SM images, which potentially hinders several
applications requiring data at high temporal frequency.

In this context, the paper aims to partly overcome the above
mentioned limitations by testing three significant changes in
the DISPATCH algorithm. Firstly, over densely vegetated
pixels, the DISPATCH downscaling relationship is
implemented using the TVDI (Sandholt et al., 2002), by
assuming over those areas a link between the surface SM
(as sensed by SMOS/SMAP) and the TVDI-derived root
zone SM. Secondly, the enhanced vegetation index (EVI) is
used in place of NDVI to improve the robustness of
disaggregated SM over vegetated region. In fact, EVI is
expected to be more sensitive to vegetation density and to
correct for inaccuracies due to atmospheric and soil
conditions. Thirdly, Sentinel-3 LST is tested as input to
DISPATCH in place of MODIS LST by assuming that an
earlier optical/thermal observation is generally less affected
by clouds (Georgiana Stefan et al., 2018).
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The main objective of this paper is therefore to improve the
spatio-temporal coverage and the robustness over vegetated areas
of the 1 km resolution of DISPATCH SM. The approach is applied
to SMAP SM data and tested over three 50 km by 50 km study
areas in France and Spain with one temperate and two semi-arid
regions. Results of the new vegetation-extended DISPATCH
algorithm is assessed against in situ measurements collected in
all three study areas, as well as against the 1 km resolution,
Copernicus SM data derived from Sentinel-1 radar data and
SMAP/S1 data derived from Sentinel-1 and SMAP.

2 MATERIALS AND METHODS

2.1 Study Area and In Situ Data
Three study areas of 50 km by 50 km are selected in the South-
West of France (ICOS sites), and in theWest (REMEDHUS sites)
and East (dryland sites) of Spain (location is shown in Figure 1).
The extent of each study area is defined in order to encompass at
least one SMAP pixel and to represent the sub-pixel variability at
the 1 km resolution. The main objective for the selection of study
areas is two-fold 1) to evaluate the performance of DISPATCH
under different climatic conditions including temperate and
semi-arid, and 2) to evaluate the performance of DISPATCH
over different land cover types such as agricultural land and
dryland areas. A detailed description of the SM monitoring sites
within each of the three study areas is provided below.

i) ICOS network (South-West of France): It includes Auradé
(43°32′58.81 N, 01°06′22.08 E) and Lamasquère (43°50′05 N,
01°24′19 E), which are located near Toulouse at a distance of
12 km from each other. The study area has temperate climatic
conditions with an annual average precipitation of 700mm. The
land is mainly covered by agricultural field. Soil texture is clay
loam for Auradé with clay and sand contents of 32.3 and 20.6%,
respectively, while soil texture for Lamasquère is clay with clay
and sand fraction contents of 54 and 12%, respectively. SM is
measured by CS616 (Campbell Scientific Inc., Logan, UT, USA)
probes at depths of 0.05, 0.10, and 0.30m. CS616 probe uses soil
dielectric permittivity to measure the volumetric soil water
content. The in situ SM data collected at 5 cm depth for years
2017 and 2018 are used in this study. Detailed information about
field instrumentation and agricultural practices can be found in
Béziat et al. (2009) and Tallec et al. (2013).

ii) REMEDHUS network (West of Spain): REMEDHUS is a very
dense network, consisting of 20 stations located near the center of
Duero basin (41.1–41.5°N, 5.1–5.7°W). The study area has semi-
arid Mediterranean climate with an annual average precipitation
385mm. In this paper 13 stations are used. The land is mainly
covered by croplands, shrublands, forests and pasture. Soil type is
silty and clayey sand. SM ismeasured by a dielectric sensor (hydra
probe and Stevens watermonitoring system), whichmeasures the
volumetric SMat a depth of 0.00–0.05m. The in situ SMcollected
for 2017 are used in this study is obtained from the International
Soil Moisture Network (ISMN) (Dorigo et al., 2011).

iii) Dryland sites (East of Spain): Dryland areas are selected from the
Tarragona province of Catalunya, Spain. Land is mainly covered

by rainfed crops. Soil texture of this area is clayey. The
monitoring network consists of seven stations. SM is
measured at a depth of 5 cm by Teros sensor 10. The in situ
SM data collected from June to November 2019 are used in this
study. The dryland sites area exhibits a semi-arid Mediterranean
climate, which is dry and warm in summer and cold and wet in
winter. The average annual precipitation is 385 mm with an
elevation of 700–900m above sea level.

2.2 Remote Sensing Data
2.2.1 SMAP SM Data
SMAP is a L-band satellite mission, launched in January 2015,
that combines 1 km resolution radar and 36 km resolution
radiometer observations to provide SM at 9 km resolution. But
due to improper functioning of SMAP radar, currently SMAP
provides SM at 36 km resolution (radiometer) on a global-daily
basis. SMAP satellite has a near-polar sun-synchronous orbit with
an altitude of 658 km. The SMAP swath is about 1,000 km width
with a revisit cycle of 2–3 days. In this paper, SMAP level-3 daily
SM product (named as L3SMP A/D, version 005) with an
ascending and descending overpass of 6 pm/6 am is used
separately as an input to DISPATCH algorithm. These
products are in HDF format and cylindrically projected on the
EASE grid version 2.0. SMAP data can be downloaded from
https://nsidc.org/data/SPL3SMP/versions/5. In addition to this,
SMAP/S1 (named as L2_SM_SP) provides SM at 1 km resolution
is used for the statistical analysis with DISPATCH data. SMAP/S1
use Sentinel-1A and Sentinel-1B to disaggregate SMAP (∼36 km)
data at 1 km resolution.

2.2.2 MODIS Optical Data
The C4DIS processor presented in Molero et al. (2016) uses the
MODIS version 6 optical/thermal data. The Terra overpass (10:30
am)—named as MOD11A- and Aqua overpass (1:30 pm)—
named as MYD11A1—gives 1 km resolution LST data on a
daily basis. In DISPATCH algorithm, 6 MODIS LST products
(1 day before, same day and 1 day after the SMAP overpass) are
used as an input for each SMAP ascending and descending
overpass. MODIS version 6 MOD13 is used to monitor
canopy structure, leaf area index and vegetation greenness
extent, and contains two vegetation indices—NDVI and
EVI—as sub-datasets. MODIS NDVI and EVI products
provide data continuously at 1 km spatial and 16-day temporal
resolution for global vegetation coverage. NDVI is used in the
original DISPATCH algorithm for disaggregation of SM at HR
(Merlin et al., 2012). NDVI is defined as:

NDVI � ρNIR − ρR
ρNIR + ρR

(1)

where ρNIR and ρR are the surface reflectances from MODIS near
infrared and red bands, respectively.

