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Urban air pollution is a matter of concern due to its health hazards and the continuous

population growth exposed to it at different urban areas worldwide. Nowadays, more

than 55% of the world population live in urban areas. One of the main challenges to

guide pollution control policies is related to pollutant source assessment. In this line,

U.S. Environmental Protection Agency’s Positive Matrix Factorization (EPA-PMF) has

been extensively employed worldwide as a reference model for quantification of source

contributions. However, EPA-PMF presents issues associated to source identification

and discrimination due to the collinearities among the source tracers. Multi-Isotopic

Fingerprints (MIF) have demonstrated good resolution for source discrimination, since

urban sources are characterized by specific isotopic signatures. Source quantification

based on total aerosol mass is the main limitation of MIF. This study reports strategies

for PMF and MIF combination to improve source identification/discrimination and its

quantification in urban areas. We have three main findings: (1) cross-validation of PMF

source identification based on Pb and Zn isotopic fingerprints, (2) source apportionment

in the MIF model for total PM mass, and (3) new insights into potential Zn isotopic

signatures of biomass burning and secondary aerosol. We support future studies on

the improvement of isotopic fingerprints database of sources based on diverse elements

or compounds to boost advances of MIF model applications in atmospheric sciences.

Keywords: air polluition, megacities, vehicular emission, industrial emission, secondary aerosol, biomass burning,

road dust, pollutant sources

INTRODUCTION

Air pollution is a major environmental threat to public health and climate change, which results
in millions of premature deaths each year and affects the radiative balance and cloud formation
process in the atmosphere (World Health Organization, 2017). Large amounts of particulate matter
(PM) emitted globally come from urban areas mainly contributed by the transport sector, industrial
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processes, and domestic fuel burning (Karagulian et al., 2015).
Recent findings have evidenced direct association between
concentrations of fine particles (PM2.5) and mortality (Anenberg
et al., 2019). Knowledge of the source origin and contribution to
human exposure are essential to targeting effective strategies for
air quality management (Thunis et al., 2019).

Multivariate receptor modeling (e.g., PCA, PMF2, ME-
2, and EPA-PMF) has been extensively employed to assess
source apportionment investigations in environmental science
(Reff et al., 2007). Positive Matrix Factorization (PMF) was
developed by Paatero and Tapper (1993, 1994), andmost recently,
a freely available graphical interface was developed by the
U.S. Environmental Protection Agency (EPA-PMF). The PMF
model decomposes a matrix of samples in two matrices (factor
contributions and profiles) in order to quantify the contributions
of specific pollutant sources (Paatero et al., 2005; Brown et al.,
2015). Despite important improvements of PMF in relation
to PCA models, some limitations of these models, like source
identification, are implied in receptor multivariate analysis based
on elemental concentrations (Figure 1).

Isotope fingerprints show great potential to source tracing in
the environment and has recently been used for many purposes
(Aebischer et al., 2015; Araújo et al., 2016, 2018, 2019; Gelly
et al., 2019; Nazarpour et al., 2019). The main advantage in the
combination of stable (C, O, Zn, Cu, and Fe) and radiogenic
(Pb, Sr, and Nd) isotopes is found on the improvement of
the source discrimination resolution. Heavy radiogenic isotopes
being produced by radioactive decay should be unaffected by
mass fractionation in comparison to stable isotopes (Blum and
Erel, 2003; Vallero, 2014). Therefore, radiogenic isotopes present
specific signatures for each source and have been applied as
powerful fingerprints (Komárek et al., 2008). On the other hand,
isotopic fractionation of stable isotopes, caused by physical–
chemical reactions, must be characterized in order to trace
pollutant dispersion in the environment (Wiederhold, 2015).

Isotopes of only one element can present some limitations to
distinguish among many different sources in complex systems
(Cheng and Hu, 2010). This drawback has been outlined by a
combination of isotopes of two or more elements (Figure 1),
named here as the Multi-Isotopic Fingerprints (MIF) approach,
which has improved source identification and discrimination of
PM in urban areas and other sites (Widory et al., 2004, 2010;
Cloquet et al., 2006; Dolgopolova et al., 2006; Guéguen et al.,
2012; Sherman et al., 2015; Ochoa González et al., 2016; Dong
et al., 2017; Souto-Oliveira et al., 2018, 2019; Schleicher et al.,
2020). However, source contributions are quantified for those
specific elements only, being few representatives of total PM
mass, considering low elemental mass of Pb, Cu, and Zn (<1%)
compared to total PM mass.

