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Harmful algal blooms of cyanobacteria are increasing in magnitude and frequency globally,
degrading inland and coastal aquatic ecosystems and adversely affecting public health.
Efforts to understand the structure and natural variability of these blooms range from point
sampling methods to a wide array of remote sensing tools. This study aims to provide a
comprehensive view of cyanobacterial blooms in Clear Lake, California — a shallow,
polymictic, naturally eutrophic lake with a long record of episodic cyanobacteria blooms.
To understand the spatial heterogeneity and temporal dynamics of cyanobacterial blooms,
we evaluated a satellite remote sensing tool for estimating coarse cyanobacteria
distribution with coincident, in situ measurements at varying scales and resolutions.
The Cyanobacteria Index (CI) remote sensing algorithm was used to estimate
cyanobacterial abundance in the top portion of the water column from data acquired
from the Ocean and Land Color Instrument (OLCI) sensor on the Sentinel-3a satellite. We
collected hyperspectral data from a handheld spectroradiometer; discrete 1 m integrated
surface samples for chlorophyll-a and phycocyanin; multispectral imagery from small
Unmanned Aerial System (sUAS) flights (∼12 cm resolution); Autonomous Underwater
Vehicle (AUV) measurements of chlorophyll-a, turbidity, and colored dissolved organic
matter (∼10 cm horizontal spacing, 1 m below the water surface); and meteorological
forcing and lake temperature data to provide context to our cyanobacteria measurements.
A semivariogram analysis of the high resolution AUV and sUAS data found the Critical
Scale of Variability for cyanobacterial blooms to range from 70 to 175 m, which is finer than
what is resolvable by the satellite data. We thus observed high spatial variability within each
300 m satellite pixel. Finally, we used the field spectroscopy data to evaluate the accuracy
of both the original and revised CI algorithm. We found the revised CI algorithm was not
effective in estimating cyanobacterial abundance for our study site. Satellite-based remote
sensing tools are vital to researchers and water managers as they provide consistent, high-
coverage data at a low cost and sampling effort. The findings of this research support
continued development and refinement of remote sensing tools, which are essential for
satellite monitoring of harmful algal blooms in lakes and reservoirs.
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INTRODUCTION

Harmful algal blooms of toxin-producing cyanobacteria
(cyanoHABs) are increasing in magnitude and frequency
globally, both degrading aquatic ecosystems and posing a
risk to public health (Havens, 2008; Cheung et al., 2013;
Taranu et al., 2015; Huisman et al., 2018; Ho et al., 2019).
Monitoring these cyanoHABs is necessary to track their
development and mitigate their effects in the context of a
changing climate (Paerl et al., 2016; Visser et al., 2016).
Monitoring cyanoHABs is challenging because they exhibit
substantial spatial and temporal variability (Kutser, 2009;
Carey et al., 2014) making it difficult to link complex bloom
dynamics with the underlying drivers for these systems (Paerl
et al., 2011; Ho and Michalak, 2015).

CyanoHABs demonstrate high spatial variability, which
complicates bloom measurement (Kutser, 2009). Drivers of
this spatial patchiness include winds and currents, with higher
concentrations of cyanobacteria typically observed at
downwind sites (Carey et al., 2014; Liu et al., 2019a).
Additionally, some cyanobacterial species have gas vacuoles,
which allow cells to control their buoyancy and rise and fall in
the water column creating spatial variability with depth
(Oliver et al., 2012). Even though spatial variability of
cyanoHABs is a known issue with regards to remote sensing
of blooms as measurements can vary substantially within a
satellite pixel (Kutser, 2009), satellite remote sensing tools
remain one of the key tools for monitoring cyanoHABs
because of their global coverage.

Remote sensing methods have the benefit of offering high
spatial and temporal coverage across large scales. Remote sensing
of cyanobacteria is possible due to the differences in spectral
signatures for cyanobacteria and other types of phytoplankton.
Phytoplankton contains chlorophyll-a as the main
photosynthetic pigment. This pigment demonstrates
absorption features in its spectral profile at 440 and 675 nm
(Ruiz-Verdú et al., 2008; Stumpf et al., 2016). Cyanobacteria
contain the secondary photosynthetic pigment phycocyanin in
addition to chlorophyll-a (Bryant, 1982; Matthews, 2011). Due to
its unique spectral signature (including an absorption peak
∼620 nm and a reflectance peak ∼650 nm) and limitation to
cyanobacteria and rhodophytes, phycocyanin concentrations
are often used to distinguish cyanobacteria from freshwater
phytoplankton (Kutser, 2009).

Many satellite remote sensing tools for monitoring harmful
algal blooms have been developed (see reviews by Kutser, 2009;
Matthews, 2011; and Gholizadeh et al., 2016). In this study we use
the Cyanobacterial Index (CI) remote sensing tool, which is a
spectral shape algorithm based on the tendency of Microcystis (a
common genus of cyanobacteria) to demonstrate weak
chlorophyll-a fluorescence compared to other phytoplankton
(Wynne et al., 2008; Wynne et al., 2010; Stumpf et al., 2016).
This results in an observed reflectance sag in the satellite data at
wavelengths of 681 nm. The CI algorithm uses the multispectral
MERIS sensor mounted on the Envisat satellite and the Ocean
and Land Color Instrument (OLCI) sensor on Sentinel-3 because
they have the correct spectral resolution to differentiate

cyanobacteria from other phytoplankton. While satellite
remote sensing allows for repeated sub-weekly observation of
the conditions at the same location, the spatial resolution is
usually coarse, ranging from 30 to 1,000 m (Kutser, 2009;
Hunter et al., 2017), with most cyanobacteria-specific
algorithms utilizing the MERIS and OLCI sensors, which have
a resolution of 300 m. This issue is further exacerbated by pixel
contamination close to the shoreline. Additionally, cloud
coverage is problematic, creating instances where no useful
data are obtainable from a satellite pixel. Finally, coarse
resolution satellites are not well suited to detect spatial
variability of cyanobacteria as the bloom density can vary by
up to two orders of magnitude within one satellite pixel (Kutser,
2009).

Given the coarse spatial resolution of satellite tools aimed at
detecting cyanobacteria, other high spatial resolution sampling
methods are more apt at measuring the spatial variability of
cyanoHABs. Many field deployable platforms such as
Autonomous Underwater Vehicles and small Unmanned
Aerial Systems, can collect data at high spatial resolution.
AUVs equipped with fluorescence sensors and/or on-board
samplers have been used to measure algal and cyanobacterial
blooms, (e.g. Robbins et al., 2006; Blackwell et al., 2008). sUAS
carrying Red-Green-Blue, multispectral, and sometimes
hyperspectral cameras have also been used for detecting
blooms (see review paper by Kislik et al., 2018). These
sampling methods have clear benefit due to their high spatial
resolution, but do not offer the repeat high temporal
measurements offered by satellite platforms.

When satellite tools are combined with other high resolution
monitoring tools, they augment the observer’s ability to both
monitor and study blooms (Vander Woude et al., 2019).
Additionally, the high spatial resolution methods, (e.g. AUV
and sUAS) may be used to quantify the spatial heterogeneity
of cyanoHABs, specifically to determine their Critical Scale of
Variability (CSV). CSVs (as defined by Blackwell et al., 2008) are
the length scales necessary to resolve the spatial variability of a
bloom. The CSV of a cyanobacterial bloom defines the distance
required between samples to observe the spatial “patchiness” or
changes in bloom concentration across space. The CSV also helps
define the spatial extent at which biological and physical
processes may occur (Fraschetti et al., 2006). The CSV is
important for designing sampling plans by selecting the
sampling resolution necessary to adequately characterize a
bloom (Vander Woude et al., 2019).

In this study, we measure cyanobacterial bloom density using
several methods at varying spatial scales and spatial resolutions to
understand how bloom density changes across scales. We collected
discrete water samples; hyperspectral measurements from a
handheld spectroradiometer; coarse spatial resolution
multispectral reflectance data from the OLCI sensor on the
Sentinel-3a satellite; high spatial resolution multispectral
reflectance data collected using a sUAS; and high spatial
resolution scattering and fluorescence data from an AUV. This
multiplatform approach provides a synoptic view of cyanobacterial
density across multiple spatial scales. The collected data were used to
1) understand the spatial and temporal trends at our study site; 2)
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quantify the CSV for cyanobacteria blooms; and 3) evaluate the
accuracy of the CI algorithm. Key recommendations stemming from
this work are consideration of the CSV of cyanobacteria blooms
when designing sampling plans and future satellite remote sensing
sensors, and continued refinement of the CI algorithm for improved
detection of low concentration blooms.