The main limitation of NDVI is that it is very sensitive to

canopy background (Huete et al., 2002) and gets saturated in

conditions of high biomass (Gitelson, 2004). Another limitation is

that it shows a non-linear behavior like ratio-based indices (Jiang

et al., 2006) and is affected by atmospheric noise (Liu and Huete,
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1995). EVI was thus developed to improve the sensitivity to high

biomass conditions. It also decouples the canopy background

signal (Huete et al., 2002) and reduces atmospheric influence

(Matsushita et al., 2007). EVI is computed as:

EVI � GpρNIR − ρR
ρNIR + C1pρB − C2pρB

+ L (2)

where, ρB is the surface reflectance from blue band, L is the
canpoy background adjustment, C1 and C2 are the coefficients for
aerosol correction and G is the gain factor.

DISPATCH relies on the fractional vegetation cover (fvg)
derived from the vegetation index. Cleugh et al. (2007)
calculated fvg from NDVI:

fvgNDVI �
NDVIHR − NDVIs
NDVIv − NDVIs

(3)

where NDVIHR is the MODIS NDVI at 1 km resolution, NDVIs is
NDVI at bare soil and NDVIv is NDVI at full vegetation cover.
Here NDVIs and NDVIv are set to 0.15 and 0.90, respectively
(Gutman and Ignatov, 1998).

Similarly, fvg can be estimated from EVI:

fvgEVI �
EVIHR − EVIs
EVIv − EVIs

(4)

where EVIHR is the MODIS EVI at 1 km resolution, EVIs is EVI at
bare soil and EVIv is EVI at full vegetation cover. Here EVIs and
EVIv are set to 0.05 and 0.95, respectively (Mu et al., 2007).

EVI aims to provide a VI with reduced sensitivity to (daily)
atmospheric effects and to (constant) background soil effects,
while no such correction for soil or atmospheric effects is
undertaken for NDVI. The time series and scatter plot
comparisons between NDVI and EVI are hence presented to
visually assess the possible artifacts in the temporal and in spatial
pattern in NDVI that may occur due to atmospheric disruptive
effects and/or to the background soil variability between study
areas. Figure 2 presents the time series of the 1 km resolution
fractional vegetation cover derived from NDVI and EVI at
Auradé site (ICOS study area), BA (dryland area) and F11
(REMEDHUS network study area) (left side) and also presents
the scatter plot comparison of both fractional vegetation cover
estimates extracted over ICOS, dryland, and REMEDHUS study
areas (right side). The time series evolution in Figure 2 observed a
relatively smoother dynamics of EVI compared to NDVI,
suggesting that the atmospheric effects are reduced in EVI
data. The effect of different soil types is observed in the spatial
scatter plot of Figure 2 (right side) between the fractional
vegetation cover derived from NDVI and EVI over each of the
three study areas. Relative differences are more significant over
the dryland sites. Since the dryland sites are covered by vineyards,
a big jump of NDVI is not observed in the middle of the season. It
is therefore observed that NDVI and EVI behave differently in
different areas depending on meteorological conditions, canopy
structure and soil type. This is the rationale for evaluating the
performance of DISPATCH using EVI and NDVI vegetation
indices separately for different regions.

FIGURE 1 | Location of the three study areas: (A) ICOS network in South Western France (B) Dryland network in Eastern Spain and (C) REMEDHUS network in
Western Spain.
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2.2.3 Sentinel-3 Optical Data
Sentinel-3 satellite was launched by ESA in February 2016.
Sentinel-3 has a sun-synchronous polar orbit with an altitude
of 815 km and an overpass at 09:30 a.m. The LST Sentinel-3
product is derived from data collected by the Sea and Land
Surface Temperature Radiometer (SLSTR) instrument. SLSTR is
a multi-channel radiometer with nine spectral bands including
three thermal bands, which are used to derive LST from the split-
window method with an accuracy better than 1 K (Sobrino et al.,
2015). Despite the earlier overpass of Sentinel-3 and the expected
enhanced accuracy of Sentinel-3 LST data, SLSTR LST data are
pretty similar to MODIS LST data in terms of spatio-temporal
resolution: 1 km resolution with 1- or 2-day revisit time. In this

paper, the daily Sentinel-3 LST product named SL2LST downloaded
from https://scihub.copernicus.eu is used as input to DISPATCH
algorithm in place of MODIS LST. In the DISPATCH algorithm,
three Sentinel-3 LST images are used (1 day before, same day, and
1 day after) as input for each SMAP ascending and descending
overpass. Note that in this application, the NDVI/EVI data are still
derived fromMODIS to focus on the DISPATCH output differences
associated with the input data of (MODIS or Sentinel-3) LST.

2.2.4 DEM Data
GTOPO 30 digital elevation model (DEM) data at 30 arc second
resolution are used to correct the 1 km resolution MODIS/
Sentinel-3 LST for topographic effects, before its use for SEE/

FIGURE 2 | Times series of fractional vegetation cover derived from NDVI and EVI (left) and a spatial scatterplot of fractional vegetation cover derived from NDVI
and EVI (right) for Auradé (ICOS) site, 2017 (A,B); BA (dryland) site, 2019 (C,D); and L03 (REMEDHUS) site, 2017 (E,F).
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TVDI estimates within DISPATCH (Merlin et al., 2013). The
DEM can be downloaded from https://lta.cr.usgs.gov/GTOPO30.

2.2.5 Copernicus Sentinel-1 SM Product
Copernicus global land service provides a SM product over
Europe at 1 km resolution from 2016. The change detection
method from Technological University of Vienna (TU-Wien)
is used to derive daily relative SM estimates from the C-band
Sentinel-1 backscatter time series collected in Interferometric
Wade Swath (IW) and VV-polarization mode (Bauer-
Marschallinger et al., 2018). In practice, the Copernicus
Sentinel-1 relative SM (expressed in percentage from 0 to
100%) is derived from the angle-normalized backscattering
coefficient linearly scaled between wet and dry conditions at
each location individually. Data can be downloaded at https://
land.copernicus.eu/global/products/ssm.

