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In this study, we investigated the performance of nine CMIP5 models for global daily
precipitation by comparing with NCEP data from 1960 to 2005 based on the detrended
fluctuation analysis (DFA) method. We found that NCEP daily precipitation exhibits long-
range correlation (LRC) characteristics in most regions of the world. The LRC of daily
precipitation over the central of North American continent is the strongest in summer, while
the LRC of precipitation is the weakest for the equatorial central Pacific Ocean. The zonal
average scaling exponents of NCEP daily precipitation are smaller in middle and high
latitudes than those in the tropics. The scaling exponents are above 0.9 over the tropical
middle and east Pacific Ocean for the year and four seasons. Most CMIP5 models can
capture the characteristic that zonal mean scaling exponents of daily precipitation reach
the peak in the tropics, and then decrease rapidly with the latitude increasing. The zonal
mean scaling exponents simulated by CMCC-CMS, GFDL-ESM2G and IPSL-CM5A-MR
show consistencies with those of NCEP, while BCC_CSM1.1(m) and FGOALS-g2 cannot
capture the seasonal variations of daily precipitation’s LRC. The biases of scaling
exponents between CMIP5 models and NCEP are smaller in the high latitudes, and
even less than the absolute value of 0.05 in some regions, including Arctic Ocean, Siberian,
Southern Ocean and Antarctic. However, for Western Africa, Eastern Africa, Tropical
Eastern Pacific and Northern South America, the simulated biases of scaling exponents are
greater than the absolute value of 0.05 for the year and all four seasons. In general, the
spatial biases of LRC simulated by GFDL-ESM2G, HadGEM2-AO and INM-CM4 are
relatively small, which indicating that the LRC characteristics of daily precipitation are well
simulated by these models.
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INTRODUCTION

Precipitation changes not only affect the global hydrographic cycle (Trenberth, 2011; Ma and Zhou,
2015), but also play an essential role for human societal and economic development (Wang et al.,
2012; IPCC, 2013; Zhang et al., 2018; Chen et al., 2020). Global climate models are widely used to
reproduce the current climate and project future climate change (Zhou and Yu, 2006; Xu and Xu,
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2012; Knutson et al., 2013; Kumar et al., 2013; Jiang et al., 2015;
Dong et al., 2018; He et al., 2019). It’s crucial to evaluate and
investigate the models’ performance in simulating daily

precipitation for developing adaptation strategies to reduce
uncertainties of projecting precipitation in the future (Jiang
et al., 2007; Jiang et al., 2009; Wang and Chen, 2013; Li et al.,
2015; Li et al., 2018; Lin et al., 2019).

The Coupled Model Intercomparison Project Phase 5
(CMIP5) includes more comprehensive global climate models
enabling researchers to address many scientific questions (Taylor
et al., 2012). At present, assessment methods for different models’
performance are transforming from traditional qualitative
methods to quantitative methods (Sillmann et al., 2013; Jiang
et al., 2016; Li et al., 2017). A lot of studies evaluate models based
on some traditional statistical methods, such as linear trend
analysis (Guo et al., 2013; Dong et al., 2018), the spatial
correlation coefficients (Zhao et al., 2014; Tian et al., 2015),
the standard deviation (STD) (Yang et al., 2014), signal-to-
noise ratio (SNR) (Peng et al., 2019) and so on. However,
these evaluation methods cannot reproduce the inner
dynamical characteristics of climate system. Therefore, a
nonlinear method, long-range correlation (LRC) is needed to
understand the intrinsic dynamical characteristics of climate
system (Koscielny-Bunde et al., 1998; Malamud and Turcotte
1999; Fu et al., 2016; He et al., 2016; Zhao et al., 2017).

The LRC method is characterized by a timescale and shows
the scaling law of an autocorrelation function (Peng et al.,
1994; Bunde et al., 2005). For a random system, it is
uncorrelated in both temporal and spatial evolution, so the
scaling exponent of its time series is 0.5. However, for the
climate system, which is a nonlinear complex system with
multi-scale interactions, the persistence of external forcing and
transmission of energy and information between different
subsystems make it no longer isolated. Moreover, the large
scale system will have a continuous impact on the small scale
system, which makes its time evolution nonrandom.
Therefore, its previous state will have a strong or weak
impact on its future evolution, which is the LRC revealed in
this paper. The value of LRC reflects the strength of nonlinear
interaction between different subsystems, and to some extent,

TABLE 1 | Details of the nine CMIP5 climate models.

