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Giant reed is known as one of the most important energy plants as a consequence of its
huge dry biomass production. It can be used for bioenergy or biopolymer production.
Thus, it can replacemaize and reduce the production cost of biomass and electricity. Giant
reed and its products have different uses in industry. The use of giant reed as a rawmaterial
to obtain cellulose past for the production of rayon viscose and paper. Thanks to the
flexible and strong of the material, giant reed can be used in the manufacture of fishing
rods, brass musical instruments, canes and construction supplies. One of the most
important characteristics of giant reed is that it shows strong growth capability in different
soils with wide ranges of pH, salinity and high heavy metal contents and can be used for
ecological remediation. Giant reed was able not only to decontaminate polluted soils with
heavy metals, but also to purify the wastewater and decrease the pH and make red mud
safer. Here, we review the available evidence regarding the utilization of giant reed in the
field of phytoremediation and discuss the potential application of giant reed combined with
advanced remediation technologies in ecological remediation.
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INTRODUCTION

With the coming of the industrial revolution, humans were able to advance further into the 21st
century. At present, the industry is a critical component of the world’s economy. However, at the
same time, the industrial processes also cause environmental pollution. It accounts for more than half
of the total emissions of some key air pollutants and greenhouse gases, as well as other critical
ecological impacts, including the release of pollutants to water and soil (Muradian and Martinez-
Alier, 2001; Wang et al., 2019). Consequently, these pollutants can pose a health risk to humans and
other organisms.

The discharge of excessive amount of heavy metals is one of the most severe environment
pollutions. The toxicity of heavy metals is well documented for its impairment of plant growth and
human health. Therefore, it is necessary to eliminate excessive amounts of heavy metals in soil and
water to avoid negative consequences. Various conventional methods have been used to remove
heavy metals, such as chemical precipitation, solvent extraction, membrane filtration, ion change,
electrochemical removal and coagulation etc. (Burakov et al., 2018). However, questions have been
raised to query these techniques in term of incomplete removal, low efficiency and costly disposal etc.
Compared to conventional methods, phytoremediation has excellent potential to overcome those
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drawbacks, improving the treatment efficiency and cut the
expense. It has been reported that some hyperaccumulator
plants can accumulate a large number of heavy metals. For
example, Alyssum bertolonii can accumulate Ni up to about
10,000 μg g−1 or 1% (Reeves et al., 2018). Soil salinization is
another global environmental problem that could damage land
quality and limit plant growth. It is estimated that over half of the
irrigated farmlands are seriously impacted by soil salinization (Li
et al., 2018). Although the use of chemical amendment, for
example, use Ca to replace exchangeable Na, or apply organic
amendments such as farmmanure, poultry manure and plant ash
to reduce the soil pH may be a practical strategy to improve soil
remediation (Tejada et al., 2006; Dahlawi et al., 2018), the high
cost and less efficiency of these methods were the main obstacles
that limit their application (Nouri et al., 2017). Alternatively,
halophytes are ideal plants for salt remediation of soil. For
example, Tecticornia indica and Suaeda fruticosa, which can
eliminate redundant salts from soil, and thus these plants are
popularly used for the soil remediation (Rabhi et al., 2010). Water
is essential for life on Earth. Any pollutants or contaminants
which find their way into water will soon find their way into the
bodies of plants and animals. Contaminated water is one of the
most common forms of environmental pollution, not to mention
one of the most damaging to the health of living organisms,
entering bodies through drinking, contact, or uptake from roots.
Water pollution can either be directly through the discharging of
waste into a body of water such as a lake, river or the sea, or it can
be indirect in that it is not deliberately disposed of into a
watercourse but finds its way there. The most common cause
of water pollution is human activity including industry,
agriculture and livestock farming, rubbish and fecal water
dumping. To abate water pollution, various treatments such as
adsorption, biodegradation, coagulation, ion-exchange, and
oxidation processes have been evaluated. However, the practice
of these methods is very complexity (Jain et al., 2018; Shahid et al.,
2019). Constructing wetlands to remediate wastewater is an
efficient strategy because of its eco-friendly and low
operational cost (Wang et al., 2018). This strategy mainly uses
the plant-bacteria synergism to clean the organic matter,
microorganisms, nitrogen, and phosphorus in the water.

Based on the above information, we can conclude that plants
with excellent pollutant adsorption capacity have great potential
in ecological remediation. In the following, we introduce the
characterization of giant reed (Arundo donax) in the field of
phytoremediation and discuss the potential application of giant
reed combined with advanced remediation technologies in
ecological remediation.