For comparing the performance of Copernicus and DISPATCH
SM data sets at the validation sites, the Copernicus relative SM is
converted into volumetric SM from the extreme SMvalues estimated
at the site level using texture information:

SMS1 � SMmin + (SMmax − SMmin)pRSMS1 (5)

Where SMS1 is the re-scaled SM (m3/m3), RSMS1 is the relative
SM value (%) of Copernicus Sentinel-1 SM, and SMmax (m3/m3)
and SMmin (m3/m3) are the SM at saturation and the residual SM
estimated from pedotransfer functions in Cosby et al. (1984) and
Brisson and Perrier (1991), respectively (Merlin et al., 2016).

2.3 DISPATCH
2.3.1 General Equations
The DISPATCH downscaling equation relies on HR optical-
derived SM proxy (SEE in the current version of DISPATCH)
to disaggregate LR (SMOS or SMAP) SM at HR:

SMHR � SMLR + (δSEE
δSM

)
−1

LR

p(SEEHR − SEELR) (6)

where SMHR is the disaggregated SM at HR, SMLR is the SM at LR
observed by SMAP, SEEHR is the SEE at HR derived fromMODIS
and/or Sentinel-3 data, SEELR serves as the aggregated HR SEE at
LR and (δSEE/δSM)−1LR is the inverse of the partial derivate of
SEE(SM) at LR. In Eq. 6, SEE is expressed as:

SEEHR � Ts,max − Ts,HR

Ts,max − Ts,min
(7)

where Ts,max is the soil surface temperature at HR, and Ts,max and ‘
are the soil temperature in fully dry (SEE � 0) and water-saturated
(SEE � 1) conditions, respectively. Soil temperature endmembers
Ts,max and Ts,min are estimated from the extreme LST values
observed within the LST-fvg feature space obtained with MODIS
or Sentinel-3 data. The soil temperature in Eq. 7 is obtained from
the linear decomposition of LST into soil and vegetation
temperature using the trapezoid method (Merlin et al., 2012):

Ts,HR � LSTHR − fvg,HRpTv,HR

1 − fvg,HR
(8)

where, LSTHR is the HR LST derived from MODIS or Sentinel-
3 data, fvg,HR is the HR fractional vegetation cover derived from
MODIS data and Tv,HR is the HR vegetation temperature
bounded by its maximum (Tv,max) and minimum value
(Tv,min).

As fully described in Merlin et al. (2012), the retrieval of soil
temperature in Eq. 8 depends on the estimation of vegetation
temperature, which depends on the location of the associated HR
pixel in the LST-fvg feature space. As illustrated in Figure 3A, the
LST-fvg feature space is divided in four zones A, B, C, and D. In
zone D, where the LST is mainly controlled by the vegetation
temperature, the retrieved soil temperature is assumed to be
constant meaning that SEE is uniform with the SMOS/SMAP
pixel and the downscaling relationship is not applied. In
summary, the use of SEE in the downscaling relationship of
Eq. 6 implies that disaggregation is only possible in zones A, B,
and C. No disaggregated SM value is provided by DISPATCH for
the HR pixels located in zone D.

Note that Eq. 6 is applied to all SMOS/SMAP pixels over
which the cloud cover percentage is lower than a given threshold
(named the cloud cover threshold) set to 33% in the current
DISPATCH version. Under cloud cover, the SEE values are set to
the average SEE within the LR pixel, but no disaggregated SM
value is provided.

More details on the DISPATCH method are provided in
Merlin et al. (2012) and Merlin et al. (2013). Note that the
original DISPATCH algorithm as described by the above
equations and implemented in the current C4DIS processor
(Molero et al., 2016) is named DISPATCHclassic in this paper.

2.4 The Vegetation-Extended DISPATCH
Version (DISPATCHveg–ext)
The objective of the new DISPATCH version is to apply the
downscaling relationship of Eq. 6 to zone D, where the variability
of LST for a given fvg value is mainly attributed to the vegetation
temperature. DISPATCHveg–ext is thus an extension of
DISPATCHclassic algorithm to densely vegetated areas. The
main difference between DISPATCHclassic and
DISPATCHveg–ext is that SEE is replaced by TVDI in zone D
of the LST-fvg feature space. TVDI is hence used in the
DISPATCHveg–ext algorithm to calculate the disaggregated SM
over vegetated pixels where transpiration is dominant (over the
soil evaporation). By using TDVI instead of SEE, we are making
an implicit assumption that the surface SM is linked to the root
zone SM (Kumar et al., 2009).

TVDI is defined as

TVDIHR � LSTmax − LSTHR

LSTmax − LSTmin
(9)

where, LSTmin and LSTmax are defined as the minimum and
maximum LST the wet and dry edge and LSTHR is the observed
LST within a given MODIS/Sentinel-3 pixel. TVDI provides
values in the range of 0–1, where 1 represents a wet edge
(adequate water availability for vegetation) and 0 represents a
dry edge (vegetation water stress condition).
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2.5 Estimating Temperature Endmembers
It is reminded that DISPATCHclassic operates only on zones A,
B, C of the LST-fvg feature space where the soil temperature can
be retrieved but DISPATCHveg–ext algorithm additionally
operates on zone D where vegetation temperature is
dominant. Replacing SEE by TVDI in Eq. 6 thus involves
modifying the algorithm for estimating temperature
endmembers. SEE is more sensitive to the surface soil
moisture via the soil temperature retrieved over bare or
partially vegetated pixels, while TVDI is more sensitive to
the root zone soil moisture via the vegetation temperature
retrieved over vegetated pixels. As a matter of fact, SEE cannot
be retrieved from satellite over densely vegetated areas.
Therefore, TVDI has the advantage over SEE to provide
vegetation water stress information over densely vegetated
areas that can be translated into soil moisture variabilities
within DISPATCH. However, the main issue with the use of
TVDI instead of SEE is the link between the root zone soil
moisture (information provided by TVDI) and the surface soil
moisture (as retrieved from SMAP), which might not be linear
(Albergel et al., 2008; Ford et al., 2013).