Taking into account the current gaps of multivariate receptor
modeling and MIF (Figure 1), our study has two main goals.
The first goal is to assess isotopic fingerprints as an alternative
to validate source identification in the EPA-PMF model. The
second goal is to improve the estimation of source contribution
in the MIF model based on total PM mass. In order to
examine strategies to achieve these aims, we performed EPA-PMF
analysis, assessing uncertainties with bootstrap and displacement

parameters and employing the elemental concentrations and Pb
and Zn isotopic signatures measured in PM2.5 samples in São
Paulo City. The Metropolitan Area of São Paulo (MASP) is the
biggest urban area in South America and is one of the top
10 megacities in the world. Air pollution at MASP has been
well-described by several previous studies (Andrade et al., 2017
and Supplementary Table 1) and has some similarities when
compared to other megacities and unique characteristics such as
the high contribution of bio-fuels (gasohol and bio-diesel) in the
transport sector (Nogueira et al., 2015).

METHODOLOGY

Elemental and Black Carbon
Concentrations
The PM2.5 was sampled in winter of 2013 on the rooftop
(∼12m) of the Astronomy, Geophysics, and Atmospheric
Sciences Institute at University of São Paulo campus (USP,
23.56◦S, 46.73◦W), which is located in the west side of
the urbanized area of São Paulo City. The sampling site
is situated in the western side of the city and is located
approximately 1 km northeast and 4 km north of the two
main roads with intense traffic (Marginal Tietê and Marginal
Pinheiros, respectively). Each sample was collected during 12-
h intervals in polycarbonate membranes (Whatman R©) under
constant air flow (16 L min−1). Other details of sampling
procedures are described in Souto-Oliveira et al. (2018). The
PM2.5 mass concentration, deposited in polycarbonate filters
(47mm diameter), was determined gravimetrically using a
microbalance (Mettler-Toledo, Columbus, OH, USA) with 1 µg
of readability, which presents <1% of aerosol mass.

Elemental concentrations were determined by an Energy
Dispersive X-ray Fluorescence Spectrometer (EDX 700;
Shimadzu Corporation, Analytical Instruments Division,
Tokyo, Japan). The spectrometer operates at 5–50 kV and
1–1,000 µA, using a low-power Rh-target tube, and the
elemental characteristic X-ray radiation emitted from the
aerosol sample is detected with a Si(Li) detector. The spectra
obtained were processed and quantified with the Win-QXAS
program, available from the International Atomic Energy
Agency (https://www-legacy.iaea.org/OurWork/ST/NA/NAAL/
pci/ins/xrf/pciXRFdown.php).

The BC analysis was performed by optical reflectance with a
smoke stain reflectometer (model 43D; Diffusion Systems Ltd,
London, UK) and detailed previously by Souto-Oliveira et al.
(2016) and Hetem and Andrade (2016). The concentrations of
CO and SO2 regulated gases, measured by the Environmental
Agency of São Paulo State, were used to support source
attribution to PMF factors [details on the equipment and data
treatment are described at Environmental Agency of São Paulo
(CETESB), 2020].

PMF and Multi-Isotopic System Analysis
We used a correlation matrix plot (CM) with Pearson’s
correlation and a principal component analysis (PCA) in order to
analyze the relationships within the dataset. The non-significant
correlations (p < 0.01) were excluded. The PCA was calculated
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FIGURE 1 | Scientific basis to source identification/discrimination and apportionment in urban aerosol using MIF and PMF models. Advantages and disadvantages of

both models. Brief review of main species profiles and isotopic signatures used to source identification. (1) Gioia et al. (2017), (2) Souto-Oliveira et al. (2018, 2019),

(3) Mattielli et al. (2009), (4) Yin et al. (2015), (5) Dong et al. (2017), (6) Norris et al. (2014), (7) Brown et al. (2015), (8) Paatero et al. (2014), (9) Reff et al. (2007),

(10) Belis et al. (2013), (11) Hopke (2016), (12) Calvo et al. (2013), (13) Supplementary Table 1.
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using the varimax rotation. The number of components was
limited to five due to the eigenvalue of the sixth being <1.
Both analyses were implemented in R language using the psych
(Revelle, 2020) and corrplot (Wei and Simko, 2017) packages.

