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Discerning the relationship between urban structure and function is crucial for
sustainable city planning and requires examination of how components in urban
systems are organized in three-dimensional space. The Structure of Urban
Landscape (STURLA) classification accounts for the compositional complexity of
urban landcover structures including the built and natural environment. Building on
previous research, we develop a STURLA classification for Philadelphia, PA and study
the relationship between urban structure and land surface temperature. We evaluate the
results in Philadelphia as compared to previous case studies in Berlin, Germany and
New York City, United States. In Philadelphia, STURLA classes hosted ST that were
unique and significantly different as compared to all other classes. We find a similar
distribution of STURLA class composition across the three cities, though NYC and
Berlin showed strong correlation with each other but not with Philadelphia. Our research
highlights the use of STURLA classification to capture a physical property of the urban
landscape
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INTRODUCTION

Urban spatial structure is important to understanding social and ecological interactions between the
built and natural environment and provides a bridge to sustainable development (Zhou et al., 2017).
Characteristics including vegetation and other landcover classes influence, and can be used to
estimate ecological functions (van Oudenhoven et al., 2012; Bastian et al., 2014) and forecast
changes(Dietze et al., 2018; Dietze, 2019) that are crucial under global change scenarios. Identifying
patterns and processes of the structure-function relationship in the urban landscape in the context of
environmental and ecological processes is challenging due to variable density and patchy spatial
patterns (Pickett and Cadenasso, 2008).

While it is well established that urban areas host ecological communities subject to unique stressors
(Jones and Harrison, 2004; Reese et al., 2016; Joyner et al., 2019) absent in natural systems (e.g.,
pollution, high population density), the influence of landscape heterogeneity on the environment is
poorly described. Functional classification of urban structure is necessary for understanding the nature
of social and ecological relationships in urban areas (Cadenasso et al., 2007; Zhou et al., 2014;
McPhearson et al., 2016). Over the last decade, fine-scale landcover classification for urban areas have
been developed (MacFaden et al., 2012; Pickard et al., 2015) that allows more nuanced analyses of
urban landcover. While some functional classification approaches have been suggested (see for
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example Cadenasso et al., 2007), major challenges remain in
integration of spatial structure and configuration that allows
scalable and reproducible analysis of relationships between
urban form and process.

A major barrier for understanding the relationship between
urban structure and environmental function is the lack of
independent measurement of the fine-scale spatial variability
of the distribution of environmental and ecological variables.
Particularly important is the vertical dimension (e.g., building
height) and variation of the three-dimensional landscape that is
rarely addressed (Alavipanah et al., 2017) in ecological studies.
Where independent measurements exist, such as data from
Environmental Protection Agency (EPA) air pollution
monitoring stations or United States Geographical Survey
(USGS) water monitoring sites, the spatial distribution is not
sufficient to allow intra-urban analysis. We employ surface
temperature (ST) as a proxy for a wide range of potential
variables of interest across biotic and abiotic dimensions. ST is
one example of a physical property of the urban environment that
has been used in research addressing landcover (Zhou et al.,
2011), urban heat islands (Rosenzweig et al., 2009; Zhao et al.,
2011), and ecosystem services (Schwarz et al., 2011). Likewise, ST
have been linked to patterns of taxonomic and functional
biodiversity (Zogg et al., 1997; Scherrer and Körner, 2011).
Heterogenous distributions of urban ST creates spatially
distinct niches for organisms to live and or preform ecosystem
functions such as soil respiration (Lloyd and Taylor, 1994).
Variation in hydrology (Reyes et al., 2018), air quality (Sillman
and Samson, 1995; Li et al., 2018), and social variables relevant for
studies of environmental injustice (Huang and Cadenasso, 2016;
Zhang et al., 2017) are also associated with changes in ST.

To account for the heterogenous vertical dimension of the
built enviroment in urban lanscscape, we employ The STructure
of URban Landscapes (STURLA) classification (Hamstead et al.,
2016). STURLA is a supervised classification of the urban
landscape into discrete countable 120 m2 units that
incorporates the complexity of urban land cover structures,
including the vertical dimensions of the built environment.
STURLA represents urban structure underlined by the
composition of eight landcover and building type classes: trees,
grass\shrub, bare soil, water, low-rise buildings, mid-rise
buildings, high rise buildings and other paved surfaces. While
other urban classification methods such as Local Climate Zones
(LCZs) (Stewart and Oke, 2012) capture patterns in surface
temperature, they use pre-determined classes that may fall
short of describing the highly heterogenous nature of the
urban environment. The novelty in the STURLA approach is
that it offers an automated composite functional classification of
urban structure, including the vertical dimension, and thus can be
applied to wide geographic regions systematically. STURLA has
has been used to identified patterns of microbial biogeography in
the atmosphere of Philadelphia (Stewart et al., 2021), and ST in
NYC (Hamstead et al., 2016) and Berlin (Kremer et al., 2018).