Figure 3 gives an illustration of the temperature
endmembers retrieved from the DISPATCHclassic (A) and
DISPATCHveg–ext (B) algorithms for a given date within a
given SMAP pixel. In this example, the SMAP pixel over the
ICOS study area was selected. Note that the values of
temperature endmembers are calibrated and will be different
for each SMAP pixel and for each SMAP overpass time.
Visually, it is observed from the graph in Figure 3B that the
polygonal envelop for DISPATCHveg–ext includes all pixel LST
values (represented by black dots). This is not the case for
DISPATCHclassic as illustrated in the graph of Figure 3A where
several pixel LST values are clearly located above the dry edge.
Moreover, if we consider zone D uniquely (represented by a grey
area), the pixel LST values that come under zone D are discarded
from the disaggregation in DISPATCHclassic (Figure 3A),
whereas the pixel LST values in zone D are included for
disaggregation in DISPATCHveg–ext (Figure 3B). The
DISPATCHveg–ext algorithm thus extends the applicability of

DISPATCH to zone D as well as improves the robustness of dry/
wet edges determination. The main difference between
DISPATCHclassic and DISPATCHveg–ext for estimating
temperature endmembers is two-fold: 1) instead of using
directly the maximum and minimum observed LST values
(DISPATCHclassic) to determine respectively the dry bare soil
and wet full cover vertices, DISPATCHveg–ext iteratively ensures
that most of the data points are kept within the polygon, and 2)
the maximum to minimum vegetation temperature difference is
forced to be equal to or larger than half the maximum to
minimum soil temperature difference. The rationale behind
the second requirement is that the maximum to minimum
soil temperature difference and the maximum to minimum
vegetation temperature difference should be rather close from
the energy budget perspective (Stefan et al., 2015; Yang et al.,
2015). It has been demonstrated that the uncertainty in dry and
wet boundaries is reduced and the accuracy in the associated SM
proxies is increased when the second requirement is satisfied.

In practice, the new algorithm for estimating Ts,min, Ts,max,
Tv,min, and Tv,max is accomplished in three successive steps:

(1) First guess estimates of temperature endmembers are
provided by DISPATCHclassic algorithm (Figure 3A for
illustration).

(2) An offset is applied to the first guess dry (wet) edge to make it
pass through the point corresponding to the maximum
(minimum) observed LST.

(3) An additional constraint is applied to the maximum
vegetation temperature. In case the maximum to
minimum vegetation temperature difference is lower than
half the maximum to minimum soil temperature difference,
the final maximum temperature is set to:

Tv,max � Tv,min + 0.5p(Ts,max − Ts,min) (10)

The above requirement is especially useful over relatively wet
SMOS/SMAP pixels where water-stressed vegetation conditions
do not occur, i.e., where the first guess maximum vegetation
temperature is not sufficiently representative.

FIGURE 3 | Illustration of DISPATCHclassic (A) and DISPATCHveg–ext (B) polygons in the LST-fvg feature space for ICOS study area on DOY 204, 2018.
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3 RESULTS

In this section, the DISPATCHveg–ext algorithm is evaluated over
the study sites and its performance is assessed compared to the
DISPATCHclassic algorithm and to the Copernicus Sentinel-1-
based SM retrieval method. DISPATCHveg–ext is run in different
modes with the use of MODIS EVI instead of MODIS NDVI, and
the use of Sentinel-3 LST instead of MODIS LST. The objective is
to quantify the potential increase in the spatial coverage of
DISPATCH data and its accuracy over vegetated regions
under temperate and semi-arid conditions.

3.1 Evaluating the Spatio-Temporal
Coverage of DISPATCHveg–ext Dataset
DISPATCHclassic and DISPATCHveg–ext algorithms are run with
the same input data to compare the spatial extent of their 1 km
resolution disaggregated SM output. Readers are reminded that
DISPATCHveg–ext is an extension of the DISPATCHclassic

algorithm to include vegetated areas (disaggregation is
undertaken in all zones in the LST- feature space, including
zone D). Figure 4 illustrates the visual comparison of 1 km
resolution disaggregated SM images obtained after running
DISPATCHclassic and DISPATCHveg–ext algorithms on DOY
112 for 2018 over the H18V04 MODIS tile. Note that there
are multiple void regions in the output of DISPATCHclassic

disaggregated SM. These void regions appear in the output
images when the corresponding input pixels belong to zone D
(densely vegetated areas). The DISPATCHclassic disaggregation

algorithm does not give disaggregated SM values over those
areas. On the other hand, DISPATCHveg–ext disaggregated
image fills the void region attributed to vegetation cover by
using TVDI in DISPATCH algorithm. The void regions are
still visible in the output of DISPATCHveg–ext image. Note that
SMAP does not retrieve SM at high altitude which is covered
by snow such as alps and pyrenees (O’Neill et al., 2018). Due to
this, there is no SM retrieval in this region and the regions
remains void. The void regions in high altitude are consistently
observed across DISPATCHclassic, DISPATCHveg–ext, and
NDVI images.

Different cloud cover thresholds (10, 30, 50 and 70%) are also
used separately in DISPATCHveg–ext and DISPATCHclassic

algorithms to examine the effect on the spatial coverage of
valid pixels. Such a comparison is made on a yearly basis
(2017) over distinct spatial extents: the MODIS tiles H17V04
and H18V04 and the 50 km by 50 km REMEDHUS, ICOS, and
dryland study areas. From Table 1 it is observed that there is an
overall increase in the percentage of valid pixels in
DISPATCHveg–ext disaggregated SM. The increase is about
3–6% in semi-arid areas and 6–9% in the temperate area as
compared to DISPATCHclassic, for different cloud-free threshold
values. The increase in coverage is more evident in temperate sites
because agricultural areas generally have a larger NDVI than
semi-arid/dryland areas. For the MODIS tile extent, the relative
increase in coverage over vegetated areas (from 58 to 86%
depending on the cloud cover threshold) is very significant.
The threshold values of cloud cover have a rather small effect

FIGURE 4 | Images over the MODIS tile H18V04 of 1 km resolution disaggregated SM derived from DISPATCHclassic (left top) and DISPATCHveg–ext (right top)
and NDVI (left bottom) on DOY 112, 2018.
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at the 50 km by 50 km scale for both DISPATCH algorithms.
However, a significant improvement can be seen over the entire
MODIS tile extent.