The source apportionment analysis was performed using the
PMF-EPA model (version 5.0) provided by EPA. Several runs
with different numbers of factors, species, and categorization
were fulfilled in order to obtain the best adjustment and physical
validity of the model. The goodness of fit was evaluated by
minimization of Q (true, robust, and expected) and a scaled
residual between −2 and +2, following the recommendations
of Reff et al. (2007). In addition, uncertainties estimation of
PMF solutions was assessed via bootstrapping (Brown et al.,
2015). All tests to model optimization are described in the
Supplementary Information.

The source apportionment results estimated via MIF based on
Pb and Zn isotopic signatures and concentrations were accounted
for during PMF runs for improvements ofMIF source attribution
estimations as well, as discussed in section Results and Discussion.
All the Pb and Zn isotopic signatures andMIFmodel results were
previously reported by Souto-Oliveira et al. (2018). The Pb and
Zn isotopic compositions are denoted as 206Pb/207Pb ratios and
δ66ZnJMC values. The JMC (Lyon, batch 3-0749L) is known as the
international standard and has been extensively used as reference
to report Zn isotopic compositions.

RESULTS AND DISCUSSION

Correlations and Multivariate (PCA and
PMF) Analysis
CM and multivariate (PCA and PMF) statistical analysis
were employed to assess the database (Supplementary Table 2)
regarding the investigation of elemental profiles for each factor
and support for source attribution. Another new methodology
involved examining strategies and relevance of including Pb and
Zn isotopic data on PCA and PMF analysis, considering that any
studies have already explored this approach, to the best of the
authors’ knowledge. The raw dataset (Supplementary Table 2)
was assessed with CM (Supplementary Figure 1) in order to
examinemain correlations between species and support PCA and
PMF species profiles. Strong correlations (R > 0.7) were found
(Supplementary Figure 1) among crustal elements (Al, Si, Fe, Ti,
Ca, and K), whereas PM2.5 was correlated with BC. Two other
groups with strong correlations, among species, were Pb, Cu, Zn,
and Cl and P, S, and Mn. The Pb and Zn isotopic compositions
and Cr did not show any positive correlation with other species,
in line with PCA and PMF, which presented better adjustments
after removal of these species (Supplementary Tables 3, 4).

PCA showed best adjustments with four factors, taking into
account best-explained variance (Supplementary Table 3). In
the PMF analysis, change in the number of factors showed
a slight decrease in Q/Qexpec when changing from three
to four factors and a great increase when changing from
four to five factors. However, two important sources (road
dust and biomass burning) remain combined in the same
factor (Supplementary Figure 2), when only four factors were

considered. The solution with five factors was chosen (Figure 2)
in order to split these sources. In addition, all factors were
mapped more than 85%, in the solution with five factors, which
means that bootstrap uncertainties can be interpreted and the
number of factors is appropriated (Supplementary Table 4).
Bootstrap is an important parameter to detect random errors
and, to a lesser extent, effects of rotational ambiguity (Norris
et al., 2014). In this line, displacement consists of uncertainties
estimation related to data uncertainties (data noise) and
rotational ambiguity, which is focused on the lower %dQ
and no factor changes (swaps) (Brown et al., 2015). Despite
the main changes in factor or species during assessment of
PMF settings, %dQ remains <0.1% and any swaps occurred
(Supplementary Table 4), ensuring the absence of rotational
ambiguity in our PMF results.