The objectives of this short study are to identify if STURLA
could explain the variation of urban structure in a new model city
(Philadelphia), and quantify this variation using a physical
property of the environment (ST). Results suggest STURLA

identifies common urban structure units that encompass the
majority of the variation in the urban landscape structure.
Moreover, when correlated to surface temperature, these
common urban structure classifications exhibit distinct
temperature signatures for different urban structure units with
temperature trends dramatically similar between Berlin and NYC.
Here, we contribute to the developing literature on the urban
structure-function relationship using STURLA in Philadelphia.

MATERIALS AND METHODS

Study Area
Philadelphia PA, United States is the sixth largest city in the
United States with a city population of 1.6 million inhabitants
(U.S. Census Bureau, 2016) and hosts an average population density
of 30,297 inhabitants per square kilometer. It is located at the
confluence of the Delaware and Schuylkill Rivers on the eastern
border of Pennsylvania with the AppalachianMountains to the west
and the Atlantic Ocean to the east. The city has a total area of about
370 km2 of which 350 km2 are land and the rest being water.
Phildelphia is one of the poorest cities in the United States, with
26% of its population living in poverty (PEW, 2017). Philadelphia is
also one of the most segregated cities in the United States, with
African American and Asian populations concentrated in
neighborhoods in West and North Philadelphia respectively
(The Brookings Institution, 2003). The city’s population peaked
in 1950 with over 2 million people, and was declining until 2010
when is started growing again. Recently, Philadelphia is
experiencing strong, yet uneven economic resurgence reflected in
job growth and rising housing prices (PEW, 2017).

Philadelphia’s urban structure emerged through the evolution
of its original plan, laid out by William Penn in 1,643. It has a
gridded layout withmostly low andmid-rise residential buildings.
A long time “gentleman’s agreement” kept Penn’s statue on top of
city hall as the highest building in the city, preventing high-rise
development for decades until the 1980s. Thus, the most common
residential structures in the city are rowhouses. Rowhouses
commonly occupy a narrow street frontage and are attached
to other homes on both sides (Simmons Schade et al., 2008).
Aside from the built environment, green space in the city includes
19% tree cover and 24% grass-shrub cover that are distributed
unevenly across the city with some neighborhoods densely
vegetated and others with little to no green space (O’Neil-
Dunne, 2011). Part of the city’s sustainability plan,
Greenworks Philadelphia, includes a goal of tree canopy cover
of 30% in all city neighborhoods by 2025 (City of Philadelphia,
2015a). However, until recently, the only publicly available data
for a comprehensive analysis of the city’s green space has been the
National Landuse-Landcover (NLCD) datasets that do not have
the spatial resolution and functional categories required to
identify small and fragmented patches of landscape elements
within the city. In 2011, a fine scale dataset of Philadelphia
landcover was released (City of Philadelphia, 2011) that is
used here as the basis for the STURLA classification system.
Empirical evidence from two cities, Berlin and New York City
(NYC), were compared (Larondelle et al., 2014) and more
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detailed analysis of within class and neighborhood effects were
performed in a Berlin case study (Kremer et al., 2018).

PRE-PROCESSING URBAN LANDSCAPE
STRUCTURE DATA

To construct the urban structure dataset, we used a 2008 1.0-meter
resolution land cover dataset (City of Philadelphia, 2011), the
Property Assessment dataset from the Philadelphia Office of
Property Assessment (City of Philadelphia, 2015b) indicating
number of floors in buildings for each tax lot in the city in
tabular format, and the Philadelphia Department of Water
parcels dataset. We joined the property assessment tabular data
to the parcels dataset using unique parcel IDs and created a 1.0-
meter resolution raster dataset from the “Number of Floors” field
in the Property Assessment dataset. Number of floors was classified
into three categories: lowrise (1–3 stories), midrise (4–9 stories)
and highrise (>9 stories) (Stewart and Oke, 2012; Larondelle et al.,
2014). We then combined it with the land cover raster dataset, by
replacing all building land cover pixels with a value representing
building height category to create our basic urban structure dataset.