METHODS

Study Site
This study was conducted at Clear Lake, California, a large
(approximately 160 km2 in surface area) and shallow lake
(average depth 8 m, maximum depth 15 m). Clear Lake is
comprised of three basins–the Upper Arm, Oaks Arm, and
Lower Arm (Figure 1). All three basins are deep enough to be
thermally stratified but shallow enough to vertically mix fully
several times a year and partially mix almost daily, (i.e.
polymictic) (Rueda and Schladow, 2003). Clear Lake is
naturally eutrophic and supports large fish and waterfowl
populations. Algal blooms have been documented to occur
primarily in the late spring, summer, and fall (Winder et al.,

2010). Past research has identified the phytoplankton
community to be cyanobacteria dominated for most of the
year (Horne, 1975). CyanoHABs have increased in frequency
at Clear Lake since the mid-1900s to create nuisance scums and
odors, which cause public and environmental health concerns
(Richerson et al., 1994).

Data Collection and Data Processing
Data were collected in Clear Lake using several methods (Table 1;
Figure 1). The in situ data collection methods include collection
of discrete samples, hyperspectral data measurements using a
handheld spectroradiometer, multispectral imaging from a sUAS,
and fluorescence and scattering meter measurements from an
AUV. Additionally, cyanobacteria index (CI) was calculated from
Level 3 OLCI sensor data from the Sentinel-3a satellite. Finally,
meteorological and lake temperature data were obtained to
provide context to our cyanobacteria measurements.

Discrete Samples
Discrete water samples were collected across 32 sampling sites on
Clear Lake (Table 1; Figure 1), generally located near existing

FIGURE 1 | Sample site locations in Clear Lake (A) is an overview map of Clear Lake (B) shows the sampling locations in the Oaks Arm (C) shows the sampling
locations in the Lower Arm. The 300 × 300 m outlines of the Sentinel-3a pixels are also shown.
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sampling sites in routine water quality monitoring programs.
These existing sampling sites were selected to allow for future
comparison between the data collected in this study with data
collected in routine water quality monitoring programs; those
comparisons were not included with this research. To enable
comparisons between discrete samples and satellite CI values, the
sample sites are located within 19 separate Sentinel-3a pixels near
the centers of each Clear Lake basin to avoid shoreline
contamination of the satellite pixels. The samples were
planned such that three sample sites would be located within
one corresponding Sentinel-3a pixel, (e.g. CL03a, CL03b, and
CL03c were planned within the same Sentinel-3a pixel and are all
located nearby the routine CL03 water quality monitoring site).
However, due to an unknown projection issue associated with the
Sentinel-3a CI product obtained from the San Francisco Estuary
Institute (SFEI) and the National Oceanic and Atmospheric
Administration (NOAA) HAB Tool (see https://fhab.sfei.org/;
Stumpf et al., 2015) at the time of planning, the sampling sites did
not all necessarily occur in the same pixel and more pixels were
sampled than originally planned (19 pixels sampled vs. 10 pixels
planned). This projection issue was corrected in data processing
and analysis.

Discrete water samples were collected during four sampling
events in July, August, and October 2019 (Table 1). The sampling
dates were chosen to correspond with Sentinel-3a satellite
overpasses and with expected summer and fall algal blooms in
Clear Lake. The first sampling event in July 2019 included grab
sampling from 0.1 m depth. The sampling method was later
refined for the remaining sampling events in August and
October 2019 to include collection of an integrated depth
sample of the top 1 m of the water column. No correction was
made to the data despite the differences in sampling method
depth. Surface scums were not present at our study sites during
sampling so errors arising from the difference in sampling
method depth are believed to be minimal. Discrete samples
were filtered through pre-combusted (500°C for 2 h) Whatman
GF/F filters (0.7 μm nominal pore size). The filters from all four
sampling events were analyzed for chlorophyll-a by sample
processing by extraction in 90% acetone at −20°C for 24 h
following a modified EPA method 445.0 (Arar and Collins,
1997) and sample analysis on a Turner Designs 10 AU
fluorometer. The filters from three sampling events (July 12,

2019, August 16, 2019, and October 08, 2019) were analyzed for
phycocyanin following modified methods developed by Kasinak
et al. (2015); Konopko (2007); Siegelman and Kycia (1978) with
sample processing by extraction in 10 mM phosphate buffer (pH
6.8) with three freeze-thaw cycles and then sample analysis using
a Turner Designs TD700 fluorometer. The sampling event on
August 07, 2019 did not include analysis for phycocyanin because
this sample was collected with a different sampling program that
does not include sampling and analysis for phycocyanin.

Due to unforeseen complications, only one set of sample filters
from the July 12, 2019 and August 16, 2019 sampling events was
available for laboratory analysis. These filters were cut in half to
analyze both chlorophyll-a and phycocyanin from a single filter.
Prior to analysis of the Clear Lake samples, a test was run on split
filters vs. whole filter analysis with five replicate samples from
another site (surface samples collected from Pinto Lake, CA on
October 24, 2019). Three sets of filters were prepared from each
sample, with one set of filters analyzed for chlorophyll-a, one set
of filters analyzed for phycocyanin, and one set of filters cut in
half, with one half analyzed for chlorophyll-a and one half
analyzed for phycocyanin. A paired-sample t-test on the whole
and half filter data resulted in p-values of 0.42 and 0.77 for the
chlorophyll-a and phycocyanin data, respectively. Additionally,
the means of the replicates were found to be within a standard
deviation of one another. Given the statistically insignificant
difference between whole and half-filters, the half-filter
method was decided to be not ideal but acceptable in the
absence of other measurements.

Spectroscopy Data
High resolution spectral measurements were collected at eight
sampling sites on Clear Lake during three sampling events in
August and October 2019 (Table 1; Figure 1). Spectral
measurements were not made during the July 2019 sampling
event because the sampling equipment was not available on that
date. The sampling locations were selected such that one
sampling site out of every cluster of three discrete sample sites
had spectroscopy measurements completed. We could not collect
spectral measurements at every discrete sample site due to time
constraints. We used a Malvern Panalytical FieldSpec Handheld
two Pro spectroradiometer with a 7.5° fore optic angular field of
view. The spectroradiometer has a spectral resolution of <3 nm

TABLE 1 | Summary of data collection. Sampling sites CL03 (a, b, c, d, e, f), LA03 (a, b, c, d, e, f), P1 (S1, S2, S3), P2 (S1, S2, S3), and P3 (S1, S2, S3) are in the Lower Arm of
Clear Lake, OA04 (a, b, c, d, f) is in the Oaks Arm, and UA06 (a, b, c) and UA07 (a, b, c) are in the Upper Arm.

Sampling method

Date Sampling sites Chl-a PC Rad AUV sUAS

12-Jul-2019 CL03 (a, b, c), LA03 (a, b, c), OA04 (a, b, c), X X
UA06 (a, b, c), UA07 (a, b, c)

07-Aug-2019 P1 (S1, S2, S3), P2 (S1, S2, S3), P3 (S1, S2, S3) X X
16-Aug-2019 OA04 (a, b, c), OA04 (d, f) X X X X

LA03 (a, b, c), LA03 (d, e, f) X X X X
CL03 (a, b, c), CL03 (d, e, f) X X X X X

08-Oct-2019 CL03 (a, b, c), LA03 (a, b, c), OA04 (a, b, c), X X X
UA06 (a, b, c), UA07 (a, b, c)

Chl-a: discrete sample for chlorophyll-a; PC: discrete sample for phycocyanin; Rad: spectroradiometer.
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across a range of wavelengths from 375 to 1,075 nm, with a total
of 575 spectral bands (discrete wavelengths). At each site, three to
four measurements were taken following standard methods
(Tomlinson et al., 2016). Measurements over a 10% calibrated
spectralon reflectance plate and at the sky were also collected to
convert the radiance measurements to dimensionless reflectance
during post-processing (Mobley, 1999; Tomlinson et al., 2016).