CM (Supplementary Figure 1), PCA (Supplementary

Table 3), and PMF (Supplementary Table 4) results agreed on
the lack of correlation among Pb and Zn isotope composition.
To address this issue, we can consider that multivariate tools
are based on linear correlations among species and variance
of these species in the samples. On the other hand, MIF is not
based on the variance, but instead on specific isotopic signatures
of each source, such that discrete ranges of isotopic scales
identify/discriminate between different sources. An additional
explanation is based on non-linear correlation observed in the
Pb and Zn elemental concentration vs. isotopic composition
(206Pb/207Pb ratios and δ66Zn values) distributions (Souto-
Oliveira et al., 2018). Therefore, the distinct scientific basis of
PCA/PMF and MIF models could explain those insignificant
correlations. An alternative approach to fix this limitation is
further discussed in Section MIF Improvement and PMF-MIF
Combined Source Apportionment.

Source attribution of PMF factors (Figure 2) was supported
by previous works, which reported species profiles and source
apportionment in São Paulo City (Supplementary Table 1).
These previous studies provide important background to
upcoming source apportionment assessments based on receptor
modeling. In addition, PMF-species profiles (Figure 2) are in
accordance with CM-species groups (Supplementary Figure 1),
ensuring robustness of species profiles obtained in our analysis.

Factor 1 presented higher contributions of crustal elements
(Al, Si, Ti, Fe, Ca, and K), linked to road dust, and lower
contributions of BC, Zn, Pb, S, and Mn species, associated
with road traffic. This species profile is in line with CM
(Supplementary Figure 1) and PCA (Supplementary Table 3)
analysis as well as studies performed in other cities and current
road tunnels characterization carried in the São Paulo City
(Amato et al., 2011; Gunawardana et al., 2012; Hetem and
Andrade, 2016; Jithin and Srimuruganandam, 2020; Nory et al.,
2021). It is important to mention that urban road dust is
associated with road traffic, which combines contributions of
vehicular non-exhaust emissions (tire wear and brakes abrasion)
and road pavement/furniture (Thorpe and Harrison, 2008). This
factor, named here as road dust/traffic, accounted for 16% of
the PM2.5.

Factor 2 presented higher contributions of S and P, in line
with CM (Supplementary Figure 1), and minor contributions of
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FIGURE 2 | EPA-PMF species profiles, obtained with species concentrations (elemental, CO, and BC) measured in PM2.5 from São Paulo City, during winter 2013.

The percentual source contributions (shown in parentheses), were calculated by average of factor contribution in each sample. This percentual was calculated using

contributions of each factor, in concentration units, against total PM mass. These estimations were performed using base run output of EPA-PMF analysis.

BC, Mn, Fe, Zn, and Pb (Figure 2). An important PM2.5 source
related to S and P, in sulfate form, is the particle formation
process, which generates secondary aerosol in the atmosphere.
Many inorganic (sulfate and nitrate) and organic compounds
(primary and secondary) as well as physical–chemical conditions
(temperature, solar radiation, and oxidants) are involved in
this process (Holmes, 2007; Rönkkö and Timonen, 2019). In
urban areas, a pool of anthropogenic activities (fossil fuel
combustion, biomass, wood and waste burning, cooking, and
industrial emissions) generate inorganic and volatile organic
compounds, found to be important raw materials for secondary
aerosol formation (Gordon et al., 2014; Kanellopoulos et al.,
2021). Therefore, secondary aerosol combines contributions of
different sources but presents specific formation process and
characteristic species profile. Previous findings have showed
higher concentrations of S and P in fossil fuels (oil, gasoline,
and diesel) and minor concentrations of metals (Fe, Zn, Mn)
(Jones et al., 2014; ACEA, 2018). The association of S and P with
oil burning (Supplementary Table 1) and an empirical S vs. P
correlation, linked to fuels, have been reported in São Paulo City
(Brito et al., 2013; Marien, 2018).

Industries are present inside and outsideMASPwith twomain
industrial areas (Cubatão and Maua). Factor 3 presented species
profile related to Pb, Cu, Zn, and Br elements (Figure 2), aligned
with CM (Supplementary Figure 1), and showed a contribution
of 7%, in line with earlier estimations (Supplementary Table 1).
Cubatão is in the coastal region, about 48 km southeast of São
Paulo City (sampling site), and ranked as one of the biggest
Latin American industrial areas. Interestingly, chloride, a tracer

of sea salt and industrial activities, had also contributed to factor
3. Aerosol transportation from the Cubatão industrial area to
São Paulo City has been well-documented using Pb isotopes and
will be further discussed in Section Validation of PMF Source
Identification by Isotopic Fingerprints (Gioia et al., 2017; Souto-
Oliveira et al., 2018).