Statistical results of correlation (R), slope of the linear
regression (Slope), mean bias (MB), and root mean square
difference (RMSD) between disaggregated and in situ SM with
DISPATCHclassic and DISPATCHveg–ext algorithm are calculated
separately and presented in Table 2. The overall temporal
correlation of DISPATCHveg–ext SM is in the range of
0.40–0.70, compared to 0.37–0.70 for the DISPATCHclassic

case. The slight increase in the temporal correlation over

vegetated areas is mainly attributed to the increase in the
spatio-temporal coverage of DISPATCHveg–ext SM data set
associated with the inclusion of vegetated areas. The MB and
RMSD values remain approximately the same for both
algorithms, with a maximum difference of 0.02 m3/m3. This
indicates that the inclusion of vegetated areas in DISPATCH
algorithm using the TVDI approach does not degrade the
disaggregation performance. It is also observed that the slope
of the linear regression between disaggregated and in situ SM is
more stable for the new algorithm because of the modified
calculation of temperature endmembers.

TABLE 1 | Percentage of valid pixels within the 1 km resolution disaggregated SM images using DISPATCHclassic and DISPATCHveg–ext algorithm for i) the entire MODIS tile
extent H18V04, ii) the union of both semi-arid areas and iii) the temperate study area separately, for different cloud cover thresholds in 2017.

Cloud cover
threshold

MODIS tile extent (H18V04) Both semi-arid study areas Temperate study area

DISPATCHclassic DISPATCHveg–ext DISPATCHclassic DISPATCHveg–ext DISPATCHclassic DISPATCHveg–ext

% % % % % % %

70 12 19 39 40 36 38
50 11 18 37 38 33 36
30 10 16 34 36 31 33
10 7 13 28 29 28 30
All 10.00 16.50 34.50 35.75 32.00 34.25

TABLE 2 | Statistical results in terms of correlation (R), slope of the linear regression (Slope), mean bias (MB), RMSD between 1 km resolution disaggregated and in situ SM
for (NDVI-based) DISPATCHclassic and DISPATCHveg–ext algorithm.

Network Site Year DISPATCHclassic DISPATCHveg–ext (NDVI)

NR R (–) Slope
(–)

MB
(m3/m3)

RMSD
(m3/m3)

NR R (–) Slope
(–)

MB
(m3/m3)

RMSD
(m3/m3)

ICOS Auradé 2017 139 0.35 0.51 0.08 0.11 148 0.40 0.52 0.08 0.10
2018 131 0.33 0.57 0.10 0.15 141 0.36 0.54 0.10 0.14

Lamasquère 2017 140 0.37 0.76 0.04 0.09 150 0.40 0.69 0.04 0.08
2018 124 0.42 0.57 0.06 0.10 140 0.43 0.50 0.07 0.10
All 134 0.37 0.60 0.07 0.11 145 0.40 0.56 0.07 0.11

Dryland BA 2019 55 0.65 0.73 0 0.04 56 0.65 0.65 0 0.04
GA 56 0.59 0.78 0 0.06 56 0.62 0.75 0.01 0.05
HA1 53 0.78 1.28 0.03 0.07 53 0.77 1.07 0.02 0.05
HA2 53 0.81 1.04 0.07 0.08 53 0.79 0.84 0.05 0.06
PM 54 0.66 0.96 0.01 0.05 54 0.68 0.89 0.01 0.04

All 54 0.70 0.96 0.02 0.06 54 0.70 0.84 0.02 0.05
RHEMEDUS K13 2017 145 0.39 0.40 0.12 0.13 157 0.44 0.40 0.11 0.13

K10 146 0.42 1.41 −0.02 0.07 160 0.43 1.28 −0.02 0.07
M05 147 0.67 1.10 0.01 0.05 161 0.70 1.06 0 0.05
N09 147 0.46 0.47 0.09 0.10 161 0.50 0.48 0.08 0.10
I06 166 0.57 3.88 −0.08 0.11 176 0.59 3.61 −0.08 0.10
M09 148 0.35 0.47 0.06 0.08 162 0.41 0.51 0.06 0.08
F06 166 0.45 0.45 0.07 0.10 176 0.51 0.47 0.06 0.09
H13 168 0.78 1.89 0.01 0.07 180 0.79 1.75 0.02 0.06
L03 165 0.65 2.07 −0.01 0.06 179 0.67 1.88 −0.01 0.05
O07 147 0.54 0.92 −0.04 0.06 161 0.62 0.94 −0.03 0.05
K04 165 0.78 3.32 −0.07 0.08 179 0.77 2.95 −0.07 0.08
L07 146 0.37 0.39 0.10 0.12 160 0.45 0.41 0.10 0.11
F11 165 0.76 1.48 −0.04 0.07 177 0.77 1.37 −0.04 0.06

All 155 0.55 1.40 0.02 0.09 168 0.59 1.32 0.01 0.08

NR, Number of retrieval.
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3.2 Improving the Robustness of DISPATCH
Over Vegetated Pixels
The robustness of the DISPATCHveg–ext algorithm over vegetated
areas is further tested by using NDVI and EVI vegetation indices
as input. The analysis is done by comparing the NDVI-based
DISPATCHveg–ext (Table 2) and EVI-based DISPATCHveg–ext

(Table 3) performance in terms of correlation (R), slope of the
linear regression (Slope), mean bias (MB) and RMSD between
disaggregated and in situ SM. The overall (all sites) temporal

correlation of disaggregated SM vs. in situ SM ranges from 0.41 to
0.73 as compared to 0.40–0.70 for the EVI and NDVI case,
respectively.