Constructing the STURLA Classification
We constructed a 120.0 m2 cellular grid aligned to the Landsat
surface temperature dataset and derived STURLA classes as the
presence of all land cover and building height types that fell
within each grid cell. Following Hamstead et al. (2016) a zonal
statistics tabulate area operation to compute the area of each land
cover or building height category within each cell was conducted.
Finally, we generated and assigned a STURLA class for each grid
cell. For example, if a STURLA cell contains any number of pixels
of trees, grass, paved, and low-rise buildings it is assigned the
STURLA class “tgpl”.

Comparison of STURLA classification
results from current and previous studies
Differences between cities in STURLA classes were tested
statistically using permutational t-tests with Bonferroni
correction (to limit the effect of multiple comparisons). The
permutational t-test selected because we test data representing
the population rather than a sample. The null hypothesis of the
permutational t-test is that STURLA class composition does not
differ between the cities. Permutational Pearson correlations were
conducted to determine if the cities distribution of STURLA
classes were similar between cities. These tests were conducted in
R (3.6) using the package “RVAideMemoire” (Hervé, 2020).

Surface Temperature Processing
Surface temperature was obtained from Landsat seven thermal
band 6(1). We obtained monthly composite data for the month of
July 2010 from the Global Web-enables Landsat Data (WELD)
website. We chose this month as a representative summer month
based on data availability and quality. An average of scenes from
one summer month were chosen to avoid any one-day outliers
and to compensate for any missing data in Landsat seven scenes.

Each monthly composite image is normally a composite of two
Landsat scenes because LANDSAT returns to any single location
every 16 days. Using a composite scene helps address the Landsat
seven scan line corrector error. WELD data is terrain-corrected
and radiometrically calibrated Landsat data (Roy et al., 2010).
Top-of-the-Atmosphere reflectance was converted to surface
temperature followed the methodology detailed in Kremer
et al. (2018) in processing surface temperature.

Analysis of Class Surface Temperature
We computed the mean, min, max and standard deviation of
surface temperature pixels that fell within each cell of the
STURLA grid using zonal statistics (Table 1) and joined these
results with the STURLA class variable. Averaging was necessary
because Landsat seven thermal bands are resampled to 30 m for
distribution (Roy et al., 2010) while the STURLA grid is 120 m.
Thus, we averaged sixteen 30 m pixels that fell within each
120 m cell. Similar to Hamstead et al. (2016) and Larondelle
et al. (2014) we focused the class temperature analysis on the
most frequently occurring classes, which cumulatively comprise
90% of the city’s land area. As done with comparison of STURLA
classes between cities, permutational t-tests with Bonferroni
correction were employed to test significance. Likewise, the
null hypothesis of the permutational t-test is that ST does not
differ between the STURLA classes.

RESULTS

Out of the 255 possible STURLA classes, 80 are found in
Philadelphia. The most prevalent composite class in
Philadelphia contains trees, grass, paved surfaces, and low-rise
buildings (“tgpl”) (Table 1). The “tgpl” class accounts for about
57% of total city area and can be found in all parts of the city and
was largely homogenous in spatial distribution (Figure 1A). The
second largest class, “tgplm” at 8.5% of the area, which is similar
to “tgpl” except it includes midrise buildings, is concentrated in
the center of the city and along a few main corridors to the North
and West. STURLA classes were able to identify the role of urban
structure influencing ST (Figure 1B). Classes generally hosted ST
that were unique (Figure 1B) and significantly different (Table 2)

TABLE 1 | 10 most common STURLA classes in Philadelphia and their ST
statistics.

Class % Of
total

% Cumulative Mean ST C Min ST C Max ST C

Tgpl 57.44 57.44 26.95 25.01 28.79
Tgplm 8.55 65.99 27.95 25.89 29.93
Tgp 7.39 73.37 23.86 22.10 25.75
Tgwp 4.36 77.73 22.72 20.77 24.75
W 2.92 80.65 18.34 17.85 19.03
Tgwpl 2.57 83.22 24.83 22.41 27.29
Tgbpl 2.46 85.69 26.31 24.16 28.60
Tg 1.94 87.63 20.42 19.37 21.62
Tgw 1.42 89.05 20.37 19.16 21.69
Tgbp 1.29 90.34 24.68 22.81 26.64

STURLA class codes: t, trees; g, grass; b, bare soil; w, water; p, paved; l, low building; m,
medium building.
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compared to all other classes with the exception of class “tgbp”
with hosting similar ST values to “tgwp” and “tgwpl”.