Modeling
center

Nation Institution Model information

Model name Atmosphere
resolution

BCC China Beijing Climate Center, China Meteorological Administration BCC_CSM1.1(m) T106 (∼1.125 ×
1.125°) L26

CMCC Italy Centro Euro-Mediterraneo per I Cambiamenti Climatici CMCC-CMS T63 (∼1.875 ×
1.865°) L95

CNRM-
CERFACS

France Center National de Recherches Meteorologiques/Center Europeen de Recherche et
Formation Avancees en Calcul Scientifique

CNRM-CM5 TL127 (∼1.4 × 1.4°) L31

LASG China Institue of Atmospheric Physics Chinese Academy of Sciences FGOALS-g2 (∼2.81 × 1.66°) L26
GFDL United States NOAA Geophysical Fluid Dynamics Laboratory GFDL-ESM2G M45 (∼2 × 2.5°) L24
INM Russia Institute for Numerical Mathematics INM-CM4 (∼1.5 × 2.0°) L21
IPSL France Institute Pierre-Simon Laplace IPSL-CM5A-MR LMDZ4 (∼1.2587

× 2.5°)
MOHC United Kingdom Met Office Hadley Center HadGEM2-AO T63 (∼1.875 ×

1.865°) L38
MPI-M Germany Max Planck Institute for Meteorology MPI-ESM-MR T63 (∼1.875 ×

1.865°) L47

TABLE 2 | Names and coordinates for 34 regions in the world.

Region name Abbreviation Coordinates

Longitude Latitude

Tropical West Pacific TWP 110–170°E 20°S–20°N
Tropical Central Pacific TCP 170°E–125°W 20°S–20°N
Tropical Eastern Pacific TEP 125°W–75°W 20°S–20°N
North Pacific Ocean NPO 120°E–120°W 20–70°N
South Pacific Ocean SPO 140°E–70°W 60–20°S
Northern South America NSA 170°E–125°W 20°S–20°N
Southern South America SSA 75–40°W 60–20°S
Southern Africa SAF 10–40°E 35–10°S
Eastern Africa EAF 20–50°E 10°S–20°N
North Africa NAF 20°W–65°E 20–30°N
Western Africa WAF 20°W–20°E 10°S–20°N
Tropical Indian Ocean TIO 40–120°E 20°S–20°N
South Indian Ocean SIO 15–140°E 60–20°S
Australia AUS 110–155°E 40–10°S
South Atlantic Ocean SAO 65°W–15°E 60–20°S
Tropical Atlantic Ocean TAO 70°W–10°E 20°S–20°N
North Atlantic Ocean NAO 90°W–0° 20–60°N
Mexio MEX 115–80°W 10–30°N
Central North America CNA 105–85°W 30–50°N
Eastern North America ENA 85–60°W 20–50°N
Western North America WNA 130–105°W 30–60°N
Alaska ALA 170–105°W 60–70°N
Greenland GRL 105–10°W 50–80°N
Mediterranean MED 10°W–40°E 30–50°N
Central Asia CAS 40–75°E 30–50°N
Tibetan TIB 75–100°E 30–50°N
East Asia EAS 100–145°E 20–50°N
South Asia SAS 65–100°E 5–30°N
Southeast Asia SEA 90–155°E 10°S–20°N
Siberian SIB 40°E–180°E 50–70°N
Northern Europe NEU 10°W–40°E 50–75°N
Arctic Ocean AO 0°–180°W 60–90°N
Southern Ocean SO 0–180°W 80–60°S
Antarctic ANT 0–180°W 90–60°S
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it reflects the internal dynamic characteristics of climate
system (Bunde and Havlin., 2002; Lennartz and Bunde
2011; Yuan et al., 2015). For example, the LRC in equatorial
Pacific is larger than that in land, which shows relatively strong
interaction between ocean and atmosphere (Yeo and Kim,
2014). Therefore, we try to address the question about whether
the CMIP5 models can reproduce the LRC of daily
precipitation. It is very important and urgent to consider
the LRC besides the traditional statistical methods.