ORIGIN AND REPRODUCTION OF GIANT
REED

Giant reed is a tall perennial rhizomatous grass that can reach
10 m in height (Barreca et al., 2019). Owing to its fast growth and
great biomass, giant reed had been attracted the farmers and
researchers attention to use for multi-purpose (Perdue, 1958; Bell,
1998). For a long time, the stem of the giant reed was used to

make paper (Perdue, 1958). In Italy, giant reed has been used in
industry since 1930, when a company registered a trademark to
obtain cellulose for producing rayon viscose and paper (Facchini,
1941). The European “Giant reed Network” has been established
since January 1997. The project, within the framework of the
FAIR Program, has been designed to generate information about
this plant’s capacity to be brought into EU agriculture for energy
and pulp production (Lewandowski et al., 2003). Due to its
considerable growth capacity in different soils with wide
ranges of pH, salinity, and trace metal contents, giant reed was
used to absorb heavy metals and improve saline alkali soil in
recent years (Herrera-Alamillo and Robert, 2012; Quinn et al.,
2015). Giant reed is suitable for energy production because of the
high biomass yield, which can reach to 37.7 t dry matter per ha
and per year (Angelini et al., 2009). Among the different biomass
crops for producing renewable energy to reduce greenhouse gas
emissions due to fossil fuels, the giant reed is considered the best
candidate (Di Mola et al., 2018). It is an ideal plant for dealing
with extreme situations of soil conditions and water availability
(Figure 1).

Because of its vast economic value, giant reed is widely planted
in subtropical regions of the world, such as Southern Europe,
North Africa, Australia, and America (Guo and Miao, 2010).
Giant reed does not produce seed in many areas because the
further development of the embryo is restricted (Balogh et al.,
2012; Nikhade and Makde, 2014; Alshaal et al., 2015). The
propagation of giant reed can be divided into rhizomes or
stem cuttings and in vitro biotechnology methods.

Planting time on stem cuttings has a significant influence on
the survival rate of the giant reed. Tang (2000) used the stem of
the giant reed as propagules about February or March, and the
survival rate reached 97%. However, the survival rate of cutting
with the lateral branches of giant reed is not high. Luo et al. (2018)
used different types and concentrations of plant hormones to
treat the lateral branches of giant reed, and the highest survival
rate was only 50%. Rhizomes are easy to generate roots in wet
environments and produce new plant clones. The propagation of
giant reed is more commonly used fragments of rhizomes.

Compared with rhizomes or stem cuttings, the efficiency of
in vitro biotechnology methods is higher. Gubišová et al. (2016)
report that stem segments containing an axillary bud of the giant
reed can produce about 700 rooted and acclimatized plants in one
year starting from one axillary bud on Murashige and Skoog
medium supplemented with 0.5 mg l−1 6-benzyladenine or
0.2 mg l−1 thidiazuron. Marton and Czako (2002) suggest that
the immature inflorescences of giant reed are sterilized and then
cultured in vitro to produce totipotent tissue from which mass
propagation of plantlets is possible. Herrera-Alamillo and Robert
(2012) use axillary buds from the lateral stems cultured in liquid
medium supplemented with indole 3-acetic acid and kinetin to
produce 900 plants from a single mother plant in 4 months
Cavallaro et al. (2011) describe a protocol for the large-scale
in vitro propagation of giant reed by adventitious bud formation.
The technical system of callus induction, differentiation, and
plant regeneration can significantly increase the reproduction
coefficient of plants. Chen et al. (2016) report that Murashige and
Skoog medium supplemented with 0.2 mg l−1 naphthaleneacetic
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acid and 2.0 mg l−1 6-benzyladenine are used for the best callus
differentiation medium in turn the bud differentiation stage
reached 40.00%, while Yang et al. (2016) suggest that the
callus (with an improved quality as well as an increased
quantity) were transferred on the Murashige and Skoog
medium with 0.5 mg l−1 kinetin and 1.0 mg l−1 6-
benzyladenine, on which both shoots and roots were
simultaneously induced with a large quantity. The regenerated
plants grow to more than 5.0 cm and transfer to Murashige and
Skoog medium with 0.2 mg l−1 naphthaleneacetic acid and 1 g l−1

activated carbon. The rate of rooting was 100% for 7 days, and the
average root number was four, and the length of the roots was
2–4 cm (Xian et al., 2018). The rooted seedings, which with roots
2–3 cm, were transplanted from culturing seedlings to fine river
sand, yellow soil or humus soil after one week-day’s treatment.
The survival percent reaches 98% after a month.

THE ECONOMIC VALUE OF GIANT REED

Giant Reed Used as an Energy Crop
Giant reed has a wide range of adaptations and can be planted in
marginal areas where crops cannot grow (Roberto, 2012). It
grows very fast and can grow to 6 m or even higher (Liao
et al., 2017). The mature crop shows average annual
production rates of 3 kg dry matter m−2, with maximum
values acquired in fertilized plots and during winter harvest
time (Angelini et al., 2005). Giant reed is a very suitable
source of biomass because of its low cost and high

productivity (Corno et al., 2014; Corno et al., 2015). Research
shows that giant reed can replace maize and reduce the
production cost of biomass and electricity (Corno et al., 2016).
Giant reed stems can be transformed into useful, value-added
reliable products through pyrolysis at appropriate conditions
(Basso et al., 2005). Solid biofuels are conducive to
preservation and transportation. Giant reed has good potential
for biogas production through anaerobic digestion (AD). Among
them, cellulose has the highest degradation rate and the most
significant contribution to biogas production (Yang and Li, 2014).