Sentinel-3a Data
Satellite-derived cyanobacteria index (CI) was calculated from
Level 3 data obtained from NOAA for the multispectral OLCI
sensor on the Sentinel-3a satellite. Level 3 data products
include ρs, which is a dimensionless reflectance product
generated from Level 2 data (calibrated and georeferenced)
with additional correction for scattering and absorption
through the atmosphere (Wynne et al., 2018). CI is
calculated from ρs (herein referred to as “reflectance”) using
the CI algorithm (Eqs 1, 2) (Wynne et al., 2008; Wynne et al.,
2010). The CI algorithm is a spectral shape algorithm for
multispectral data from the MERIS sensor mounted on the
Envisat satellite and OLCI sensor on Sentinel-3a. The CI
algorithm was developed based on the spectral shape (SS) at
wavelength 681 nm (SS{681}) observed in the satellite data as
follows (Wynne et al., 2010):

CI � −SS{681}, (1)

SS{λ} � ρs{λ} − ρs{λ−} − (ρs{λ
+} − ρs{λ−}) ×

λ − λ−

λ+ − λ−
(2)

where, λ � 681 nm, λ+ � 709 nm, and λ− � 665 nm. This
algorithm was later refined to incorporate an exclusionary
criterion for the spectral shape at 665 nm (SS{665}), where,
λ � 665 nm, λ+ � 681 nm, and λ− � 620 nm (Matthews et al.,
2012; Lunetta et al., 2015; Coffer et al., 2020). The SS{665}
exclusionary criterion targets the 620 nm band, which is a
phycocyanin absorption feature (Lunetta et al., 2015). This
exclusionary criterion categorizes CI as containing
cyanobacteria when SS{665} > 0 and as not containing
cyanobacteria when SS{665} < 0 (Lunetta et al., 2015).
This research used both the original CI equation and the
revised CI equation with the addition of the SS{665}
exclusionary criterion. The CI algorithm (both original
and revised) was also applied to the spectroradiometer
reflectance data.

Using the approach in Tomlinson et al. (2016), a locally
tuned equation comparing chlorophyll-a and phycocyanin to
CI was determined for our study site. Previous proposed
equations relating CI to chlorophyll-a are shown below (Eq.
3 from Tomlinson et al., 2016 and Eq. 4 from Stumpf et al.,
2015).

chla (μg/L) � 4050 (± 271) × CI + 20 (± 3), (3)

chla (μg/L) � 4000 × CI + 10. (4)

A least-squares linear regression approach was used to model
the relationship between CI and both chlorophyll-a and
phycocyanin specific to Clear Lake.

Small Unmanned Aerial System Data
Very high spatial resolution multispectral imagery was collected
from the two Lower Arm sites (CL03 and LA03) on August 16,
2019 (Table 1; Figure 1). The sampling date was chosen as a
larger effort sampling event when coincident discrete samples,
satellite measurements, sUAS, and AUV data could be collected.
The sUAS and AUV tools were only available on this sampling
date due to resource limitations. The intention was to collect
measurements at three locations (two in the Lower Arm and one
in the Oaks Arm). These basins were selected for sampling by the
sUAS and AUV because at the time of mission planning, they
demonstrated the most cyanobacterial activity. However, due to
vehicle piloting difficulties only the two Lower Arm sites could be
sampled by the sUAS.

We used a MicaSense RedEdge multispectral camera mounted
on a Matrice 100 sUAS and operated using DJI GS Pro software
using standard methods (Liu et al., 2019b). The MicaSense
RedEdge camera, like other commercial multispectral cameras,
has individual lenses for each band with discrete exposure times
that optimize the radiometric range depending on the target (Kim
et al., 2020). Aerial flights were conducted with this sUAS at an
average height of 120 m above ground level, resulting in images at
a resolution of 8.2 cm/pixel. The flight lines had front and side
overlaps of 60%. Before and after each sUAS flight, standard
reflectance panel images were captured by the MicaSense camera
for later calibration of the data. Individual images were
georectified and stitched into a single orthomosaic of
multispectral reflectance (true geometrically correct and
mosaicked image) using Pix4Dfields software. The planned
sUAS flights were intended to cover an area aligned with and
equivalent two Sentinel-3a pixels (300 m × 300 m each).
However, as previously mentioned, due to an unknown
projection issue with the data used in planning, the sUAS
flights overlapped with several Sentinel-3a pixels, but none of
them were fully covered.

The MicaSense multispectral camera captures reflectance data
at five bands: blue (center λ � 475 nm with 20 nm bandwidth Full
Width at Half Maximum or FWHM), green (center λ � 560 nm
with 20 nm bandwidth FWHM), red (center λ � 668 nm with
10 nm bandwidth FWHM), near infrared (center λ � 840 nmwith
40 nm bandwidth FWHM), and red edge (center λ � 717 nm with
10 nm bandwidth FWHM). Chlorophyll-a was derived from the
reflectance data using the approach in Ha et al. (2017). Ha et al.
(2017) found an exponential equation using a green-red band
ratio yielded the best results for their study site (Eq. 5, where B3 �
green band and B4 � red band).

chla (μg/L) � 0.80 × exp(0.35 × B3/B4). (5)

We attempted to determine a locally tuned band ratio
equation computing chlorophyll-a for our study site by using
the coincident discrete sample results (n � 6); however, a clear
relationship was not found and the published equation (Eq. 5)
was used instead. The chlorophyll-a concentrations determined
from Eq. 5 were scaled to the discrete sample chlorophyll-a
measurements, where the scaling factor was equal to the ratio of
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the average of the discrete sample chlorophyll-a results to the
average of the sUAS-derived chlorophyll-a values. See
Supplementary Section S1 for more information on sUAS
data processing.

Autonomous Underwater Vehicle Data
High resolution data were collected using an Autonomous
Underwater Vehicle from one Lower Arm site (CL03) and one
Oaks Arm site (OA04) on August 16, 2019 (Table 1; Figure 1).
The sampling date and sampling locations are discussed in the
sUAS data section above. Additionally, the AUV sample locations
intended to include two Lower Arm sites and one Oaks Arm site.
However, due to vehicle deployment difficulties and time
constraints, only one Lower Arm site and the Oaks Arm site
could be sampled.

The AUV used is a small Gavia-class AUV. The instruments
mounted on the AUV include a Seabird Electronics SBE-49 CTD
(Conductivity, Temperature, Depth) sensor and a WETLabs
ECO Triplet BBFL2 combination scattering meter and
fluorometer. The BBFL2 determines turbidity through
measurement of red light scattering at 700 nm; colored
dissolved organic matter (CDOM) through fluorescence with
excitation at 370 nm and response measurement at 460 nm; and
chlorophyll-a through fluorescence with excitation at 470 nm
and response measurement at 695 nm. The detection ranges for
the BBFL2 sensors are 0–50 μg/L for chlorophyll-a, 0–375 ppb
for CDOM, and 0–5 m−1 for the scattering meter. The AUV is
also equipped with a navigation system including a combined
Teledyne RD Instruments workforce navigator Doppler velocity
log (DVL) and a Kearfott inertial navigation system (INS). The
AUV was deployed at a cruising speed of 1.5–2 m/s. The AUV
mission was designed to have the vehicle run at a constant depth
of 0.5 m below the lake surface. A tolerance of three standard
deviations from the mean depth was allowed for each mission
and all data outside this set tolerance was disregarded during
post-processing (Yu et al., 2002; Blackwell et al., 2008; Forrest
et al., 2008). The CTD sampled at 16 Hz, the combination
scattering meter and fluorometer sampled at approximately
0.9 Hz, and the navigation system records data at 1 Hz. The
three datasets were merged with data points interpolated using a
linear approach and the fastest sampling rate. The data were then
bin averaged to a bin size greater than the slowest sampled
dataset. The recorded scattering and fluorescence measurements
were converted to turbidity (NTU), CDOM (ppb), and
chlorophyll-a (μg/L) using the factory determined dark count
offsets (false positives read by the sensor in absolute zero light)
and scaling factors. The [back] scattering meter was not
calibrated in turbidity (NTU) units using a turbidity solution.
An approximate conversion from the sensor single-angle
scattering scale factor (m−1 sr−1) to a turbidity value (NTU)
was used to report the turbidity measurements. The
chlorophyll-a data were further scaled to the results of the
adjacent discrete samples to account for differences in the
field fluorometry measurements and the laboratory
chlorophyll-a extraction measurements. Although scaling the
AUV chlorophyll-a measurements by the discrete samples
does not ensure accuracy of the AUV results, it allows for

easier comparison of the two datasets. As the main purpose of
this study is to evaluate the variability of cyanobacteria blooms
rather than the magnitude, we feel this approach is acceptable.
See Supplementary Section S1 for more information on AUV
data processing.