The detrended fluctuation analysis (DFA) is a useful tool to
estimate the LRC for assessing models’ simulate performance
(Kantelhardt et al., 2001; Kantelhardt et al., 2002; Blender and
Fraedrich, 2003; Kumar et al., 2013; Zhao and He, 2014; Zhao
and He, 2015; He and Zhao, 2017). Govindan et al. (2002) found
that sevenmodels failed to reproduce the LRCof temperature. Kumar
et al. (2013) assessed the performance of 19 CMIP5 models based on
long-term persistence and concluded that these models show poor
performance in the long-term persistence of precipitation, however,
they show better performance in temperature. Differentmodels show
different performance in the LRC of climatic variables. Most
continents exhibit the long-range correlation of temperature in
global coupled general circulation models (Rybski et al., 2008).
Daily precipitation also shows long-range correlation both for the
Beijing Climate Center Climate System Model [BCC_CSM1.1(m)]
and observational data in China (Zhao and He, 2015). The LRC is
present in many aspects of climate system, such as air temperature
(Du et al., 2013; Yuan et al., 2015; Koscielny-Bunde, et al., 1998;
Talkner and Weber, 2000), precipitation (Kantelhardt et al., 2006;
Zhao and He, 2015; He and Zhao, 2017), sea surface temperature
(Zhang and Zhao, 2015), geopotential height (Tsonis et al., 1999),
extreme climate events (Feng et al., 2009) and so on. Therefore, in
terms of the LRC of climate system, it is an effective way to assess
CMIP5 models’ performance in global daily precipitation. Based on
this, we will have a deeper understanding for intrinsic dynamical
characteristics of the climate system and make contributions to
improve models’ development.

The remainder of this paper is organized as follows. The data
sets andDFAmethod are introduced inMethods and Data. Results

presents the features of the LRC for the year and four seasons
based onNCEP andCMIP5 data.Moreover, the spatial differences
of LRC from different regions are shown in Results. Finally, a
summary and discussion are given in Discussion and Conclusion.

METHODS AND DATA

Data
The global daily precipitation datasets used in this study are
composed of reanalysis data from the National Centers for
Environmental Prediction and National Center for
Atmospheric Research (NCEP) (Kalnay et al., 1996). The
performance of NCEP reanalysis dataset has been assessed
based on LRC characteristics (He and Zhao, 2017; Zhao et al.,
2017), which are similar to the results of the observation. So we
can use NCEP dataset as the benchmark to evaluate CMIP5
models’ LRC characteristic of daily precipitation.

The simulated daily precipitation data is retrieved from the
Earth System Grid (ESG) data portal for nine CMIP5 models
(https://esgf-node.llnl.gov/search/cmip5/) (Taylor et al.,
2012), which are from historical experiments. Only one
realization of each model is analyzed. The more detailed
information of each model is listed in Table 1. The
horizontal resolution is different in different models. In
order to facilitate model intercomparison and validation
against observation, the inverse distance weighting method
is used to regrid the model outputs to 2.5° × 2.5° grid.
Considering the length of time series both for reanalyzed
and simulated data, we chose 1960–2005 as the study period.

To reveal the geographical heterogeneity of DFA for the daily
precipitation in the world, we divided the global world into 34
regions, including 12 ocean basins and 22 sub-continental land
regions (Table 2 and Figure 1). The 22 sub-continental regions are
defined based onGiorgi (2002), and the 12 ocean basins aremodified
based on Chan and Wu (2015). We calculated the area-averaged
LRC in each region for NCEP and model data, then the differences
between NCEP and CMIP5 models are compared.

FIGURE 1 | Divisions of the world.
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Method
The DFA method is often used to estimate the LRC of time
series and an index of power law exponent, namely scaling
exponent, can be used to quantitatively quantify the strength of

LRC, which could be obtained by DFA (Peng et al., 1994;
Bunde and Havlin, 2002; Bunde et al., 2005). DFA has been
extensively applied to investigate LRC in climate variability
(Talkner and Weber, 2000; Kantelhardt et al., 2006; Gan et al.,

FIGURE 2 | The DFA2 results of daily precipitation from NCEP and CMIP5 models at the point of (110°W, 35°N) for (A) year, (B) spring, (C) summer, (D) autumn,
and (E) winter.
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2007; Jiang et al., 2015). For a giving time series, {Xi, i � 1, 2,
. . ., N}, the departures of Xi is calculated to eliminate the
periodic seasonal trends in the climate system.