Factor 4 accounted for 8% of PM2.5 mass and presented
strong association with CO, Cl, and P with minor contributions
of Br and BC. Some works have demonstrated the linkage of
those species with biomass burning (Bond et al., 2013; Calvo
et al., 2013; Tian et al., 2016; Andreae, 2019). Recent studies
have characterized and estimated contributions of biomass and
wood burning to air pollution in São Paulo, coming from
pizzerias (in the City), rural activities (São Paulo State), and
forest burning in the north region of Brazil (Amazonas and
Pantanal) (Pereira et al., 2016; Andrade et al., 2017; Ribeiro
et al., 2018; Lima et al., 2020). Also, biomass burning transport
to São Paulo City was previously demonstrated (Souto-Oliveira
et al., 2016; Vara-Vela et al., 2018). PM2.5, CO, and BC species
have been related to vehicular exhaust [Andrade et al., 2015;
Environmental Agency of São Paulo (CETESB), 2020]. These
species were retained in factor 5 (Figure 2) and grouped in CM
(Supplementary Figure 1). Factor 5 accounted for 50% of PM2.5

mass, in accordance with intense vehicular traffic, regularly found
in the São Paulo City, as well as previous source apportionment
estimation carried out since 1994 (Supplementary Table 1).
Linkage of this factor with vehicular exhaust was confirmed by
Zn isotopes signatures, as discussed in Section Validation of PMF
Source Identification by Isotopic Fingerprints.
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FIGURE 3 | PMF-factors vs. d66Zn values regressions, performed to examine correlations between PMF-factors and Zn isotopic signatures. These regressions

confirmed PMF source attributions, based on Zn isotopic fingerprints related to each source. As example, heavier Zn isotopes found in road dust (A) and light Zn

signatures on vehicular (B) and lighter one on industrial emissions (D). In addition, these regressions suggest new Zn isotopic signatures trends based on

PMF-factors, like secondary aerosol (C) and biomass burning (E). Data outside of prediction bands and with zero percentage were classified as outliers (in red).

Validation of PMF Source Identification
by Isotopic Fingerprints
The Zn isotope signatures vs. PMF factor regression was
employed to examine isotopic fingerprint applicability as

an alternative to cross-validate the PMF source attribution.

PMF factors related to road dust/traffic (non-exhaust) showed

significant (p < 0.05) positive correlation (R = 0.63) with

δ66ZnJMC values (Figure 3A). This observation is in line with
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heavier Zn isotopes (δ66ZnJMC > 0.00‰) found in the road
dust and vehicular non-exhaust samples (Dong et al., 2017;
Souto-Oliveira et al., 2018; Nory et al., 2021). PMF factors
attributed to vehicular exhaust showed negative correlation with
δ66ZnJMC values (Figure 3B), in accordance with preliminary
lighter Zn isotopes signatures (δ66ZnJMC > −0.60 and <0.00‰)
characterized in the vehicular exhaust from São Paulo City
(Gioia et al., 2008).

Factor 3 percentual contributions, related to industrial source,
presented negative correlation with δ66ZnJMC values (Figure 3C),
as expected, considering that industrial emissions have been
reported by lower δ66ZnJMC values, enriched with lighter Zn
isotopes, against raw materials (ore) and residual phase (Mattielli
et al., 2009; Yin et al., 2015). In the São Paulo City, industrial
emission was linked to δ66ZnJMC < −0.60‰ (Souto-Oliveira
et al., 2018). Despite lighter Zn signatures, reported to vehicular
exhaust and industrial sources, those can be split into different
δ66ZnJMC ranges (Figure 1). Interestingly, PMF vs. δ66ZnJMC

linear regression fits are aligned with these ranges, considering
intercept (0.14 ± 0.19 and −0.40 ± 0.13) and slopes (−0.010 ±

0.003 and −0.039 ± 0.015) estimated for vehicular exhaust and
industrial emissions, respectively.