Meteorology and Lake Temperature Data
Meteorological forcing and lake temperature data were acquired
for Clear Lake for our sampling dates at multiple locations across
the lake’s basins (Cortés and Schladow, 2020). To measure
meteorological conditions, a network of seven Davis
Instruments Wireless Vantage Pro2 Plus stations installed at
the shoreline around the perimeter of Clear Lake measured air
temperature, relative humidity, and wind speed and direction
every 15 min (see station map in UC Davis Tahoe Environmental
Research Center, 2020). Lake surface temperature was
determined from a network of Onset Water Temp Pro loggers
installed along the near-shore and adjacent to all but one of the
meteorological stations (∼0.5 m below lake water level) and also
installed on three permanent offshore navigation markers (within
the top 2 m of the water column). The thermistors sample every
10 min with 0.2°C accuracy and 0.02°C resolution. Lake water
clarity was characterized at each sampling site (Table 1; Figure 1)
using a Secchi disk.

Data Analysis
Critical Scales of Variability
CSVs of cyanobacteria were determined for this study using a
semivariogram analysis of the AUV and sUAS data using the
GeoR Package in R following similar methods as Blackwell et al.
(2008) and as described in Diggle and Ribeiro (2007). The CSV is
considered the “apparent range” (Blackwell et al., 2008) or the
“practical range” (Diggle and Ribeiro, 2007) at which the
semivariance levels off, forming the “sill” of the
semivariogram. This value was determined by visual
examination of the log-log plot of the semivariogram at the
point where there is a noticeable change in the slope of the line
(see Figure 2 of Moses et al., 2016), which corresponds to the point
of leveling off in the semivariogram. The semivariograms were
computed for the AUV-acquired chlorophyll-ameasurements and
the sUAS-derived chlorophyll-a measurements. Two
semivariograms were produced for the AUV missions in the
Lower Arm and in the Oaks arm. Initially semivariograms were
examined for every 500th pixel row and column, (i.e. lines) of sUAS
data subsampled from the mosaic of pixel values. A subset of data
(every 100th pixel row of the lines 2,500–4,500) were further
examined to determine the CSV from the sUAS data. The pixel
column data did not produce meaningful results to determine the
CSV, likely because the columns are shorter that the rows for our
data set. See Supplementary Section S1 for more information on
the data processing for the CSV data analysis.

Coefficients of Variation
We calculated the coefficients of variation of the datasets as an
additional metric to quantify the variability of the bloom. The
coefficient of variation is equal to the ratio of the standard
deviation to the mean.
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RESULTS

We measured cyanobacteria over four sampling dates in the
Summer and Fall 2019 at different sampling locations in Clear
Lake, CA (Table 1; Figure 1). The central aim of this work was to
characterize the CSV of cyanobacteria. We used five methods to
quantify cyanobacteria in the water: 1) laboratory analysis of
discrete samples for chlorophyll-a and phycocyanin; 2)
hyperspectral radiance measurements from a handheld
spectroradiometer; 3) coarse spatial resolution multispectral
reflectance data from the OLCI sensor on Sentinel-3a; 4) high
spatial resolution multispectral reflectance data collected using a
sUAS; and, 5) high spatial resolution scattering and fluorescence
data of turbidity, CDOM, and chlorophyll-a collected using
an AUV.

Discrete Sampling
The average chlorophyll-a concentration of all the samples was
approximately four times larger than the average phycocyanin
value, with mean ± standard deviation of 18.7 ± 12.0 μg/L and
4.60 ± 4.55 μg/L for chlorophyll-a and phycocyanin, respectively.
For individual samples, maximum values of phycocyanin
(25.6 μg/L) were about half the maximum chlorophyll-a
concentrations (46.1 μg/L). The mean of the ratio of
phycocyanin to chlorophyll-a was 0.57 ± 1.04. The correlation
coefficients for the relationship between chlorophyll-a and
phycocyanin are 0.54, 0.36, and 0.87 for the July 12, 2019,
August 16, 2019, and October 08, 2019 sampling dates,
respectively.

As time progressed over the three sampling dates, we observed
increasing chlorophyll-a concentrations relative to the
concentration of phycocyanin (Figure 2). Chlorophyll-a
concentrations were highest on October 08, 2019 (31.5 ±
6.16 μg/L), while the July 12, 2019 and August 16, 2019

concentrations were similar, 11.6 ± 11.6 μg/L and 13.8 ±
5.93 μg/L, respectively. The August 16, 2019 and October 08,
2019 sampling events had comparable phycocyanin
concentrations of 1.89 ± 1.14 μg/L and 3.37 ± 1.95 μg/L,
respectively. The largest phycocyanin concentrations were
obtained on July 12, 2019 (8.88 ± 5.70 μg/L). As a result, the
July 12, 2019 sampling event observed a higher average
phycocyanin to chlorophyll-a ratio of 1.48 compared to
average ratios of 0.19 and 0.10 for the August 16, 2019 and
October 08, 2019 events, respectively. Only chlorophyll-a was
measured on August 07, 2019 and the mean ± standard deviation
was 23.0 ± 6.54 μg/L (n � 9). The coefficients of variation for
chlorophyll-a are 100.0, 28.4, 42.9, and 19.5% for July 12, 2019,
August 07, 2019, August 16, 2019, and October 08, 2019,
respectively. The coefficient of variation for chlorophyll-a for
just the CL03 sites in the Lower Arm on August 16, 2019, where
coincident AUV and sUAS were taken, is 33%. The coefficients of
variation for phycocyanin are 64.2, 60.4, and 57.9% for July 12,
2019, August 16, 2019, and October 08, 2019, respectively. In
addition to the chlorophyll-a and phycocyanin measurements on
August 16, 2019 and October 08, 2019, we also identified the
dominant genera of cyanobacteria as Dolichospermum,
Gleotrichia, and Microcystis. The authors would like to note
that the results from the July 12, 2019 and August 16, 2019
sampling dates are believed to be underestimated. This is because
the sample filters from those dates arrived at room temperature
after transfer from lab to another.

To provide context to our measurements of cyanobacteria, we
measured meteorological forcing and lake surface temperature
data. Meteorological variables and lakes surface temperatures
were variable between the different basins (Table 2). Generally,
the Lower and Oaks arms were windier than the Upper Arm.
During our sampling dates, wind direction was generally from the
Northwest direction. The air and lake surface temperature results

FIGURE 2 | Phycocyanin and chlorophyll-a concentrations in discrete samples collected on July 12, 2019, August 16, 2019, and October 08, 2019. The July 12,
2019 sampling event observed a higher average phycocyanin to chlorophyll-a ratio compared to the other sampling dates. The averages for each sampling date are
shown as the solid symbols with the vertical error bars representing the standard error of the chlorophyll-ameasurements and the horizontal error bars representing the
standard error of the phycocyanin measurements. There is an outlier (phycocyanin � 25.6 μg/L and chlorophyll-a � 27.2 μg/L) from July 12, 2019 that is not shown
in this plot for visualization purposes.
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are varied but there appears to be some tendency of the Lower and
Oaks Arms to have warmer air temperature than the Upper Arm.
The relative humidity results also do not show a clear trend.
Finally, each basin has similar Secchi depths, but the Oaks Arm
consistently had the lowest clarity.

In Situ and Satellite-Based Spectra and
Cyanobacteria Index Values
We calculated hyperspectral reflectance data from
spectroradiometer measurements at several locations on August
07, 2019, August 16, 2019, and October 08, 2019 along with
concurrent multispectral satellite reflectance data for all
sampling locations and times. Paired hyperspectral/multispectral
reflectance data from the spectroradiometer measurements and
corresponding Sentinel-3a pixels on August 07, 2019, August 16,
2019 and October 08, 2019 were examined across the spectrum
600–750 nm, where most of the spectral features for phycocyanin
and chlorophyll-a occur (Figure 3). The in situ measurements
yield a much smoother curve with 150 bands of spectroradiometer
data across the range of wavelengths (600–750 nm). Sentinel-3a
captured reflectance across 21 bands, and thus, yielded coarser
curves. The spectra are presented across the full visible spectrum
(400–750 nm) in Supplementary Figure S1.