Giant Reed Used as an Industrial Material
Its peculiar characteristics, such as its large diffusion on the
territory, its stem’s lightness combined with its adequate
mechanical strength, and its high cellulose content, have
allowed different industrial uses of giant reed (Perdue, 1958;
Speck and Spatz, 2004; Barreca, 2012). Because of its advanced
eco-friendly pulping and bleaching technology, giant reed has
become an excellent substitute for wood fibers to meet pulp and
paper products’ rapid growth (Shatalov and Pereira, 2006). The
fibers of giant reed possess high tensile strength and suitable raw
material for particleboard production (Flores et al., 2011). The
stem of the giant reed can be converted into activated carbon by
various technologies, which shows excellent performance in
wastewater treatment (Ahmed, 2016). In the Mediterranean
region, giant reed has been traditionally employed to build
fences and temporary shelters for men and animals, or as a
prop for plants and as windbreak or shading barrier (Barreca and
Fichera, 2013). Thanks to the lightness of the material, walls can

FIGURE 1 | Comprehensive application of giant reed.
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be erected even by farmers or breeders with modest tools
(Barreca, 2012). Because of widespread and locally abundant,
giant reed is widely used and has a greater diversity of uses in
Cyprus’s northwest. The culms are used to make baskets, tables,
fishing equipment, musical instruments, candy bow, chandelier,
distaff, heddle, knife, and fence (Barreca, 2012).

Giant Reed Used as Medicine
Modern pharmacological studies have proved the plants’ role in
treating diseases, reflected in current plant origin drug therapy.
The use of medicinal plants to treat diseases has witnessed such
treatments and increased awareness of the importance of using
natural resources in the pharmaceutical industry (El Sheikha,
2017). Giant reed is considered as one of the medicinal plants. It
was reported that aqueous extracts of the reed nodes, which
contain the white hemicellulose membrane, and demonstrated a
marked dose-dependent response for anti-biofilm activity, both
in preventing MRSA biofilm formation and disrupting
established biofilms (Quave et al., 2008). The antimicrobial
effects of methanolic extracts of 14 medicinal plant species
were examined comparing to conventional therapeutic
antibiotics against standard bacterial strains (Staphylococcus
aureus, Micrococcus luteus, Klebsiella pneumoniae, Escherichia
coli, and Pseudomonas eroginosa). Among the four medicinal
plants, the giant reed extract has the most significant effect on
Escherichia coli and Pseudomonas eruginosa (Al-Snafi, 2015).
Besides, the tender shoots can be used for the treatment of
fever, wound suppuration, ear infection, typhoid, pneumonia
and asthma (Sinha, 1996; Singh, 2003; Dhiren and Singh,
2015). Extractions of biologically active components from
giant reed shoot is regarded as good anti-galactagogue,
depurative, diaphoretic, emollient, hypertensive, hypotensive,
and sudorific (Duke and Wain, 1981). In addition, the root of
giant reed is also an alternative herbal medicine used as
diaphoretic, emollient, diuretic, and cancer, dropsy, and
headache (Mir et al., 2018).

PHYTOREMEDIATION POTENTIALS OF
GIANT REED

Heavy Metal
With fast urbanization and industrialization, heavy metal
pollution has become one of the utmost environmental severe
issues that influence human health (Zhao et al., 2018). In the past
5 decades, more than 30,000 tons of Cr and 800,000 tons of Pb
have been released into the environment around the world (Yang
et al., 2018). Heavy metal pollution has an essential impact on
crop yield and quality and affects the air and water environment
and even human health. Many of them are toxic even at deficient
concentrations, which are cytotoxic and carcinogenic, and
mutagenic. Joint committee of World Health Organization
(WHO) and Food and Agriculture Organization (FAO) on
food additives (JCEFA) has set the maximum tolerable intake
for As, Cd, Pb, and Cr as 2, 1, 6.03, and 3.32 μg/kg body weight/
day, respectively (Dubey et al., 2018). Excessive levels of heavy
metals can cause health risks, for instance, 1) the concentrations