The Zn isotopic signatures of vehicular exhaust and industrial
emissions must be extensively assessed in future works,
considering different vehicle combustion features, such as
fuel compositions and motor types, and industrial processes.
However, here we can assume the occurrence of Zn isotopic
fractionation during vehicular combustion, taking into account
previous works that reported isotopic fractionation during the
industrial combustion process, described below, as well as the
negative linear trend found here between δ66ZnJMC and PMF
vehicular exhaust contributions (Mattielli et al., 2009; Borrok
et al., 2010).

To the best of the authors’ knowledge, until now, the Zn
isotopic signatures of biomass burning and secondary aerosol
were not characterized. However, here we have observed positive
correlations between δ66Zn values and PMF factors, associated
with biomass burning, suggesting PM emissions enriched in
heavier Zn isotopes in this source (Figure 3E). Aligned with this
evidence, industrial combustion of coal and tire-derived fuels has
evidenced that the PM produced (solid phase) are enriched by
heavier Zn isotopes, with higher δ66Zn values, while gas phase
is enriched with lighter isotopes, showing lower δ66Zn values
(Borrok et al., 2010; Ochoa Gonzalez and Weiss, 2015). These
works support the positive correlation between biomass burning
and δ66Zn values found here.

In relation to secondary aerosol, negative correlation was
observed between PMF factor contributions and δ66Zn values
(Figure 3D). It is important to consider that secondary aerosol
is formed by inorganic and organic compounds found in
vapor/liquid phase in the atmosphere via photochemistry
reactions (Holmes, 2007). Considering that lighter Zn isotopes
are enriched in vapor phase during the combustion process
(Borrok et al., 2010), we suppose that vapor phase with lower
δ66ZnJMC values contributes to secondary aerosol formation.
However, it is imperative experimental investigations t
o confirm these evidences, considering the large heterogeneity

of biomass burning and complexity of secondary
aerosol composition.

MIF Improvement and PMF–MIF Combined
Source Apportionment
One important limitation of the MIF model is related to
quantification of source contribution, considering that these
estimations are based on few elements. Therefore, source
contributions calculated by the MIF model may be under- or
overestimated in relation to total PM mass. In order to fix
this limitation, MIF vs. PMF linear regression (Figure 4) was
employed to recalculate the original MIF results, denoted asMIF-
orig (Souto-Oliveira et al., 2018). Vehicular source contributions
accounted for by MIF and PMF (F1-road dust/traffic and
F5-vehicular traffic exhaust) showed a significant (p < 0.05)
correlation (R = 0.64) (Figure 4A). Also, industrial emissions of
both models showed a positive correlation (Figure 4B). These
results endorse the strategy of validating source attribution of
PMF factors by MIF.

The comparison of source contribution percentages obtained
by PMF, MIF-orig, and those recalculated, denoted as MIF-
PMF, is illustrated in Figure 4C. The vehicular contribution
was very similar between PMF (72%), MIF-orig (66%), and
MIF-PMF (75%). Industrial contribution modeled by MIF-orig
(36%) was four times overestimated in comparison to PMF
(7%). However, it must be remembered that MIF-orig is an
estimation of industrial contribution to concentrations of Pb
and Zn, which are mainly associated to that source. On the
other hand, industrial contribution (6%) estimated by MIF-PMF
was remarkably similar to PMF results, endorsing the validity
of MIF-PMF correction strategy to report contribution for total
PM mass.

The combination of PMF and MIF showed relevant
improvements to source identification and discrimination in
both models (Figure 5). Non-exhaust and exhaust vehicular
emission, retained in PMF factors 1 and 5, respectively, showed
the main (66%) contribution to PM2.5 in São Paulo City.
Vehicular exhaust was characterized by less radiogenic Pb
isotopes and lighter Zn isotopes combined with BC, CO, and
PM2.5 species (Gioia et al., 2008, 2017; Souto-Oliveira et al.,
2018). Road dust and road traffic/non-exhaust were characterized
by heavier Zn isotopic signatures and crustal (Al, Si, Ti, Fe, and
Ca) and BC, Zn, and Pb species profiles, respectively (Dong
et al., 2017; Souto-Oliveira et al., 2018; Nory et al., 2021).
Biomass burning showed a positive correlation with δ66Zn values
(Figure 3E), suggesting that this source is enriched with heavier
Zn isotopes, which is supported by coal and tire-fuel combustion
studies (Borrok et al., 2010; Ochoa Gonzalez and Weiss, 2015).