The inclusion of EVI improves the performance of the
DISPATCH algorithm over the temperate and semi-arid
study areas. Note that the overall percentage increase—as
compared to the NDVI-based DISPATCH SM—in temporal
correlation for the ICOS network (agricultural land) is 7% and
for REMEDHUS and dryland networks is 1 and 4%. The
increase in temporal correlation of disaggregated SM using
EVI over agricultural areas is attributed to the sensitivity of
EVI to fvg over densely vegetated areas, which fosters the
accuracy of the trapezoid approach. It is also observed that
semi-arid areas exhibit a small increase in temporal
correlation. One may hypothesize that the use of EVI in
place of NDVI reduces the effect of the variability of soil
color and of atmospheric noise. The mean bias (MB) and
RMSD between disaggregated and in situ SM mostly remain
the same for both algorithms, which indicates that the
inclusion of EVI in place of NDVI in the DISPATCH
algorithm does not degrade the performance of DISPATCH
algorithm. Rather, the use of EVI improves the performance of
the DISPATCH algorithm for different climatic conditions
such as temperate and semi-arid areas and different land cover
types such as agricultural and dryland areas.

3.3 Reducing the Impact of Clouds on
DISPATCH Dataset by Using Sentinel-3 LST
Data
Cloud cover strongly limits the availability of optical/thermal
data. The non-availability of optical/thermal data at HR is the
main reason for voids in DISPATCH disaggregated SM products.
The cloud cover generally differs according to the time of day.
Hence, in spite of having the same spatial and temporal
resolution, MODIS LST and Sentinel-3 LST data sets may be
affected by clouds differently. The cloud mask applied to the
MODIS LST images extracts the LST pixels with quality control
(QC) equal to 0 or 17, which corresponds to an uncertainty in
LST lower than 1 K and a maximum emissivity error equal to 0.01
and 0.02, respectively. The cloud mask applied to the Sentinel-3

TABLE 3 | Statistical results in terms of correlation (R), slope of the linear
regression (Slope), mean bias (MB) and RMSD between EVI-based
DISPATCHveg–ext 1 km resolution satellite product and in situ SM.

Network Site Year DISPATCHveg–ext (EVI)

NR R
(–)

Slope
(–)

MB
(m3/
m3)

RMSD
(m3/m3)

ICOS Auradé 2017 148 0.42 0.54 0.08 0.10
2018 141 0.39 0.58 0.08 0.10

Lamasquère 2017 150 0.40 0.67 0.04 0.08
2018 140 0.43 0.54 0.06 0.10
All 145 0.41 0.58 0.07 0.11

Dryland BA 2019 56 0.71 0.66 0.01 0.04
GA 56 0.64 0.74 0.01 0.05
HA1 53 0.80 0.98 0.02 0.05
HA2 53 0.80 0.78 0.05 0.06
PM 54 0.68 0.82 0 0.04

All 54 0.73 0.80 0.02 0.05
RHEMEDUS K13 2017 157 0.43 0.39 0.11 0.12

K10 160 0.43 1.27 −0.02 0.06
M05 161 0.71 1.04 0 0.04
N09 161 0.50 0.48 0.08 0.10
I06 176 0.59 3.51 −0.08 0.10
M09 162 0.41 0.50 0.06 0.08
F06 176 0.53 0.47 0.06 0.09
H13 180 0.79 1.72 0.02 0.06
L03 179 0.68 1.84 −0.01 0.05
O07 161 0.63 0.93 −0.03 0.05
K04 179 0.77 2.87 −0.07 0.08
L07 160 0.46 0.42 0.10 0.11
F11 177 0.77 1.35 −0.04 0.06

All 168 0.59 1.29 0.01 0.08

NR, Number of retrieval.

FIGURE 5 | DISPATCHveg–ext 1 km resolution SM images for MODIS (left) and Sentinel-3 (right) LST input data on DOY 204, 2018.
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LST images extracts the LST pixels with a QC equal to 0, which
corresponds to an uncertainty in LST lower than 1 K. The
Sentinel-3 LST QC does not include other criteria of data
quality (Ghent, 2017). Note that in this study, only the valid
SMAP pixels (with valid SMAP SM retrievals) were considered in
the computation of gap percentages within the disaggregated
images so that the computed data gaps correspond to the actual
cloud cover on optical images, plus the SMAP pixels with a cloud
cover larger than a threshold value of 50% over which
disaggregation is not applied.

Figure 5 shows a qualitative analysis between MODIS-based
(left) and Sentinel-3-based (right) DISPATCHveg–ext

disaggregated SM images on DOY 204 for 2018 over the
MODIS tile H18V04. A large data gap can be seen in the
MODIS-based disaggregated SM image due to cloud cover.
Most of these voids are filled by using Sentinel-3 LST in the
disaggregation of SM products, thereby significantly
increasing the spatial coverage of disaggregated SM. In our
study, the cloud cover percentage is analyzed by calculating the
valid pixels in the 1 km resolution disaggregated SM images
using Sentinel-3 LST and MODIS LST as an input. Such an
analysis is undertaken for data in 2018 over two distinct
extents: the MODIS tile H18V04 and ICOS study area. It is
observed that there is an increase in the number of valid pixels
from 21% in MODIS LST disaggregated SM to 65% in Sentinel-
3 LST disaggregated SM for MODIS tile H18V04 for 2018.
Similarly, there is an increase in the number of valid pixels
from 40% in MODIS LST disaggregated SM to 92% in Sentinel-
3 LST disaggregated SM for ICOS study areas for 2018. We
assume that the reason for the increase in spatial coverage is
the overpass time of Sentinel-3 (9:30 am), which is earlier than
MODIS Terra (10:30 am).

Further quantitative analysis is done in order to analyze the
performance of disaggregated SM using Sentinel-3 instead of
MODIS LST. Figure 6 shows a scatterplot between disaggregated
SM products using Sentinel-3 LST and MODIS LST as an input
for Auradé (ICOS), BA (dryland) and L03 (REMEDHUS) sites
separately. Both datasets are significantly correlated with an
average overall correlation coefficient of about 0.7. The mean
bias (MB) is very small (0.01 m3/m3) between both products,
given that they both rely on the same LR SMAP observations. It is
observed that the range of SM values is similar in both products so
that the main difference remains the spatial coverage, which is
significantly larger for Sentinel-3 LST data.

3.4 Accuracy of DISPATCH Relative to
Copernicus Sentinel-1 and SMAP/S1 SM
Data
Sentinel-1 radar data are not affected by clouds. The objective
here is to compare the DISPATCHveg–ext and Copernicus
Sentinel-1 and SMAP/S1 1 km resolution SM data sets in
terms of 1) the number of valid pixels and 2) their accuracy at
all the validation sites of the three study areas.