The hyperspectral measurements demonstrate spectral
signatures expected from algal and cyanobacteria-laden waters
including strong chlorophyll-a absorption of red light at ∼675 nm
(Figures 3A,C,E). A slight phycocyanin absorption feature
(characterized by reflectance trough) is observed at
615–630 nm as well as the reflectance peak at ∼650 nm. The
absorption feature at 615–630 nm is more prominently observed
in the data for the two August sampling dates.

The coarser reflectance plots (Figures 3B,D,F) of the
multispectral satellite data do not show the absorption and
reflectance features specific to phycocyanin and chlorophyll-a
as strongly as the hyperspectral reflectance plots. The
absorption feature by chlorophyll-a of red light (674 nm) is
present, while the phycocyanin spectral features at 620 and
650 nm are absent. The reflectance values from the satellite
data are higher than the reflectance values from the
spectroradiometer data particularly for the August 07, 2019
sampling date, which has the highest satellite reflectance values
of any of the sampling dates.

The CI calculated from the spectroradiometer measurements
(Field CI) were compared to the corresponding CI from satellite
measurements (Satellite CI) (Figure 4). CI was calculated both
using the original equation defined by Wynne et al. (2008 and
2010) and the revised equation which includes an exclusionary
criterion for the spectral shape around wavelength 665 nm
defined by Matthews et al. (2012) and validated for lakes in
the eastern US by Lunetta et al. (2015). CI without the
exclusionary criterion shows some seasonal trend with the
highest CI observed on August 07, 2019 with decreasing CI
until the lowest values on October 08, 2019 (Figure 4A). This
trend is consistent between the Field CI and the Satellite CI. We
obtained the highest CI values using satellite measurements, which
were four-fold larger than the overall mean Satellite CI, and only
two-fold larger when using field measurements. The Field CI are
generally higher than the Satellite CI for August 07, 2019 whereas
the reverse is true for October 08, 2019. The standard deviation was
1.04 × 10−3 for all the calculated CI values. All field reflectance data
failed to exceed the SS{665} exclusionary criterion threshold,
resulting in Field CI values of zero (Figure 4B). The same is true
for the October 08, 2019 satellite data.

TABLE 2 |Meteorological forcing and lake surface temperature data results. Data provided (columns from left to right) include sampling date, basin sampled, air temperature,
relative humidity, wind speed, wind direction, Secchi depth, and lake surface temperature. Generally, the Lower and Oaks arms were windier and have warmer air
temperature than the Upper Arm during our sampling events. The Oaks Arm consistently has the lowest clarity based on the Secchi depths.

Date Basin Air temp (°C) RH (%) Wind v (ms−1) Wind dir Secchi za (m) Lake
surface temp (°C)

Daily average
12-Jul-2019 UA 22.8 57 0.1 N – 25

LA 26.2 48 1.8 NW – 24
OA 25.6 47 2.2 NW – 24.4

07-Aug-2019 LA 21.8 49 1.8 WSW – 26.9
16-Aug-2019 LA 28.2 38 0.9 WSW – 26.2

OA 27.7 43 1.3 NW – 26.8
08-Oct-2019 UA 16.9 44 4.0 SW – 18.7

LA 18.6 51 2.2 WNW – 19
OA 18.6 50 2.2 WNW – 18.7

Value at 12:00 PDT
12-Jul-2019 UA 24.2 69 0.1 N 2.9 24.8

LA 29.6 52 0.1 NE 2.6 24.2
OA 27.5 51 2.2 W 2.0 24.8

07-Aug-2019 LA 27.8 41 2.7 NW 2.5 27.1
16-Aug-2019 LA 29.7 45 1.8 NW 2.6 26.7

OA 31.1 40 0.1 WSW 1.2 27.5
08-Oct-2019 UA 22.7 39 0.1 W 1.2 20.6

LA 21.5 42 1.8 W 1.1 20.2
OA 21.5 42 1.8 W 1.0 20.4

aSecchi depths are single values measured at time of sampling. 12-Jul-2019 Secchi depth measured on 13-Jul-2019; 08-Oct-2019 Secchi depth measured on 11-Oct-2019.
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Relationship Between Cyanobacteria Index,
Chlorophyll-a, and Phycocyanin
The relationship between Field CI and chlorophyll-a was significant
(p < 0.05) on only one sampling day (August 07, 2019). For Satellite

CI and chlorophyll-a, the relationship was significant for three
sampling days, and there was a significantly positive relationship
across all sampling days (Figures 5A,B). The October 08, 2019 did
not fit the same trend as the other dates for Field CI vs. chlorophyll-a.

FIGURE 3 | Spectra from in situ spectroradiometer (A, C, E) and Sentinel-3 pixel data (B, D, F) for different sampling dates (A–B) August 07, 2019 (C–D) August
16, 2019, and (E–F) October 08, 2019. The field spectra demonstrate spectral features for phycocyanin and chlorophyll-a which are less discernable in the coarser
satellite data. Each colored line represented the results from a different discrete sample site (n � 61 total over three sampling dates) for the spectroradiometer data and a
different pixel (n � 42 total over three sampling dates) for satellite data. The vertical gray lines represent the spectral band centers of Sentinel-3a. Note the difference
in the y-axis range between the reflectance plots. Reflectance is dimensionless.
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For this date, we observe the highest chlorophyll-a concentrations
but also the lowest Field CI (Figure 5A). The Satellite CI to
chlorophyll-a does not show this same trend with the October
08, 2019 Satellite CI values similar to the other sampling dates
(Figure 5B). The CI to phycocyanin relationship is less clear,
although there is a positive linear trend evident in the July 12,
2019 data (only Satellite CI is available for this date) (Figures 5C,D).

We found significant relationships (corrected p-value< 0.05, where
p-value is corrected using Benjamini and Hochberg False Discovery
Rate procedure) for only six out of sixteen evaluated linear models
between Field and Satellite CI to chlorophyll-a and phycocyanin for all
the available data as well as each individual sampling date. Of those
significant relationships, we found moderately low to moderate
correlation (r2 values between 0.08–0.39) for most of the linear
models (Table 3). The linear model between Field CI and
chlorophyll-a for August 07, 2019 and Satellite CI and chlorophyll-
a for July 12, 2019 both demonstrated moderately high correlation
with r2 values of 0.68 and 0.65, respectively (Table 3).

Small Unmanned Aerial System
Measurements
Conditions on the day of sUAS deployment were clear and
calm, with sunny skies and low to no cloud cover. The sUAS-

derived chlorophyll-a ranged from 0 to 39.7 μg/L. For image
presentation of the data the upper and lower bounds were set
to the 99.7 percentile (3σ � 18.2 μg/L) and 0.3 percentile (−3σ �
11.7 μg/L), respectively (Figure 6). The chlorophyll-a
concentrations are variable throughout the site with higher
concentrations observed near the northern portions and
through an area in the eastern portion of the site. The
average calculated chlorophyll-a value was 15.3 mg/L ±
0.90 μg/L. The coefficient of variation for the sUAS-derived
chlorophyll-a is 5.92%.

Autonomous Underwater Vehicle
Measurements
Concurrent with the sUAS flights, an AUV was deployed on
August 16, 2019 in the Lower and Oaks Arms of Clear Lake.
Sensors mounted on the AUV collected continuous
measurements of turbidity, chlorophyll-a, and CDOM during
deployment at an average depth below the free water surface of
∼0.6 m in the Lower Arm and ∼0.9 m in the Oaks Arm
(Figure 7). Conditions were mild on the day of deployment
with low winds (<5 kph) and low wave heights (<10 cm). Lake
clarity was low, similar to other observations made for our

FIGURE 4 | (A) CI without the SS{665} exclusionary criterion for field spectroradiometer measurements (y-axis) and the Sentinel-3 measurements (x-axis) for the
same sampling dates (B) CI with the SS{665} exclusionary criterion for field spectroradiometer measurements (y-axis) and the Sentinel-3 measurements (x-axis) for the
same sampling dates. The CI calculated without the SS{665} exclusionary criteria demonstrates good correlation between the field CI and satellite CI. The CI calculated
with the exclusionary criteria for the field measurements resulted in CI equal to zero in all cases. The CI calculated with the exclusionary criteria for the satellite
measurements resulted in CI equal to zero for all of October 08, 2019 data.
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FIGURE 5 |Relationship of (A)CI from field spectroradiometer data to chlorophyll-a concentration (B)CI from satellite data to chlorophyll-a concentration (C, D) as
(A, B) except for to phycocyanin concentration. Note the difference in axes ranges between each plot. Linear models are shown for those relationships that are significant
(corrected p-value < 0.05, where p-value is corrected using Benjamini and Hochberg False Discovery Rate procedure). Few of the modeled relationships are significant.