xi � Xi − Xi (1)

In this study, Xi is the daily mean value for each calendar date
i. For example, Xi in 1st January can be obtained by averaging

FIGURE 3 | The DFA2 exponents of daily precipitation obtained from NCEP and CMIP5models at (A) point of (110°W, 35°N), (B) point of (175°W, 0°) for year and all
four seasons.
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the daily temperature on 1st January of all years in the records.
Then, cumulative sum y (k) of the time series x (i) is calculated
(Eq. 2), which is called profile.

y(k) � ∑k

i�1xi, k � 1, 2, . . . ,N (2)

Next, the profile y(k) is divided into n � int(N/τ) non-overlapping
segments of equal length τ. In each segment, we apply a polynomial
function, yτ(k), to fit the local trend. For order l of DFA (DFA1 if l �
1, DFA2 if l� 2, etc.), the l-order polynomial function should be used
for the fitting. Thus, profile y(k) is detrended by subtracting the local
trend yτ(k) in each segment, and the fluctuation function (F(τ)) of
each segment is calculated by

F(τ) �
�������������������
1
nτ

∑nτ

k�1[y(k) − yτ(k)]2
√

(3)

Typically, F(τ)will increase with the segment length τ. A linear
relationship on a log-log plot indicates the presence of the
power law. In this case, fluctuations functions can be
characterized by a scaling exponent a.

F(τ) ∼ τα (4)

If 0.5<a<1, the time series {Xi, i � 1, 2, . . ., N} is long range
correlation. If a � 0.5, the time series is uncorrelated. If
0<a<0.5, the series {Xi} has anti-persistent correlation. In
this study, the DFA2 method is used to estimate the scaling
exponent in a time series.

RESULTS

The LRC Characteristics of Daily
Precipitation Based on NCEP and CMIP5
Models
Two grid points in the central of North American continent
(110°W, 35°N) and the equatorial central Pacific Ocean (175°W,
0°) are randomly selected as examples to show the detailed
information of precipitation’s LRC on land and ocean,

respectively. The scaling exponent of NCEP daily precipitation
is 0.62 (typical LRC characteristic) at the point of North
American continent. The daily precipitation simulated by all
nine CMIP5 models exhibits the LRC characteristic
(Figure 2A). The scaling exponents of CMCC-CMS, FGOALS-
g2 and MPI-ESM-MR range from 0.5 to 0.55, while the scaling
exponents for the other models are close to 0.62 at the grid point
(110°W, 35°N) (Figure 3A). In spring, the scaling exponent of
NCEP precipitation is 0.66 at this point. Except for CMCC-CMS,
FGOALS-g2 and MPI-ESM-MR, the other models show greater
scaling exponents than 0.59, and even the value for GFDL-ESM2G
is 0.7 (Figures 2B, 3A). In summer, the LRC of NCEP daily
precipitation at this point is the strongest, and the scaling exponent
reaches 0.84. Except for CMCC-CMS, FGOALS-g2 andMPI-ESM-
MR, the other models’ scaling exponents are greater than 0.6. In
autumn, the scaling exponent of NCEP precipitation is 0.6, which is
the smallest among four seasons (Figure 3A). The scaling
exponents of CMCC-CMS and MPI-ESM-MR are smaller
(0.55), while that of INM-CM is the largest (0.7) among nine
models. In winter, the scaling exponent for daily precipitation of
NCEP is 0.63. Except for BCC_CSM1.1(m), the LRC value of most
CMIP5 models are underestimated.

In general, the scaling exponent of NCEP daily precipitation at
the central of North American continent (110°W, 35°N) is the
biggest in summer and the smallest in autumn (Figures 2, 3A).
The seasonal variations of scaling exponents simulated by
CNRM-CM5, GFDL-ESM2G, HadGEM2-AO and IPSL-
CM5A-MR are similar to those of NCEP. These four models
can capture the main characteristics that the scaling exponents
are the largest in summer and the smallest in autumn, while the
seasonal differences of scaling exponents simulated by the other
models are various.