FIGURE 6 | Scatterplot between Sentinel-3 and MODIS-based 1 km
resolution disaggregated SM at Auradé (ICOS) site, 2018 (A); BA (dryland)
site, 2019 (B) and L03 (REMEDHUS) site, 2017 (C).
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Figure 7 compares DISPATCHveg–ext disaggregated SM,
Copernicus SM, and SMAP/S1 SM data on DOY 202, 2018
over the MODIS tile H18V04. It is clear from the visual
comparison that, on one hand DISPATCH and Copernicus
data have their spatial coverage limited due to cloud cover and
Sentinel-1 field of view, respectively. On the other hand, the
spatial coverage of SMAP/Sentinel-1 L2 product, which combines
both SMAP and Sentinel-1 data, is determined by the field of view
overlap at the concurrent overpass time of Sentinel-1 and SMAP.
Tables 3–5 report the number of DISPATCH, Copernicus and
SMAP/S1 observations concurrent with the in situ SM

measurements collected at each monitoring station. The
number of valid retrievals for DISPATCHveg-ext is 22% (50%)
larger for the temperate study area and 57% (72%) larger for both
semi-arid study areas as compared to Copernicus (and SMAP/S1)
products, respectively.

Table 4 presents the correlation (R), slope of the linear
regression (Slope), mean bias (MB) and RMSD between
Copernicus Sentinel-1-based SM and in situ SM. It is
reminded that for statistical comparison, Copernicus Sentinel-
1 SM (%) is converted into volumetric SM (m3/m3) from Eq. 5.
Statistical results in Tables 3 and 4 used to quantitatively assess

FIGURE 7 | SM images at 1 km resolution from DISPATCHveg–ext (A), Copernicus Sentinel-1 (B), SMAP/S1 (C) on DOY 204, 2018.

TABLE 4 | Statistical results in terms of correlation (R), slope of the linear
regression (Slope), mean bias (MB) and RMSD between Copernicus Sentinel-1
1 km resolution satellite product and in situ SM.

Network Site Year Copernicus Sentinel-1

NR R (–) Slope
(–)

MB
(m3/
m3)

RMSD
(m3/
m3)

ICOS Auradé 2017 155 0.28 0.60 0.04 0.11
2018 134 0.27 0.45 0 0.11

Lamasquère 2017 108 0.35 0.86 0.02 0.10
2018 79 0.31 0.44 −0.01 0.09
All 119 0.30 0.59 0.01 0.10

Dryland BA 2019 40 0.54 0.48 −0.08 0.11
GA 40 0.32 0.33 −0.04 0.09
HA1 40 −0.03 −0.02 −0.10 0.13
HA2 40 0.18 0.16 0.06 0.08
PM 39 0.50 0.43 −0.04 0.06

All 40 0.30 0.28 −0.04 0.09
RHEMEDUS K13 2017 117 0.23 0.31 0.04 0.10

K10 115 0.40 1.37 −0.09 0.12
M05 114 0.34 0.57 −0.05 0.09
N09 115 0.51 0.69 0.01 0.07
I06 61 0.14 0.80 −0.11 0.13
M09 115 0.30 0.52 −0.04 0.09
F06 61 0.32 0.33 −0.01 0.09
H13 61 0.69 1.43 −0.02 0.07
L03 113 0.33 0.96 −0.07 0.10
O07 114 0.46 1.04 −0.10 0.12
K04 115 0.37 1.86 −0.13 0.15
L07 115 0.25 0.37 −0.03 0.09
F11 61 0.65 1.42 −0.09 0.12

All 98 0.38 0.90 −0.05 0.10

NR, Number of retrieval.

TABLE 5 | Statistical results in terms of correlation (R), slope of the linear
regression (Slope), mean bias (MB) and RMSD between SMAP/S1 1 km
resolution satellite product and in situ SM.

Network Site Year SMAP/S1

NR R
(–)

Slope
(–)

MB
(m3/
m3)

RMSD
(m3/m3)

ICOS Auradé 2017 104 0.22 0.21 0.05 0.08
2018 101 0.37 0.54 0.02 0.09

Lamasquère 2017 89 0.37 0.47 0.05 0.07
2018 86 0.51 0.63 0.07 0.10
All 95 0.37 0.47 0.05 0.09

Dryland BA 2019 32 0.82 0.77 −0.01 0.04
GA 32 0.69 0.68 −0.03 0.06
HA1 32 0.76 0.81 −0.07 0.09
HA2 32 0.75 0.61 −0.04 0.05
PM 31 0.70 0.72 −0.04 0.06

All 32 0.74 0.72 −0.04 0.06
RHEMEDUS K13 2017 107 0.53 0.42 0.09 0.11

K10 106 0.51 1.01 −0.05 0.07
M05 109 0.64 0.74 0 0.04
N09 105 0.47 0.34 0.09 0.11
I06 109 0.54 2.25 −0.08 0.09
M09 73 0.57 0.62 0.04 0.06
F06 74 0.70 0.46 0.06 0.08
H13 72 0.74 0.90 0.03 0.05
L03 108 0.67 1.48 −0.01 0.05
O07 99 0.63 0.75 −0.02 0.04
K04 109 0.51 1.83 −0.09 0.11
L07 107 0.63 0.67 0.06 0.08
F11 75 0.76 1.47 −0.06 0.08

All 96 0.61 0.99 0.01 0.08

NR, Number of retrieval.
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the performance of DISPATCHveg–ext relative to the Copernicus
SM retrieval approach. The correlation between satellite and in
situmeasurement is generally closer to 1 for DISPATCH than for
Copernicus product ranging from 0.39 to 0.80 and from −0.03 to
0.69, respectively. The poorer statistics for the Copernicus
Sentinel-1-based SM can be attributed to two factors. In
temperate regions, the vegetation cover with a leaf area index
larger than 0.6 is likely to drastically reduce the sensitivity of
C-band backscatter to SM. In semi-arid regions, the effective soil
roughness seen by active sensors has been shown to increase in
dry conditions due to volume scattering (Escorihuela and
Quintana-Seguí, 2016; Ojha et al., 2020), thus artificially
increasing the Sentinel-1-retrieved SM. As an illustration of

both possible effects, Figure 8 presents a scatterplot of
DISPATCHveg–ext vs. in situ SM and of Copernicus vs. in situ
SM for Auradé (ICOS), HA1 (dryland) and L03 (REMEDHUS)
sites separately. In particular, the bi-modal behavior of the
Sentinel-1-retrieved SM can be attributed to volume scattering
in very dry conditions. It can be the reason for the negative
correlation and slope of Copernicus Sentinel-1 based SM for HA1
site. The limitation of the bi-modal behavior of Copernicus
Sentinel-1 based SM for dryland areas is overcome by
DISPATCHveg–ext algorithm and exhibits a better
representation of SM at 1 km resolution.