of Hg in whole blood reach 10 μg/L may lead to lung damage;
kidney damage, proteinuria, allergy, and amalgam disease, 2) the
dietary intake of Cd reach 0.01 mg/kg/day can affect kidney
functioning, 3) intaking of Ni from contaminated food reach
5 mg/kg/day can affect renal functioning, and so on (Rai et al.,
2019). Accumulation of heavy metals on soil can cause direct or
indirect reduction of plant growth by adversely affecting various
physiological and molecular activities of plants (Tiwari and Lata,
2018). The current research suggests that the maximum soil
concentration for different heavy metal (loids) were as follows:
As ranged from a maximum of 11–34 mg/kg, Cd from 0.15 to
21.84 mg/kg, Cu from 16 to 713 mg/kg, Ni from 25 to 740 mg/kg,
Pb from 25 to 2025 mg/kg, and Zn from 25 to 3,925 mg/kg
(O’Connor et al., 2018). However, the tolerance of most plants
for safe limits of heavy metals is not high. Guideline for safe limits
of some heavy metal as follow: Cd from 3 to 6 mg/kg, Cu from 135
to 270 mg/kg, Pb from 250 to 500 mg/kg, Zn from 300 to
600 mg/kg, Ni from 75 to 150 mg/kg (Nagajyoti et al., 2010).
In high concentrations, heavy metals negatively impact the
growth, biomass, and photosynthesis of plants and
compromise sustainable food production (Etesami, 2018). As a
result of heavy metals have detrimental effects on plants and
humans. Recently, the remediation of heavy metal pollution has
aroused people’s concern. So far, several efficient methods have
been reviewed for the removal of heavy metals such as chemical
precipitation, adsorption, ion exchange, reverse osmosis,
phytoremediation, bioremediation, membrane technology, and
electrochemical treatment, etc. (Dixit et al., 2015). They can be
classified into two main groups, including physicochemical and
biological techniques. Key factors influencing the applicability
and selection of such technologies are capital investment and
operational cost, plant flexibility, and reliability and
environmental impact, etc. (Fu and Wang, 2011).
Physicochemical approaches include chemical precipitation,
adsorption, ion exchange, reverse osmosis, membrane
technology, and electrochemical treatment. These techniques
are rapid but inadequate, high cost, intensive labor, altered soil
properties, and disturbance of soil native microflora (Ali et al.,
2013). Moreover, most of these techniques are ineffective when
the concentration of heavy metals is below 100 mg/L (Ahluwalia
and Goyal, 2007). Compared with physicochemical, biological
remediation has many advantages, such as natural process,
environmentally friendly, low cost, and high public acceptance
(Ullah et al., 2015). Biological remediation use microorganisms
and plants to remove toxic contaminants from the environment
(Singh et al., 2009). Living or dead microorganisms can be used
for the remediation of heavy metals. Among these
microorganisms, bacteria, fungi, and algae are most widely
used, for example, bacteria can remediate Hg, Pb, Cr, Cu, Zn,
and Cd, fungi can remediate Pb, Cr, Cu, Co, and Cd, algae can
remediate Pb, Cr, Cu, and Cd (Yin et al., 2019). Phytoremediation
is an emerging green technology used of metallophytes and
related soil microorganisms to reduce the concentration or
toxic effects of heavy metals in the environment. Remediation
of a metal-contaminated climate by phytoremediation has
received extensive attention because it is cost-effective,
efficient, resource-conserving, and eco-friendly (Baker et al.,
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1994; Sumiahadi and Acar, 2018). Heavy metal removal from
contaminated sites using different phytoremediation methods
has been initiated worldwide since the last decade, including
phytoremediation of organic, inorganic and radionuclides. This
sustainable and cheap process is rapidly evolving into a viable
alternative to traditional remedies and most suitable for
developing countries (Ghosh and Singh, 2005).

Recently, the accumulation of heavy metals by giant reed
attracted more and more attention from various fields of
science and engineering and became a hot researching spot
(Borso et al., 2018; Coppa et al., 2020; Delplace et al., 2020).
Giant reed has promising ability to uptake wide variety of metals
viz. Pb, Cd, Mo, As, Zn, Cu, Ni, Co, Fe, Mn, Cr, Hg, Al etc. from
the environment (Miao et al., 2012; Delplace et al., 2020; Danelli
et al., 2021). It is a promising candidate for the phytoremediation
of Zn-/Cr-contaminated soil (Li et al., 2014). Biomass obtained in
Zn and Cr contaminated soils presented higher ash content and
higher Zn/Cr content than biomass from non-contaminated soils
(Barbosa et al., 2013; Barbosa et al., 2015). Pu et al. (2017)
reported that despite the oxidative stress involved in the
mechanism of Cd toxicity associated with the high transport
of Cd in giant reed, its photosynthetic system was not harmed.
When giant reed grown on surface soil and irrigated with mixed
heavy metal solutions of Cd(II) and Ni(II), the examined
parameters, namely, stem height and diameter, number of
nodes, fresh and dry weight of leaves, and net photosynthesis
(Pn) were not affected (Papazoglou et al., 2005). Mahmood
(2010) report that giant reed can extract arsenic (As) and
mercury (Hg) in sufficient amounts, and Cano-Ruiz et al.
(2020) report that giant reed showed a broad tolerance to
cadmium (0.5 mM), chromium (0.2 mM), cooper (2 mM),
nickel (0.5 mM) and lead (1 mM). Guarino et al. (2020)

reported that giant reed can remove As through high and
efficient volatilization. Biomass obtained in Pb contaminated
soils presented higher ash content and lead content than
biomass from non-contaminated soils (Sidella et al., 2013).
Based on the findings of Domokos-Szabolcsy et al. (2018),
giant reed can be identified as the first monocot
hyperaccumulator of selenium. Some researchers find that the
presence of chelating agent, organic fertilizer and mycorrhizal
fungi have an impact on the ability to accumulate metals for giant
reed. Atma et al. (2017) investigate that the addition of EDTA to
the treatment increased plant uptake of arsenic. Other researchers
also aimed at finding that compost fertilization and mycorrhizal
fungi inoculations increase the metal uptake of giant reed
(Fiorentino et al., 2013; Liu et al., 2017; Sarathambal et al., 2017).