Industrial emissions were earlier characterized by lighter Zn
isotopes (δ66ZnJMC < −0.60‰) and Pb isotopes, which could
differentiate between the Cubatão industrial area (206Pb/207Pb
> 1.20) and other industries (206Pb/207Pb < 1.19) (Mattielli
et al., 2009; Yin et al., 2015; Gioia et al., 2017; Souto-
Oliveira et al., 2018). Here, Zn isotopic signatures showed
negative correlation with PMF factor 3, associated with
industrial emissions (Figure 3D), confirming source attribution
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FIGURE 4 | PMF vs. MIF percentual contributions regressions for vehicular (A) and industrial (B) sources, estimated in PM2.5 from São Paulo City. These regressions

were employed to recalculate previous MIF (Orig) results (Souto-Oliveira et al., 2018) in order to report MIF-contributions in relation to total PM mass. The new results

were denoted as MIF-PMF (C), based on combination of both models.

of this PMF factor. In line with this, the MIF industry
showed a significant and positive correlation with PMF factor
contributions, which reinforces source attribution of PMF
factor analysis. This source accounted for 6% of PM2.5 mass,
and the contribution of Cubatão (3%) and other industries
(3%) could be estimated based on the MIF model (Figure 5).
It is important to mention that the MIF model assimilates
source discrimination resolution features of Pb and Zn isotopes
(Souto-Oliveira et al., 2018) and therefore can differentiate
between industrial emissions of specific areas (Cubatão and
other industries), whereas in PMF, these sources were observed
in the same factor. Secondary aerosol source accounted
for 16% of PM2.5 and was associated with S, P, and Mn

species here and in earlier works (Supplementary Table 1).
The PMF factor contributions of this source showed negative
correlation with Zn isotopes, indicating that lighter Zn
could be attributed to secondary aerosol and gas phase of
anthropogenic sources.

CONCLUSION

The PMF and MIF solutions were combined to provide a step
forward to assess source identification and apportionment of
urban aerosol. Here, three main advances could be reached:
(1) cross-validation of source identification based on two
different tools (PMF elemental profiles and MIF isotopic
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FIGURE 5 | Schematic source identification and apportionment using Multi-Isotopic Fingerprints (MIF) and species profiles obtained by EPA-PMF model for PM2.5

from São Paulo City. Species profiles from EPA-PMF could be cross-validated by isotopic fingerprints. Industrial source contributions were differentiated using Pb and

Zn isotopic signatures. Positive linear regression between biomass burning vs. Zn isotopes suggested that particles enriched with heavier Zn signatures. Negative

linear regression between secondary aerosol vs. Zn isotopic signatures suggested particles enriched with lighter Zn.

fingerprints), (2) improvement of source contribution in the
MIF model to total PM2.5 mass, and (3) new insights into the
investigation of Zn signatures in atmospheric processes and
pollutant sources.

Cross-validation of PMF source identification by isotopic
fingerprints seems to pose a significant way to improve the
accuracy of source apportionment investigation. However, it is
very important to advance the isotopic fingerprints and species
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profile characterization of the main sources. This approach is
essential to develop a large source database in order to support
robust MIF and PMF identification/discrimination. The strategy
to recalculate the MIF model results to PM mass, based on linear
regression with PMF solutions, is a valid method to be explored
in future studies. On the other hand, the MIF model must be
improved by inclusion of additional elements (Fe, S, Cu, C, and
O) and also by elemental ratios, which could be a great alternative
to fix over- or underestimations in relation to PM mass. The
potential enrichment of heavier Zn isotopes in biomass burning
particles and lighter Zn isotopes in secondary aerosol particles,
suggested here, must be further investigated in future works
in order to improve knowledge of isotopic fractionation in the
source dispersion and atmospheric processes.
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