At the grid point (175°W, 0°) of the equatorial central Pacific
Ocean, the scaling exponent of NCEP precipitation is 0.96 for the
whole year, and the values simulated by nine CMIP5 models
range from 0.71 to 1.0 (Figure 4A). In spring, the scaling
exponent of NCEP precipitation is 0.81. The scaling exponents
of daily precipitation simulated by CMCC-CMS and MPI-ESM-

FIGURE 4 | The same as Figure 2, but for the point of (175°W, 0°).
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MR are both 1.03, while the values of the other models are closer
to NCEP (Figure 4B). The scaling exponent of NCEP
precipitation in summer is 0.76, which is slightly lower than
that in spring. Except for BCC_CSM1.1(m) and FGOALS-g2, the
scaling exponents of the other models are greater than 0.7, among
which CMCC-CMS, CNRM-CM5 and IPSL-CM5A-MR are
greater than 0.9 (Figures 3B, 4C). The scaling exponent of
NCEP in autumn is 0.76, which is the same as that in spring.
For the results of models, the scaling exponents of
BCC_CSM1.1(m) and MPI-ESM-MR are less than 0.7, while
those of CMCC-CMS and CNRM-CM5 are greater than 0.9
(Figures 3B, 4D). In winter, the scaling exponent of NCEP
precipitation is 1.0. The scaling exponents of CMCC-CMS,
CNRM-CM5, INM-CM4 and IPSL-CM5A-MR are close to 1.0
value, meanwhile, CMCC-CMS shows the biggest scaling
exponent among nine models, which is 1.06 (Figures 3B, 4E).

We also calculated the median values of the scaling exponents
for year and four seasons (Figure is not shown). The median
values of the scaling exponents’ biases throughout the year range
from −0.04 to −0.02, and most of them are closer to zero. From
the 5% and 95% ranking values, GFDL-ESM2G and HadGEM2-
AO show smaller biases band, FGOALS-g2 shows bigger biases
band. The differences of scaling exponents of global daily
precipitation simulated by models are smaller in spring than
those of other seasons.

Generally, the scaling exponents of daily precipitation in
the equatorial central Pacific Ocean are the smallest in
summer, followed by spring and autumn. While for winter
and the whole year, the scaling exponents fluctuate around
the value of 1.0 (Figure 3B). The seasonal differences of
scaling exponents simulated by BCC_CSM1.1(m), CMCC-

CMS and FGOALS-g2 are smaller than the other models in
summer.

The Spatial Distribution of LRC for nine
CMIP5 Models’ Daily Precipitation
The zonal average scaling exponents of NCEP daily precipitation
are smaller in middle and high latitudes (Figure 5A). The zonal
mean scaling exponents decrease rapidly from the equator to
middle latitudes and decrease to about 0.6 near 30°S and 30°N.
Subsequently, the reduction rate slows down and the zonal
average scaling exponents range from 0.5 to 0.6 in the high
latitude regions. The scaling exponents of daily precipitation
simulated by CMIP5 models also show similar characteristics,
the zonal average scaling exponents are smaller in middle and
high latitudes. However, the scaling exponents of CMIP5 models’
daily precipitation are underestimated, especially in the tropics.
The zonal mean scaling exponents simulated by CMCC-CMS,
GFDL-ESM2G and IPSL-CM5A-MR are closer to those of NCEP,
while BCC_CSM1.1(m) and FGOALS-g2 show relatively poor
performance.

In spring, the zonal mean scaling exponents of NCEP are
larger in the northern hemisphere than those in the southern
hemisphere, and reach a peak value more than 0.7 in the
equatorial region (Figure 5B). The zonal average scaling
exponents in the northern hemisphere vary slightly from
extratropical areas to high latitudes. In the southern
hemisphere, the zonal average scaling exponents reach the
minimum near 40°S, and then increase to 0.6 with the
increase of latitudes. The zonal mean scaling exponents
simulated by most models in the mid-latitude region are

FIGURE 5 | Zonal distribution of daily precipitation’s scaling exponents obtained from NCEP and nine CMIP5 models for (A) year; (B) spring; (C) summer; (D)
autumn; (E) winter.