The remediation mechanism from plants is distinct.
According to growth potential in HM-contaminated sites, they
can be classified into five main groups including plant extraction,
plant degradation, plant stabilization, plant volatilization and
rhizosphere filtration (Mukhopadhyay and Maiti, 2010; Ali
et al., 2013; Thakur et al., 2016; Saxena et al., 2019). Recent
studies show that giant reed shows good phytostabilization
capability in the short-term while long-term can be used in
phytoextraction processes (Cristaldi et al., 2020). The pH of
the soil and the presence of chelating agents like mugineic
acid family phytosiderophores (MAs) can mobilize metal ions
into the soil solution. Metal ions can be taken up by the root of
giant reed and come in contact with the cell wall. Giant reed can
translocate the heavymetals to above-ground shoots or leaves and
produce a large quantity of plant biomass that can be easily
harvested (Figure 2). Various kinds of heavy metals can be
extracted and accumulated in various organs (e.g., root, stem,
leaf) by giant reed. Numerous studies have shown that the root is

FIGURE 2 | The process of heavy metals accumulation in giant reed.
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the highest concentration organ, and the stem is the lowest
concentration organ (Table 1). However, the most inferior
concentration organ is still a matter of debate that leaf can be
the most deficient concentration organ when heavy metals in soil
are out of threshold limit value (Cristaldi et al., 2020). It can
become hyperaccumulator plants and absorb metal contaminants
from the ground and translocate them to erial plant parts (Baker
et al., 2000). In general, heavy metals exert multiple inhibitory
effects on photosynthesis at several structural and metabolic
levels (Clijsters and Van Assche, 1985). However, giant reed
does not die after exposure to metal and show no visible signs of
stress, and the photosynthetic rate of giant reed is not affected by
heavy metals (Papazoglou et al., 2005). The phytoextraction
process has a significant advantage for giant reed because
most heavy metals are accumulated in the roots. In this way,
the use of the upper parts (e.g., shoots and leaves) of giant reed is
not affected, and the concentration of heavy metals in the soil can
be reduced by collecting the roots of giant reed.

Previous research reported the mechanized harvest of the
upper parts of giant reed. Curt et al. (2013) report that the
strategy of two-step harvesting: stalk cutting and crushing and
biomass collection and baling with this specific machinery is
feasible. Assirelli et al. (2019) provide good results using a

shredding machine for giant reed harvesting. Comparing to
the mechanized harvest of the upper parts of giant reed, the
roots of giant reed collecting are still a difficult task. Assirelli et al.
(2013) use a modified stump grinder for in situ rhizome
extraction. However, this method obtains most of the
rhizomes with variable length, ranging between 4.4 and
6.4 cm, and most of the rhizomes were not excavated in the
soil. It is an excellent way to digging rhizomes with a Noble sweep
plow to a 0.30 m depth (San Martín et al., 2019). Because the
rhizome depth of giant reed is 5–30 cm under the soil surface, this
method can obtain almost entirely of rhizomes. Due to the low
volatility of heavy metals, pyrolysis is an excellent way to extract
heavy metals from the roots of giant reed. Grottola et al. (2019)
report that the metals recovery is in the temperature range
653–873 K under steam assisted slow pyrolysis conditions.

Water Treatment
Water is one of the major issues humanity must tackle to achieve
human society’s sustainable development (Zhang et al., 2018).
Although the total amount of water is enough on the Earth, the
amount of drinkable water is limited. Surface and groundwater in
many parts of the world are contaminated and not suitable for
drinking (Gupta et al., 2012). The primary sources of water

TABLE 1 | Types and locations of giant reed accumulating heavy metals.

Metal type Concentration organs Highest concentration organ Lowest concentration organ References

Hg Root, stem, leaf Root Leaf Cristaldi et al. (2020)
Cd Root, stem, leaf Root Stem Guo and Miao (2010)
Cu Root, stem, leaf Root Stem Han and Wang (2007)
Pb Root, stem, leaf Root Stem Guo and Miao (2010)
Fe Root, stem, leaf Root Stem Castaldi et al. (2018)
Ni Root, stem, leaf Root Stem Bonanno (2012), Mabhungu et al. (2019)
Al Root, stem, leaf Root Stem
As Root, stem, leaf Root Stem
Cr Root, stem, leaf Root Stem
Mn Root, stem, leaf Root Stem
Zn Root, stem, leaf Root Stem

FIGURE 3 | Produced municipal wastewater in different countries (A) and the output of alumina in the world (3B).
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pollution come from industry, household, agricultural activities,
and environmental and global changes. From 2002 to 2017, the
total amount of municipal wastewater discharge in different
countries uptrend (Figure 3A). In some developing countries,
such as China, India, Indonesia, these countries produce much
industrial wastewater and need to spendmuchmoney to treat this
wastewater (This figure results from global information system
on water and agriculture: http://www.fao.org/aquastat/statistics/
query/results.html). Wastewater treatment had been a concern in
the Bronze Age (ca 3,200–1100 BC) in Crete, Aegean Islands, and
Indus Valley civilizations (Salgot and Folch, 2018). Since the
1950s, wetlands had been used for water purification around the
world. Emergy assessment, a measure of the environmental and
human economic resource utilization, showed that wetland
systems used much fewer materials than conventional
wastewater treatment. Wetland systems can rely on microbes
and plants’ ecological action for their efficacy and improve energy
independence (Nelson et al., 2001). Wetlands are divided into
natural and constructed wetlands. Because of environmental
issues, natural wetlands are not always available where
treatment is needed (Jenssen et al., 1993). Using constructed
wetlands (CW), ecological concerns are reduced, and systems can
be built on-site and more easily customized to facilitate specific
treatment needs. In constructed wetlands, plants can stabilize the
bed’s surface, provide the right physical filtration conditions,
transport gases, release oxygen to the rhizosphere, absorb
inorganic compounds, organic pollutants, and plant
metabolites, and release organic compounds (Stottmeister et al.
, 2003). Of course, not all plants are suitable for use in constructed
wetlands. Plants need to meet the general requirements: 1) not
causing significant weed or disease risks or risking to the
ecological or genetic integrity of the surrounding natural
ecosystems; 2) are well tolerant to local growing environments,
pests, and diseases; 3) growing fast and having high biomass
productivity; 4) removing of contaminants through direct
assimilation and storage, or by enhancement of microbial
transformations such as nitrification (through oxygen release
from the root zone) and denitrification (by the production of
carbon substrates) (Tanner, 1996).