TABLE 3 | Linear model parameters as well as the model performances of results of least-squares linear regression analysis relating the calculated CI to observed
chlorophyll-a and phycocyanin concentrations. Only the linear models Field CI vs Chlorophyll-a (07-Aug-2019), Satellite CI vs Chlorophyll-a (All Data, 12-Jul-2019, and
16-Aug-2019), and Phycocyanin vs Satellite CI (12-Jul-2019 and 8-Oct-2019) are significant (corrected p-value < 0.05, where p-value is corrected using Benjamini and
Hochberg False Discovery Rate procedure). The significant models have positive linear slopes. The significant models have moderately low to moderately high correlation.

Field CI vs Chlorophyll-a Satellite CI vs Chlorophyll-a

Date Linear model r2 Linear model r2

All data chla(μg/L) � −1991 × CI + 26.2 0.05 chla (μg/L) � 3040 × CI + 16.7 0.08
12-Jul-2019 NA NA chla (μg/L) � 4733 × CI + 8.3 0.65
07-Aug-2019 chla (μg/L) � 7539 × CI + 7.5 0.68 chla (μg/L) � 3438 × CI + 17.4 0.19
16-Aug-2019 chla (μg/L) � 6297 × CI + 5.2 0.21 chla (μg/L) � 8336 × CI − 0.8 0.21
08-Oct-2019 chla (μg/L) � 6858 × CI + 31.6 0.14 chla (μg/L) � 7342 × CI + 24.2 0.15

Field CI vs Phycocyanin Satellite CI vs Phycocyanin

Date Linear model r2 Linear model r2

All data chla (μg/L) � −457 × CI + 3.1 0.06 chla (μg/L) � 452 × CI + 3.3 0.01
12-Jul-2019 NA NA chla (μg/L) � 1813 × CI + 7.6 0.39
16-Aug-2019 chla (μg/L) � −353 × CI + 2.8 0.01 chla (μg/L) � 466 × CI + 1.1 0.01
08-Oct-2019 chla (μg/L) � 1276 × CI + 2.9 0.04 chla (μg/L) � 3468 × CI − 0.4 0.32
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other sampling events. Due to technical difficulties during
operations, data were only obtained from the Lower Arm
site CL03 and the Oaks Arm site OA04. Additionally, AUV
and sensor hardware issues during deployment may have
resulted in strings of zero values, which were subsequently
removed from the dataset (Figure 7).

The turbidity, chlorophyll-a, and CDOM results from the
AUV mission showed spatial variability varied among the basins.
Turbidity was higher in the Oaks Arm than in the Lower Arm,
with averages of 1.58 ± 1.13 NTU and 0.57 ± 0.72 NTU,
respectively, and maximum values approximately double in
the Oaks Arm (Figures 7A,B). The coefficients of variation for
turbidity are 127% in the Lower Arm and 71.4% in the Oaks Arm.
The chlorophyll-a results had higher maxima in the Lower Arm
than in the Oaks Arm (58.6 μg/L and 23.8 μg/L, respectively), but
higher average chlorophyll-a concentrations in the Oaks Arm
compared to the Lower Arm (18.7 μg/L and 9.26 μg/L,
respectively) (Figures 7C,D). The coefficients of variation for
chlorophyll-a are 119% in the Lower Arm and 15.2% in the Oaks
Arm. The CDOM concentrations in the Lower Arm were below
detection. This occurs because the factory determined offset and
scaling factor can result in some CDOM values calculated from
the fluorescence counts to be below the detection limit, which we
interpret as zero values. The CDOM concentrations ranged from
0 to 9.12 ppb in the Oaks Arm and averaged of 2.78 ± 1.55 ppb
(Figures 7E,F). The coefficient of variation for CDOM in the
Oaks Arm is 56.0%.

Co-Located and Coincident Measurements
We used the concurrent and co-located measurements to obtain a
more complete characterization of a cyanobacteria bloom in the
Lower Arm of Clear Lake on August 16, 2019 (Figure 8). There is
observed variability in the measurements between the different
sensors and platforms employed at the site. As seen in the
southwest corner of the site, the lowest discrete sample result

is observed (8.21 μg/L chlorophyll-a), whereas the adjacent AUV
fluorometry results indicate chlorophyll-a levels with
concentrations as high as 54.3 μg/L. The range of average ±
standard deviation of chlorophyll-a values for this site on this
sampling date were 15.3 ± 5.02 μg/L for the discrete samples,
9.26 ± 11.1 μg/L for the AUV fluorometer results, and 15.3 ±
0.90 μg/L for the sUAS-derived chlorophyll-a results. In
addition to variance between platforms, high spatial
heterogeneity is also observed inside each satellite pixel. At
sampling site (CL03) on August 16, 2019, the discrete sample
chlorophyll-a results range from 8.21 to 22.6 μg/L; the AUV
chlorophyll-a results range from 1.06 to 58.6 μg/L; and the sUAS-
derived chlorophyll-a results range from 0 to 39.7 μg/L.

Critical Scales of Variability
Chlorophyll-a concentrations are spatially autocorrelated in the
AUV and sUAS data. The semivariograms have a mostly
asymptotic shape with the value of semivariance increasing
with distance and then leveling off (Figure 9). The spatial
autocorrelation is stronger in the AUV data than the sUAS,
and especially in the AUV mission in the Lower Arm where the
variation overall is very low between measurements. From the
semivariograms of the AUV-acquired chlorophyll-a
measurements (Figures 9A,B) and also considering their log-
log plots, we find the CSV occurs at distances of 70–100 m. From
the semivariograms and the log-log plots of the sUAS-derived
chlorophyll-a measurements, we find the CSV occurs at roughly
175 m on average with the CSV ranging from 70 to 300 m for the
21 lines evaluated (Figures 9C,D).

A semivariogram analysis was also completed on the AUV
turbidity and CDOM data. The semivariogram analysis on the
CDOM data did not yield any meaningful results for the Lower
Arm and the Oaks Arm mostly demonstrated a leveling off
pattern (see Supplementary Figure S2). The CSV for the
CDOM is estimated to be ∼100 m based on the semivariogram

FIGURE 6 | sUAS-derived chlorophyll-a (μg/L) image from August 16, 2019. Spatial variability is observed in the sUAS-derived chlorophyll-a image with higher
concentrations observed near the northern portions and through an area in the eastern portion of the site.
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for the Oaks Arm data. The semivariogram for the turbidity data
were similar to those for chlorophyll-a (see Supplementary Figure
S3). The CSV for Turbidity is estimated to be between 90 and 100m.

DISCUSSION

While satellite tools have clear advantages with early detection of
cyanoHABs, which has quantifiable socioeconomic benefits (Stroming
et al., 2020), they do not adequately characterize bloom spatial
variability (Kutser, 2009). This study used a multiplatform sampling
approach to measure cyanoHABs to characterize spatial variability of
the blooms. Each sampling method provides a perspective of a
cyanobacteria bloom from a different vantage point. Satellite
imagery provides high coverage and temporal resolution of the
bloom. sUAS-acquired imagery provides good coverage and high
spatial resolution of the surface of the bloom. Measurements from

the AUV provides high spatial resolutionmeasurements of the blooms
underwater. Finally, the discrete samples and spectroradiometer
measurements provide context and validation of the other methods
as well as an understanding of the surface forcing conditions.