Frontiers in Environmental Science | www.frontiersin.org June 2021 | Volume 9 | Article 6566397

Dong et al. Whether CMIP5 Can Reproduce LRC

https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


closer to those of NCEP, while the differences simulated by
BCC_CSM1.1(m), CNRM-CM5, FGOALS-g2 are greater in the
tropical region. The zonal mean scaling exponents of daily
precipitation simulated by CMIP5 models are generally
smaller than those of NCEP in low and middle latitudes.
Seasonal characteristics in summer and autumn are similar
to those in spring (Figures 5C,D). INM-CM4 performs
worse at the middle latitudes in summer. In winter, the
scaling exponents of NCEP daily precipitation reach the
minimum near 60°S in the southern hemisphere, and then
increase rapidly (Figure 5E).

In conclusion, most CMIP5 models can capture the
characteristic that zonal mean scaling exponents of daily
precipitation reach the peak in the tropics, and then decrease
rapidly with the latitude increasing. Among nine CMIP5 models,
the zonal mean scaling exponents simulated by CMCC-CMS,
GFDL-ESM2G and IPSL-CM5A-MR are similar to those of

NCEP, while BCC_CSM1.1(m) and FGOALS-g2 cannot
capture the feature of seasonal variations.

According to the annual average scaling exponents of daily
precipitation in each region, the differences between CMIP5
models and NCEP are generally no more than the absolute
value of 0.25. In addition, the differences are larger in the
middle and low latitudes (Figure 6A). In AO, SIB, ALA, GRL,
MED, CAS, NPO, ENA, NAO, SIO, SPO, SAO, SO and ANT
regions, the differences of scaling exponents between CMIP5
models and NCEP are less than the absolute value of 0.05. While
the scaling exponent biases are greater than the absolute value of
0.05 in TIB, EAS, EAF, TEP and NSA.

In spring, the differences of scaling exponents between NCEP
and CMIP5 models are less than the absolute value of 0.05 in
most of the world, while the differences are greater in tropical
areas (Figure 6B). In MEX, WAF, EAF, TEP, NSA, TAO, more
than half of the models show the absolute value of biases more

FIGURE 6 | The biases of the region average scaling exponents between CMIP5 models and NCEP for (A) year; (B) spring; (C) summer; (D) autumn; (E) winter.
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than 0.05. In summer, models performs relatively well in the
middle and high latitudes of the southern hemisphere. In SIO,
SPO, AUS, SSA, SAO, SO, ANT, AOGRL, CASNPO, ENA and
NAO, the absolute value of biases simulated by CMIP5 models
are less than 0.05. In WAF, EAF, NEU, SAS, SEA, TCP, TEP,
NSA, TAO, SAF, there are more than half of models, which

show the absolute value of differences greater than 0.05
(Figure 6C). In autumn, the absolute value of the model’s
biases are less than 0.05 in the most extratropical areas, while
the absolute value of more than half of simulated models’ biases
are greater than 0.05 in WAF, EAF, SEA and TEP areas
(Figure 6D). In winter, the absolute value of the CMIP5

FIGURE 7 | Scaling exponents of NCEP daily precipitation and differences between NCEP and nine CMIP5 models for annual average. (A) NCEP daily
precipitation, (B) BCC_CSM1.1(m), (C) CMCC-CMS, (D) CNRM-CM5, (E) FGOALS-g2, (F) GFDL-ESM2G, (G) HadGEM2-AO, (H) INM-CM4, (I) IPSL-CM5A-MR, (J)
MPI-ESM-MR (Black dot represents the difference is significant at a significance level of 0.05).
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models’ simulated biases are less than 0.05 in most parts of the
northern hemisphere and middle and high latitudes in the
southern hemisphere. In WAF, EAF, TIO, TCP, TEP, NSA
and SAF areas, there are more than half of the models’ absolute
value of biases greater than 0.05 (Figure 6E).

The global daily precipitation of NCEP shows LRC
characteristic in most parts of the world. The scaling
exponents are generally range from 0.65 to 0.9 in tropical

areas and even above 0.9 in the tropical middle and east
Pacific Ocean, which are significant at a significance level of
0.05 (Figure 7A). Compared with NCEP data, the scaling
exponents simulated by most models are smaller in the
tropics. Seven models overestimate the LRC in the equatorial
western Pacific except for BCC_CSM1.1(m) and HadGEM2-AO.
There are larger biases in Northwest Africa, while smaller biases
in the extratropical areas for most models. Overall, the biases of