Giant reed is an excellent plant for water purification. Wang
et al. (2008) tested the removal efficiency of chemical oxygen
demand (COD), total nitrogen (TN), and total phosphorus (TP)
in rural domestic sewage by seven kinds of aquatic plants (Arundo
donax, Triarrhena sacchariflora, Acorus calamus, Phragmites
communis, Iris pseudacorus, Lythrum salicaria, and Sagittaria
trifolia), and the result shows that giant reed has the strongest
purification ability. Giant reed has higher removal rates for total
suspended solids (TSS) than some aquatic plants (Toscano et al.,
2015). The planted filter of giant reed allows better elimination of
Escherichia coli (E. coli) than Pennisetum purpureum Schumach
(Fidele and Audra, 2020) and previous study has shown that giant
reed planted in gravel-based constructed wetlands (CWs) can
remove up virtually 100% of E. coli (Idris et al., 2012a). It shows
excellent organic pollutant removal, macronutrient, removal
microbiological removal, and heavy metal (Leto et al., 2013;
Jesus et al., 2017; Pu et al., 2018), giant reed can be used to
treat various polluted waters (Liao et al., 2017). Giant reed shows

excellent purification efficiency when used to treat micro-
polluted river water, secondary municipal wastewaters for crop
irrigation, dairy factory stormwater, and winery wastewater
(salinity up to 9 dS/m) (Williams et al., 2008, 2009; Idris et al.,
2012b; Xie et al., 2012; Barbagallo et al., 2014). Moreover, giant
reed can be used as a source of biomass production when it is used
to treat polluted waters. Mavrogianopoulos et al. (2002) report
that giant reed stem biomass production in pig’s waste is higher
than the ordinary production in the soil. Irrigation with urban
wastewater increased the biomass yield of three energy crops
(Typha latifolia,Arundo donax, and Phragmites australis) and the
biomass productivity of giant reed was much higher than those of
T. latifolia and P. australis (Czakó and Márton, 2011; Zema et al.,
2012). Giant reed can uptake pollutants from wastewater and
accumulate pollutants in different parts. Cui and Wang (2013)
got the nitrogen and phosphorus content of different parts of
giant reed. There is a quantitive relationship of stem < root <
leaves and root < stem < leaves, respectively, for the total nitrogen
content and the total phosphorus content in the plant. Previous
study reports the potential of giant reed for phytoextraction of
heavy metals from synthetic wastewater and traces element
concentrations decreased according to the pattern of root >
leaf > stem (Mirza et al., 2010; Bonanno, 2012). Pollutants can
be removed from wastewater by harvesting giant reed. The
harvested giant reed can also be used to produce biomethane
for energy and digestate for plant nutrition through anaerobic
digestion process (Shilpi et al., 2019). A major barrier to the use of
giant reed for water purification is its invasive properties in
riparian ecosystems. Because giant reed hardly produces viable
seed and its clumping rhizome growth habit, its ability to spread
is limited. Giant reed’s rapid clonal spread can be attributed to
flood dispersal of rhizome and culm fragments. It is necessary to
avoid the use of giant reed for treatment polluted rivers that are
subject to flooding.

Red Mud Improvement
As the name implies, the red mud is brick red in color and slimy,
with an average particle size of fewer than 10 μm, and a few
particles larger than 20 μm can also be available (Paramguru et al.,
2004). Red mud is the primary waste material produced during
alumina production following the Bayer’s process. Depending on
the quality of the raw material processed, 1–2.5 tons of red mud is
generated per ton of alumina produced (Paramguru et al., 2004).
From 2009 to 2018, the output of alumina has nearly 40% growth
in the world (An, 2019) (Figure 3B). China has become the leader
in aluminum production and use (Hu et al., 2018). It causes the
production of red mud to increase dramatically. Although many
methods having been used to neutralize bauxite residues, cost
remains an important consideration. Nowadays, dry stacking is
one of the most popular disposal practices for red mud (Khairul
et al., 2019). The main environmental impacts of red mud are its
high alkalinity, salinity, and sodicity. Besides, the high alkalinity,
salinity, and sodicity may be an immediate risk to plant growth.
The pH of red mud can be up to 11 or more, due to presence of
NaOH and Na2CO3 (1–6%, w/w) (Brunori et al., 2005; Sahu et al.,
2010). The selected plant species should survive high salinity and
alkalinity conditions to build vegetation on the residue. However,
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very few plant species are able to survive on substrates with high
pH, EC, and Na concentrations (Xue et al., 2016).