Synoptic View of Cyanobacterial Blooms
Each of cyanobacteria sampling methods employed was a
compromise of the sampling scale and spatial, temporal, and,
in some cases, spectral resolution. While previous studies have
used AUV, (e.g. Robbins et al., 2006; Blackwell et al., 2008) and
sUAS platforms, (e.g. Kislik et al., 2018), a more complete picture
of cyanobacterial blooms is obtained if these high resolution
platforms are deployed concurrently, which, to our knowledge,
has not been done to date. When comparing the measurements
from the discrete samples, AUV, and sUAS, we find the discrete
samples fail to capture the spatial variability in chlorophyll-a
concentrations (Figure 8). Based on their coefficients of

FIGURE 7 | AUV data results for (A, B) turbidity (NTU) (C, D) chlorophyll-a (μg/L), and (E, F) CDOM (ppb) for (A, C, E) the Lower Arm and (B, D, F) the Oaks Arm.
Running averages (5 consecutive results) are shown for each plot in black. Turbidity is higher in the Oaks Arm than the Lower Arm. The maximum chlorophyll-a
concentrations are higher in the Lower Arm while the average concentrations are roughly twice as high in the Oaks Arm. CDOM values were zero in the Lower Arm and
averaged 2.7 ppb in the Oaks Arm.
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variation, the discrete samples only capture 28% of the
variability measured by the AUV. The discrete samples are
limited to six disparate locations and only represent the
chlorophyll-a concentration for each discrete point. However,
these sample results can be scaled up to the higher spatial
resolution provided by the AUV and sUAS measurements by
providing accurate measurements to scale the AUV results to
(Figures 7C,D) and by informing models relating the sUAS
measurements to chlorophyll-a concentrations (Figure 6).
These higher resolution measurements demonstrate the
inherent spatial variability of these blooms and how discrete
sampling under resolves bloom dynamics.

The high spatial variability is also observed within each satellite
pixel. The intra-pixel variability is reflected in the standard
deviation of the AUV chlorophyll-a measurements within each
pixel, which was on average 5.37 μg/L (n � 10, only pixels with a
minimum of 20 AUV points were included). Using this average
standard deviation, we find at least 28 discrete samples are needed
to estimate the chlorophyll-a concentrations of a bloom (95%
confidence interval with 2 μg/L margin of error) within a 300 ×
300 m pixel (Israel, 1992). Collecting this many samples is
impractical for many research and monitoring programs, which
highlights the need for calibrated multi-platform measurement
programs to more precisely measure and track bloom densities.

The inter-basin variability is observed with respect to the
meteorological data. Generally, and although the observed
differences are slight, the meteorological and lake surface
temperature data (Table 2) near the time of sampling (values at
12:00 local time) show the air and lake water surface temperatures
were warmer and the wind speeds were calmer (thus lower mixing)

for the basins that demonstrated the highest ratio of phycocyanin to
chlorophyll-a for that sampling date, which indicates dominance by
cyanobacteria over phytoplankton. These include the Upper Arm
for July 12, 2019, OaksArm forAugust 16, 2019, and theUpper Arm
for October 08, 2019. These observations are consistent with the
understanding that cyanobacteria favor warm temperatures and
calm, stratified lake conditions, and in such conditions will
outcompete phytoplankton (Paerl and Huisman, 2008). Our
results support the concern that cyanobacteria blooms are
expected to increase with increasing global temperatures
associated with climate change (Paerl and Huisman, 2009).

Critical Scales of Variability of
Cyanobacterial Blooms
CSVs of cyanobacterial blooms are the length scales necessary
for detecting the spatial variability or “patchiness” observed in
blooms. Previous phytoplankton and cyanobacteria bloom
CSVs have been less than the spatial resolution for Sentinel-
3a (300 m). Wrigley and Horne (1974) visually identified
length scales on the orders of meters for detecting the
microstructure variation of cyanoHABs in Clear Lake. They
further identified complex patterns of cyanoHABs as not being
detectable by conventional boat-based sampling techniques.
Blackwell et al. (2008) computed the CSV for fluorescence
measurements from an AUV-platform at sub-kilometer scales
ranging from 23 to 170 m in coastal systems. While the work of
Blackwell et al. (2008) was not in a freshwater system, they
used a similar vehicle and instrumentation as in this study.
Moses et al. (2016) evaluated scales of variability of ocean color

FIGURE 8 | Concurrent measurements of cyanobacteria bloom in the Lower Arm of Clear Lake (site CL03) on August 16, 2019. Variability is observed in the
chlorophyll-ameasurements between the different sampling platforms. Also, there is high intra-pixel variability of the chlorophyll-ameasurements. Image includes grab
sample chlorophyll-a observations (large circles), AUV chlorophyll-a measurements (small circles), and sUAS-derived chlorophyll-a as background image. Sentinel-3a
satellite pixels shown as dark grey outlines.
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parameters (including phytoplankton) in coastal systems by
determining the distance at a critical change in slope for the
plot of distance vs. coefficient of variance using ship-based,
airborne, and satellite data. They found scales of variability
between 75 and 600 m, with an average distance of 200 m.
Finally, Vander Woude et al. (2019) identified scales of
variability for cyanoHABs in the Great Lakes from
hyperspectral data using decorrelation scales. They found
scales of variability ranged from 8 to 335 m.

The CSV is necessary to improve sampling plans by selecting
the sampling resolution necessary to adequately characterize a
bloom (Vander Woude et al., 2019). We find the AUV
fluorometer results correspond to a CSV of 70–100 m and the
sUAS-derived chlorophyll-a concentrations correspond to a CSV
of approximately 175 m. These length scales of variability are less

than the 300 m pixel size of the OLCI-derived CI. The CSV found
by this and other studies (e.g. Blackwell et al., 2008; Moses et al.,
2016; Vander Woude et al., 2019) should be used to inform how
distant to sample for cyanobacteria to ensure the bloom is
adequately resolved. Additionally, the CSV may inform sensor
specifications for future satellite development to have spatial
resolutions equal to or finer than this CSV while maintaining
similar temporal and spectral scales to Sentinel-3 to adequately
monitor cyanobacterial blooms (such as those found by Moses
et al., 2016 for sensor design over coastal targets).

Challenges of Multimodal Platform
Sampling
Despite being able to characterize cyanobacteria blooms, there are
significant challenges associated with each method detailed in this

FIGURE 9 | Semivariograms of chlorophyll-ameasurements from (A) AUVMissions in Lower Arm (B) AUVMission in Oaks Arm; and (C) lines extracted from sUAS
data in Lower Arm. Panel (D) shows the log-log scale of the sUAS semivariograms shown in panel (C), which is used for determining the CSV. Semivariograms
demonstrate spatial autocorrelation with close data points having less variation. The semivariograms level off at the CSV at roughly 70–100 m for the AUV data and at
175 m on average for the sUAS data, with values ranging from 70 to 300 m for the 21 lines evaluated.
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work. Firstly, as shown in the CSV analysis, one of the biggest
disadvantages of using satellite imagery is that the CSV for
cyanobacteria blooms are finer than the Sentinel-3a pixel size of
300m. Secondly, the results of this research also indicate poor
performance of the revised CI algorithm for Clear Lake. Despite
these challenges, this and other satellite-based remote sensing tools are
invaluable for water managers and researchers because of their repeat
measurements at high temporal frequency and spatial coverage, which
provides data on cyanoHABs where monitoring programs are
currently lacking (Matthews, 2011). Furthermore, even without
calibration and validation, we speculate the CI algorithm still
provides valuable information on development and trends of
cyanoHABs.

As shown in Figure 4A, the CI algorithmwithout the exclusionary
criterion demonstrates good performance as the results of the CI
follow a 1:1 line on the plot. In contrast, the revised CI algorithmusing
the exclusionary criterion, as suggested for best practice (Stumpf et al.,
2015; Wynne et al., 2018), produces false negatives. The CI with the
exclusionary criterion calculated from the spectroradiometer
measurements results in all CI values equal to zero (Figure 4B).
Additionally, the CI with the exclusionary criterion calculated from
the satellite measurements from October 08, 2019 results in all CI
values equal to zero. Visual observations in the field and microscopy
confirmed that cyanobacteria were present on the sampling dates, in
contradiction to the CI results equal to zero.