FIGURE 8 | The same as Figure 7, but for summer.
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GFDL-ESM2G, INM-CM4 and HadGEM2-AO are relatively
small. For seasonal variations, global spatial distributions of
scaling exponents obtained by NCEP data are similar to those
of annual mean distributions. Taking summer as an example, the
scaling exponents of NCEP precipitation in the tropics and most
regions of Eurasia are above 0.65, and the values in the equatorial
Middle East and Pacific are above 0.9, which are significant at a
significance level of 0.05 (Figure 8). Compared with NCEP, the
scaling exponents of BCC_CSM1.1(m), CNRM-CM5, FGOALS-
g2 and MPI-ESM-MR are smaller in the tropics, most of Eurasia
and North America. The scaling exponents of CMCC-CMS and
INM-CM4 in the tropical western Pacific and Indian Ocean are
bigger than those in other tropical regions. The scaling exponents
obtained by GFDL-ESM2G and HadGEM2-AO show similar
spatial distribution to that of NCEP precipitation in most of
the world, except for the equatorial eastern Pacific. In other
seasons, the performance of nine CMIP5 models also varies in
different regions, and the biases’ distribution of higher values and
lower values are similar to those in summer. Generally, the biases
of precipitation’s scaling exponents simulated by GFDL-ESM2G,
HadGEM2-AO and INM-CM4 are relatively small, which means
the inner dynamical characteristics of climate systems are well
simulated by these models.

DISCUSSION AND CONCLUSION

Based on the DFA method, this paper evaluates the performance of
nine CMIP5 models for global daily precipitation from 1960 to 2005.
The DFA results of NCEP daily precipitation present long-term
correlation characteristics in most regions of the world. The scaling
exponents of precipitation in the central part of North America are the
largest in summer. The seasonal variations of daily precipitation’s
scaling exponents simulated by CNRM-CM5, GFDL-ESM2G,
HadGEM2-AO and IPSL-CM5A-MR are similar to those of NCEP,
which can capture the characteristics that scaling exponents are the
biggest in summer and the smallest in autumn. The scaling exponents
of precipitation in the equatorial central Pacific are the smallest in
summer, indicating the LRC in this region is the weakest in summer.
Moreover, the scaling exponents in winter are around 1.0 value.

The zonal average scaling exponents of NCEP daily precipitation
are smaller in middle and high latitudes. In spring, the zonal mean
scaling exponents of NCEP are larger in the northern hemisphere
than those in the southern hemisphere. The zonal average scaling
exponents in the northern hemisphere vary slightly with the latitudes
increasing and the scaling exponents are around 0.6. In the southern
hemisphere, the zonal average scaling exponents reach theminimum
near 40°S, and then increase to 0.6 with the increase of latitudes.
Seasonal characteristics in summer and autumn are similar to those
in spring. In winter, the scaling exponents of NCEP reach the
minimum near 60°S in the southern hemisphere and then
increase rapidly. Most CMIP5 models can capture the
characteristics that zonal mean scaling exponents of daily

precipitation reach the peak in the tropics and then decrease
rapidly with the latitudes increasing. The zonal mean scaling
exponents simulated by CMCC-CMS, GFDL-ESM2G and IPSL-
CM5A-MR are similar to those of NCEP, while BCC_CSM1.1(m)
and FGOALS-g2 cannot capture this feature of seasonal variations.

The global daily precipitation of NCEP shows LRC in most
parts of the world, in which the scaling exponents are generally
bigger and above 0.9 over the tropical middle and east Pacific
Ocean for the year and four seasons. The differences between
models and NCEP are larger in the middle and low latitudes. In
AO, SIB, SO and ANT regions, the differences of scaling
exponents’ absolute value between CMIP5 models and NCEP
are less than 0.05. While in WAF, EAF, TEP and NSA, the
absolute value of scaling exponents’ biases are greater than 0.05
for the year and all four seasons. The biases of GFDL-ESM2G,
HadGEM2-AO and INM-CM4 are relatively small, which means
that the dynamical characteristics of climate systems are well
simulated by these models.

The present study provides a reference for different CMIP5
models’ performance in simulating the LRC of global daily
precipitation. Comparing the individual models for certain
regions reveals that most CMIP5 models can capture the
dynamical characteristics of climate system, while there are
inter-model differences in various regions. Therefore,
appropriate models should be selected according to different
research regions.
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