Without human intervention, the phytoremediation of red
mud deposits is a slow process (Mishra and Pandey, 2019).
Planting potentially successful plant species can accelerate
ecological succession and restore soil fertility. Halophytes show
the greatest potential to ameliorate bauxite residues (Xue et al.,
2016). At present, giant reed is not considered to be a halophyte
because it mainly invades freshwater habitats, but its salt
tolerance has been confirmed (Pompeiano et al., 2017; Sánchez
et al., 2017; Di Mola et al., 2018). Giant reed exhibits high
tolerance to saline conditions and significant adaptability to
salt accumulation in the soil (Verslues et al., 2006). Giant reed
can maintain adequate K+ and Ca2+ to counteract high salinity
influence. The accumulation of Na+ in leaf tissues under Na +
stress was lower than that in roots during the experiment, and
Na+ decreased under leaf/root salinity (Balogh et al., 2012).
However, in consideration of the accumulation of Na+ and Cl−

in the leaves, the compartmentalization mechanism (for instance,
vacuole storage) is likely to assist giant reed after exposure to salt
toxicity once Na+ and Cl− have been inevitably absorbed and
translocated to the leaf tissues (Pompeiano et al., 2017). The
results of biomass production, nutrient removal, salt tolerance,
weed risk, and carbon sequestration with saline brewery
wastewater show that giant reed is suitable for growing on
saline soil (Williams et al., 2008). More importantly, giant
reed can still grow well in the alkaline soils of pH9-10 and
reduce alkaline soils’ pH. Giant reed has phytoremediation
potential to grow in red mud containing high pH, EC, and
trace metals. Red mud and red mud control soil in a 1:1 ratio
positively affect on the height and biomass of reeds (Alshaal et al.,
2013).

CONCLUSION AND FUTURE CHALLENGES

This paper reviews the application of giant reed in production
and ecological remediation. It can absorb heavy metals, treat
wastewater, improve red mud, and is a valuable raw material for
many products. Genetic diversity has low among populations of
giant reed that originated from different territories due to asexual
reproduction (Antal et al., 2018). Therefore, it is of great
significance to directly modify the expression of specific genes,
making giant reed even more competitive than other
energy crops.

Plant breeding can be considered a coevolution between
humans and plants. People caused changes in the plants that
were used for production and life. In turn, those new plant types
allowed changes in human populations to take place. The core of
plant breeding is to choose a better type among the varieties, yield,
and quality of the edible portion; easy to grow, harvest, and
process; resistance to environmental stress; and insect resistance
(Breseghello and Coelho, 2013). Standard breeding methods
include hybrid breeding, mutation breeding, haploid
(polyploid) breeding, genetic engineering breeding. Among
them, hybrid breeding is the preferred breeding method for
many crops (Kempe and Gils, 2011). Hybrid breeding is a

remarkable success story in maize, sunflower, sorghum, beets,
and rye (Longin et al., 2012). As DNA’s understanding has
expanded and its importance for plant characteristics, breeders
have taken matters into their own hands. Instead of waiting for
spontaneous mutations to occur in DNA, they began mutation
breeding in the 1930s (Bradshaw, 2017). Through this breeding,
changes to plant DNA can be applied at a much higher frequency.
Mutation breeding is an essential method for improving crops,
with more than 3,200 mutant cultivars produced worldwide thus
far (FAO/IAEA Mutant Variety Database) (Yamaguchi, 2018).
Polyploidy is an intriguing phenomenon in plants that have
provided an essential pathway for evolution and speciation
(Bukhari and Kour, 2019). Polyploidy breeding can be used as
a critical tool for developing new crop species, producing larger
fruit or other parts to obtain more yield and profits, improving
the resistance of plant organisms and abiotic organisms.