The exclusionary criteria of SS{665} is less sensitive than the
original SS{681} CI algorithm of spectral shape around 681 nm, and
thus does not adequately capture low-level cyanobacteria blooms
(Urquhart et al., 2017). The spectral shape around 665 nm (SS{665})
is influenced by increased absorption of the 620 nm band by
phycocyanin compared to chlorophyll-a (Lunetta et al., 2015).
Our results show an absorption feature at 615–630 nm (Figures
3A,C,E), however, the depression is not significant enough to change
SS{665} from negative to positive in order for the revised CI
algorithm with the exclusionary criterion to identify
cyanobacteria. Although the cyanobacteria blooms during our
sampling dates were not as large as has been observed on Clear
Lake in other years, there were still cyanobacteria present despite not
being detected using the CI algorithm with the exclusionary
criterion. The SS{665} exclusionary criteria is designed to reduce
the rate of false-positives (Lunetta et al., 2015), however, as seen in
our results, it also increases the rate of false-negatives by failing to
detect low-concentration blooms. These low detections of
cyanobacteria are still valuable (Matthews et al., 2012) as they
allow water managers to observe and prepare for the onset of
blooms. We recommend continued data collection and research
to tune the exclusionary criterion for improved performance at Clear
Lake, and likely other lakes and reservoirs. The exclusionary criterion
could be tuned by adjusting the zero threshold so that low level
blooms would result in a SS{665} greater than the revised threshold.
This adjustment could improve the algorithm results for detection of
low level cyanobacteria blooms.

In addition to evaluating the performance of the CI algorithm,
we evaluated the relationship of CI to chlorophyll-a and
phycocyanin. Previous research has shown mixed success
when comparing CI to chlorophyll-a and to phycocyanin.
Poor correlations between CI and phycocyanin and

chlorophyll-a have been reported by Kudela et al. (2015) and
Xu et al. (2019), respectively. However, there has been better
success by others (Tomlinson et al., 2016 found an r2 � 0.95 for
the relationship of CI to chlorophyll-a). Additionally, on a
continental scale, the CI has shown good correlation to
cyanobacterial abundance (cells/mL) (Lunetta et al., 2015;
Clark et al., 2017). We feel the mixed success of establishing a
relationship of CI to chlorophyll-a and phycocyanin in this study
may be due to limitations, both in scope and robustness, of our
dataset. Our dataset does not validate nor disprove the CI
algorithm, rather our work shows that more research is needed.

Inland waters are optically complex (Ortiz et al., 2019)
meaning the application of remote sensing tools is challenging.
Use of spectral decomposition methods aimed at identifying the
specific components of a bloom may prove more useful for some
inland waters, where spectral shape algorithms such as the CI are
unsuccessful. This is shown by Avouris and Ortiz (2019) with
their use of varimax-rotated principal component analysis to
partition the spectral components of a bloom, although they also
acknowledge that further research is needed. The confounding
factors for use of remote sensing methods in optically complex
waters and our findings in the variation in the CI to chlorophyll-a
and phycocyanin relationship emphasize the need to better
understand how CI performs on specific waterbodies of
interest when making decisions based on CI values.

On a finer scale, one of the main challenges associated with using a
fluorometer sensor on an AUV is the effect of non-photochemical
quenching (NPQ) on chlorophyll-ameasurements. NPQ is the process
by which plants and algae dissipate excess light energy than is needed
for photosynthesis (Müller et al., 2001). NPQ is also known to occur in
cyanobacteria and reduces chlorophyll-a fluorescence (Humbert and
Törökné, 2017). Therefore, ground truthing data using fluorometry
for comparison to satellite remote sensing productsmust account for
the of decrease in daytime chlorophyll-a fluorescence due to NPQ
(Carberry et al., 2019). In situ data collected for comparison to
satellite products is ideally collected near the surface of the water and
close to the time of daytime satellite overpass, which in the case of
Sentinel-3a forClear Lake is approximately 12:00 pm (local time). This
directly conflicts with collection of chlorophyll-a data using
fluorometry to avoid the impacts of NPQ, which occur closer to
thewater surface and follow the diurnal parabolic pattern of shortwave
radiation (see the results of Austin, 2019). Further research into
alleviating and/or accounting for the impacts of NPQ on
fluorescence measurements for satellite validation is needed.
However, even without this NPQ correction applied to
fluorescence datasets, we find AUV-acquired fluorescence data are
useful for determining the CSV of the blooms even if the relative
magnitude of chlorophyll-a concentrations remains poorly quantified.

In addition to the challenges associated with fluorometry
measurements on the AUV, we found difficulties with the other
remote sensing methods employed in this research. Although aerial
imaging with sUAS flights provides a larger coverage and higher
spatial resolution view of a cyanobacterial bloom, there are challenges
associated with the sUAS multispectral imaging method. One
challenge is that there may be uncertainty in the sUAS
measurements due to a potentially lower signal to noise ratio of
the MicaSense camera over a water body, due to the lower radiance
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level than typical terrestrial targets (Kim et al., 2020). Additionally, the
coarser spectral resolution of the typical multiband multispectral
camera limits the ability to capture the fine and narrower
absorption features observed for phycocyanin and chlorophyll-a in
the hyperspectral spectroradiometer data (Figure 3). The MicaSense
camera used for our study has very few bands at limited wavelengths,
and this did not allow for calculation of the CI from the sUAS data,
although it did allow for calculation of chlorophyll-a from a known
band ratio relationship (Ha et al., 2017). A locally tuned chlorophyll-a
band ratio equation could not be determined for Clear Lake because
there were not enough coincident measurements (n � 6). There are
consequences of using a published equation tuned to another study
site (Lake Ba Be in Vietnam in the case of Ha et al., 2017). We
speculate that a locally tuned relationship would yield more accurate
results. In the case of this study, the unscaled sUAS-derived
chlorophyll-a measurements using the published equation were
much lower than the discrete sample chlorophyll-a results. For this
reason, we scaled the sUAS-derived chlorophyll-a results so that the
average equals the average of the adjacent discrete samples. This
allowed for easier comparison of the datasets. Additionally, the main
purpose of this study is to evaluate the variability of cyanobacteria
blooms and not necessarily themagnitude of the chlorophyll-a results.
Thus, we acknowledge that the sUAS-derived chlorophyll-a results
without a locally tuned equation, although scaled to the discrete
sample results, should not be used to directly consider the magnitude
of the concentrations individually. Further research with additional
discrete sampling coincident to sUAS flights is needed to develop a
locally tuned equation relating chlorophyll-a to a reflectance band
ratio for this site in order for themagnitudes of the sUAS chlorophyll-
a results to be meaningful. Finally, we encountered challenges with
photomosaicing the sUAS images over water because there are
limited static reference points for image matchups and further
challenges due to wave action. Due to these challenges, we were
not successful in photomosaicing the images from the second
sUAS site (LA03) and that data is not presented in this paper.

CONCLUSION

This research used a multiplatform sampling approach to evaluate
the spatial variability including the CSV of cyanobacteria blooms.
We find the CSV for cyanobacteria blooms is on the order of
70–175 m, which should be considered when planning sampling
efforts. A multiplatform approach provides a more holistic view of
a cyanobacteria bloom as each sampling method is completed at
different sampling scales and resolutions. We found high intra-
pixel variability and also variability between methods at discrete
sampling locations. Based on intra-pixel variability of our
measurements, we determined a sample size of 28 discrete
samples per 300 × 300 m pixel is necessary to adequately
characterize the variability of a bloom. Finally, we find low
sensitivity of the revised CI algorithm with exclusionary criteria,
which failed to detect cyanobacteria at Clear Lake during our
sampling events. As such, the exclusionary criterion should be
tuned for Clear Lake and potentially for all lakes across California,
with the zero threshold adjusted to improve the algorithm results
for low level cyanobacteria blooms.

With many lakes across the globe experiencing an increase in the
frequency and severity of harmful algal blooms of cyanobacteria
(Taranu et al., 2015; Ho et al., 2019), there is a need to develop of
tools for water managers to understand and predict their inception.
Satellite-based remote sensing tools have emerged as a solution for
water managers to monitor the onset and development of harmful
algal blooms (Coffer et al., 2020). This research provides data for
ground-truthing and algorithm validation, which is essential before
widespread use and data interpretation of these satellite products can
take place. However, this higher resolution data from autonomous
platforms also demonstrates that satellite measurements under-
resolve the spatial variability of cyanoHABs. Therefore, strategies
will need to be used to scale data between these different platforms.
Validation of remote sensing tools will also allow for high temporal
resolution cyanobacteria data to be easily accessible by water
managers which will aid as a decision support tool. This data will
reveal daily, seasonal, and interannual trends, which will be useful to
researchers with understanding the drivers of cyanobacteria blooms
and determining appropriate engineering solutions to manage large
scale harmful algal blooms.
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