The performance of optical-based (DISPATCH) and radar-
based (SMAP/S1) SMAP disaggregated SM products is assessed

FIGURE 8 | Scatterplot of Copernicus Sentinel-1 vs. in situ SM (left) and DISPATCHveg–ext vs. in situ SM (right) for Auradé (ICOS) site, 2018 (A,B); HA1 (dryland)
site, 2019 (C,D) and L03 (REMEDHUS) site, 2017 (E,F).
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by the statistical comparison presented in Tables 3 and 5. The
correlation between satellite and in situ measurements is in the
range of 0.39–0.80 and 0.22–0.82 for DISPATCH and SMAP-S1
product, respectively. The overall statistical difference between
SMAP/S1 and DISPATCH 1 km disaggregated products is
relatively small for all three study areas. DISPATCH and
SMAP/S1 perform well over the dryland semi-arid sites with a
mean correlation larger than 0.7 with however, a significant
negative bias (−0.04 m3/m3) on SMAP/S1. The statistical metrics
for SMAP/S1 are slightly poorer as compared to DISPATCH in the
temperate study area. This could be explained by a lower sensitivity
to SM of SMAP/S1 product over vegetated areas where the
vegetation water content is greater than 3 kg/m2 (Das et al.,
2019). Nonetheless, the performance of both disaggregated
products over all three study areas remains rather similar and
the main advantage of DISPATCH compared to the official SMAP
product is the larger spatio-temporal coverage. SMAP/S1 1 km
product is limited by the temporal frequency of Sentinel-1 with an
interval of 6 days in Europe.

4 CONCLUSION

DISPATCH is a well-known optical/thermal-based disaggregation
method of passive microwave-derived SM data. It is usually
implemented using MODIS LST/NDVI and SMOS/SMAP SM
data to provide 1 km resolution disaggregated SM images. The
application of DISPATCH to large areas at high frequency is
however limited by 1) the loss of sensitivity of LST to the surface
SM over densely vegetated areas and 2) the unavailability of optical
data under cloud cover. To improve the spatio-temporal coverage of
1 km resolution DISPATCH SM data, a new algorithm named
DISPATCHveg–ext algorithm is proposed. DISPATCHveg–ext differs
from DISPATCHclassic in mainly one aspect: the use of TVDI in the
DISPATCH downscaling relationship to apply the disaggregation to
densely vegetated areas. Moreover, DISPATCHveg–ext is tested using
Sentinel-3 LST instead of MODIS LST as input, in order to assess the
impact of the thermal observation time on the output data gaps due to
cloud cover. This approach is evaluated by comparing the
disaggregated SM with in situ measurements over a temperate
and two semi-arid regions.

First, the comparison is done between DISPATCHclassic and
DISPATCHveg–ext disaggregated SM at 1 km resolution. Visual
analysis indicates a significant increase in the spatial coverage of
DISPATCHveg–ext disaggregated SM images due to the inclusion
of densely vegetated areas. In addition, the temporal correlation
between satellite and in situ SM is increased by 9% and the RMSD
is decreased by 6% in the temperate region. Similarly, for the
semi-arid regions, the temporal correlation is increased by 7–8%
and the RMSD is decreased by 6–18%. Furthermore, the use of
EVI instead of NDVI improves the robustness of the
disaggregated SM over vegetated areas by increasing the
correlation by 7% over the temperate region and by up to 4%
over the semi-arid regions.

Second, the use of Sentinel-3 LST (09:30 am overpass) in place of
MODIS LST (10:30 am and 1:30 pm overpass) to disaggregate SM at
1 km resolution very significantly increases the spatial coverage of

disaggregated SM at 1 km resolution. Both MODIS- and Sentinel-3-
based disaggregated SM data sets are found to be significantly
correlated. However, as a caveat, one should keep in mind that
the overpass time of thermal data is a compromise between 1) the
overall cloud cover, whichmay be less early in themorning but also 2)
the coupling between LST and SM, which is stronger at solar noon.
Instead of polar orbit satellites, geostationnary satellites have been also
used to downscale SMOS SM data (Piles et al., 2016; Tagesson et al.,
2018). The point is that the currently available geostationary thermal
sensors have a spatial resolution of about 2–3 km at nadir,
corresponding to a resolution of 4–5 km at the latitudes of our
study areas. In the future, the possible advent of high-resolution
geostationary thermal infrared satellites will be very useful in
DISPATCH to significantly reduce the gaps in disaggregated SM
images due to cloud cover.

Third, the accuracy of DISPATCHveg–ext is evaluated by
comparison with Copernicus Sentinel-1 SM and SMAP/S1 SM
products separately, which both have the same (1 km) spatial
resolution. DISPATCHveg–ext is generally more accurate than the
Copernicus product and its spatio-temporal coverage is
significantly larger than that of SMAP/S1 product. Such a
comparison opens up a new research towards the
development of synergies between thermal-based
(DISPATCH) and Sentinel-1-based SM (Amazirh et al.,
2019). The high spatio-temporal resolution together with
the all-weather capability of Sentinel-1 data are essential
assets for that purpose. In particular, the SMOS/SMAP SM
can be disaggregated at 100 m resolution using DISPATCH
and Landsat thermal data (Ojha et al., 2019). At such high
spatial resolution however, the revisit time of current thermal
sensors is relatively long (16 days for Landsat). Therefore, the
synergy between DISPATCH and Sentinel-1 data is expected
to be very useful at high spatial resolution, especially before the
advent of future thermal missions like TRISHNA (Lagouarde
et al., 2019) and LSTM (Koetz et al., 2018).
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