In the past 20 years, genetically engineered development has
improved transgenic plants’ speed and accuracy compared to
traditional plant breeding. The knowledge of the essential genes
transferred by transgenic plants is higher than that of
conventional breeding. Transgenic technologies to develop
cassava with enhanced resistance to viral diseases and insect
pests improved nutritional content, modified and increased
starch metabolism, and reduced cyanogenic content of
processed roots (Taylor et al., 2004). Tobacco and Arabidopsis
plants transformed with Escherichia coli mtlD encoding a
mannitol-1-phosphate dehydrogenase accumulated mannitol.
These plants have increased tolerance to high salinities than
control plants (Bajaj et al., 1999). Liu et al. (2013) transferred
the ScNHX1 (encoding vacuolar membrane Na+/H+ antiporter
from Suaeda corniculata) and ScVP (encoding vacuolar H +
-PPase from S. corniculata) genes into alfalfa plants, and the
results showed that transgenic alfalfa plants co-expressing ScVP/
ScNHX1 showed higher salt and saline-alkali tolerance compared
with wild-type plants. Di et al. (2015) introduced the gene
encoding the betaine aldehyde dehydrogenase from Atriplex
micrantha into the maize inbred lines Zheng58 and Qi319 by
Agrobacterium-mediated transformation. The maize ubiquitin
promoter controlled them. The transgenic maize plants
showed higher betaine aldehyde dehydrogenase activity and
grew better than wild-type plants under NaCl stress.
Compared with wild type, transgenic plants have higher fresh
weight under salt stress, lower malondialdehyde content, lower
relative conductivity, higher chlorophyll content, higher plant
height, and higher grain. It is indicated that the expression of
BADH gene in maize seedlings enhances these plants’ salt
tolerance. Zhang and Liu (2011) transferred a gene that
simultaneously expressed human CYP2E1 and glutathione
S-transferase (GST) into alfalfa plants from hypocotyl
segments by using an Agrobacterium transformation system.
The pKHCG transgenic alfalfa plants’ resistance to mixed
contaminants (heavy metal-organic compounds) was
significantly increased compared to the transgenic alfalfa
plants expressing a single gene (GST or CYP2E1) and the non-
transgenic control plants. The pKHCG alfalfa plants showed
strong resistance to the mixtures of cadmium (Cd) and
trichloroethylene (TCE), and these mixtures were metabolized
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by the combination of introduced GST and CYP2E1. He et al.
(2001) introduced the bacterial mercuric reductase (merA) into
tobacco and the transgenic tobacco plants were resistant to high
levels of mercuric chloride and removed mercury from water
solutions and soil by volatilization. Czako et al. (2006) co-
introduced the bacterial mercuric reductase (merA) and
organomercurial lyase (merB) genes into the saltmarsh
cordgrass (Spartina alterniflora) by Agrobaterium-mediated
transformation and the resultant heavy metal resistant
transgenic tissue showed enhanced tolerance to both mercuric
and phenylmercuric salts. Kim et al. (2011) transferred theMuSI
gene into tobacco, and Escherichia coli cells overexpressingMuSI
were more resistant to Cd than wild-type cells transfected with
vector alone. MuSI transgenic plants were also more resistant to
Cd. MuSI transgenic tobacco plants absorbed less Cd than wild
type plants. In transgenic plants, cadmium transport from root to
shoot was reduced, thereby avoiding the toxicity of cadmium.
These results indicated that MuSI transgenic tobacco plants

tolerate Cd by reduced translocation from roots to shoots and
reduced uptake and/or increased immobilization of Cd in the
roots. Peng et al. (2018) isolated a TpNRAMP5 from dwarf Polish
wheat (DPW, Triticum polonicum L.) and transferred it to
Arabidopsis thaliana. The expression of TpNRAMP5 in
Arabidopsis significantly increased the content of Cd, Co, and
Mn in roots, stems, and whole plants but did not affect the
content of Fe and Zn. These results indicate that TpNRAMP5 is a
metal transporter that enhances Cd, Co, and Mn accumulation
but does not enhance the accumulation of Zn and Fe. With the
continuous advancement of biotechnology, it is an excellent way
to improve the ecological environment by cultivating plants
through genetically modified technology.

The use of plants to remove contaminants from contaminated
water and soil may be a promising strategy. Giant reed can absorb
heavymetals, reduce the pH of the saline soil and purify the water.
It should be mentioned that some disadvantages of giant reed
cannot be overlooked. There is still a gap between giant reed and

TABLE 2 | Giant reed and hyperaccumulator plants differ in accumulating heavy metal.

Ni (mg/kg) Pb (mg/kg) Cd (mg/kg) As (mg/kg) Zn (mg/kg) Cr (mg/kg)

Giant reeda–d <193 <515 <64.12 <61.96 <118 <34
Hyperaccumulator plantse >1,000 >1,000 >100 >1,000 >3,000 >300
aAlshaal et al. (2013)
bGuo and Miao (2010)
cBarbosa et al. (2015)
dSidella et al. (2017)
eReeves et al. (2018)

FIGURE 4 | Flow chart of breeding giant reed resistant varieties using transgenic technology.
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hyperaccumulator plants accumulating most of heavy metal
(Table 2). Although recent studies report giant reed as
moderately tolerant to salt stress and biomass yield was not
decreased, surprisingly, high salt stress caused yield heavy
losses (Di Mola et al., 2018). There is an urgent need, but it is
still a significant challenge for giant reed breeding because giant
reed seeds cannot breed in most areas. The reproduction only
occurs by the vegetative growth of rhizomes and of stem nodes of
broken canes. Because of this, the genotypic diversity among
clonal populations is expected to be very low (Sicilia et al., 2019).
Considering the chromosome number of giant reed is diverse and
ploidy levels of giant reed may depend on the different territory in
which the plant has grown and may depend on its evolutionary
history, polyploidy breeding in giant reed is an excellent choice
(Corno et al., 2014). As the regeneration system of giant reed has
been published so far, and an optimized particle bombardment
protocol for gene transfer with embryogenic calli was recently
reported in giant reed (Takahashi and Takamizo, 2012), genetic
engineering could represent a feasible option for giant
improvement reed (Figure 4). Biotic and abiotic stress
tolerance is the minimum required trait, which is not tricky in

molecular breeding. These traits and candidate target genes are
reviewed in front of this article.
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