The prevalence and distribution of the STURLA classes in
Philadelphia differs from what we found in previous studies of
urban structure NYC and Berlin (Figure 2). In Berlin and NYC,
∼1/3 of the landscape can be explained by one highly composite
STURLA class. Another difference between the results in
Philadelphia and previous studies is the number of classes that
cumulatively explain 90% of the area of the city. Ten classes
covered 90% of the area of Philadelphia while the same number of
classes only covered 79% of the area of New York City and 68% of
the area in Berlin. Despite these differences, pairwise comparison

of each city revealed that STURLA class proportions were not
significantly different between the cities (all p > 0.05) Still, Berlin
and NYC were highly correlated (r2 � 0.952, p < 0.05) while
Philadelphia’s distribution of urban structure remained
insignificantly correlated to the other cities (p > 0.05).

DISCUSSION

STURLA captured urban structure and characterized the physical
property of ST in Philadelphia as previously done in NYC
(Hamstead et al., 2016) and Berlin (Larondelle et al., 2014;

FIGURE 1 | (A). Spatial distribution of STURLA classes (B). Spatial distribution of ST in Philadelphia. (C). STURLA classes, mean % landcover of individual
components, and mean ST for Philadelphia. STURLA class codes: t-trees; g-grass; b-bare soil; w-water; p-paved; l-low building; m-medium buildings.
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Kremer et al., 2018), despite variation in size, demography, and
planning history. This suggests that urban areas may be subject to
similar processes that result in between city-redundant spatial
organizations (Votsis and Haavisto, 2019). STURLA offers a
computationally inexpensive alternative to network analyses of
urban structure (Zhong et al., 2014). In addition, STURLA may be
suited for understanding urban biogeography, environmental
justice, and city planning for a sustainable future. Additional
city comparisons may also identify clusters of urban areas that
would benefit from similar management practices.

Due to the compositional nature of a STURLA cell, the
classification is subject to within class variation. Figure 3 provides
an example of compositional variability in Philadelphia within the
most common class in “tgpl”, using six grid cells taken from a larger
city-wide random sample. The different grid cells and corresponding

satellite imagery show the different types of buildings and proportion
of each element of the class, trees, grass, paved surfaces, and lowrise
buildings, can vary greatly from one another but still fall into the class.
Most grid cells from the “tgpl” class show row houses or single-family
detached houses since they fall within the size parameters of lowrise
buildings (1–3 stories). Our results demonstrate that despite this
variability, most classes host unique ST, suggesting that the
STURLA classes are a meaningful representation of urban structure.

One limitation of the STURLA classification is the binary nature of
the STURLA grid. If the STURLA grid size, location or orientationwere
shifted it may change the relative proportions of within class elements
(e.g., trees decrease and other elements increase). Despite this limitation,
STURLAclasses are a discrete countable number andhave a log-normal
to Poisson distribution. Thus, the ranked order abundances of different
STURLA classes should not vary in the most frequent classes. For
example, since “tgpl” is common in Philadelphia, a reduction in a large
number of “tgpl” classes in the city would be relatively less influential
than additions/reductions of less common class.

Additional limitations of this study are due to data limitations
of the ST dataset. Results might vary by the choice of ST temporal
aggregation. Averaging a shorter or longer temporal span (e.g.,
one day or a season long average) could result in variation in the
observed relationships. Additional research is needed to
determine the sensitivity of the STURLA-ST relationship to
variation in ST temporal aggregation.

CONCLUSION

In this paperwe demonstrate the application of STURLA classification
to quantify the relationship between urban structure and surface
temperature in Philadelphia. We compare Philadelphia results with
results from previous STURLA research in Berlin and NYC and show
it can be applied to cities with different historical patterns of
development in a reproducible manner. Furthermore, patterns in
class abundance and composition can be used to determine the surface
temperature signature of a composite landscape. Additional research is
needed to compare cities of vastly different urban structure and
identify patterns in the relationship between urban structure with
social and ecological properties of the environment. Understanding
general urban structure-environmental function relationships will
help build tools for effective urban planning and management
under global change scenarios.

TABLE 2 | p-values with Bonferroni correction from pairwise permutational t-tests (n � 999) of ST values for the top ten STURLA classes.

Class Tgpl Tgplm Tgp Tgwp w Tgwpl Tgbpl Tg Tgw Tgbp

Tgpl 0
Tgplm 0.02 0
Tgp 0.02 0.02 0
Tgwp 0.02 0.02 0.02 0
W 0.02 0.02 0.02 0.02 0
Tgwpl 0.02 0.02 0.02 0.02 0.02 0
Tgbpl 0.02 0.02 0.02 0.02 0.02 0.02 0
Tg 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0
Tgw 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0
Tgbp 0.02 0.02 0.02 3.74 0.02 4.02 0.02 0.02 0.02 0

Bold values indicate statistical significance (p < 0.05).

FIGURE 2 | Ranked distribution plot of STURLA class frequency by log
10 class abundance for each city.
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