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Unoccupied aircraft systems (UAS, or drones) equipped with off-the-shelf multispectral
sensors originally designed for terrestrial applications can also be used to derive water
quality properties in coastal waters. The at-sensor total radiance a UAS measured
constitutes the sum of water-leaving radiance (LW) and incident radiance reflected off
the sea surface into the detector’s field of view (LSR). LW is radiance that emanates from the
water and contains a spectral shape and magnitude governed by optically active water
constituents interacting with downwelling irradiance while LSR is independent of water
constituents and is instead governed by a given sea-state surface reflecting light; a familiar
example is sun glint. Failure to accurately account for LSR can significantly influence Rrs,
resulting in inaccurate water quality estimates once algorithms are applied. The objective of
this paper is to evaluate the efficacy of methods that remove LSR from total UAS radiance
measurements in order to derive more accurate remotely sensed retrievals of scientifically
valuable in-water constituents. UAS derived radiometric measurements are evaluated
against in situ hyperspectral Rrs measurements to determine the best performing method
of estimating and removing surface reflected light and derived water quality estimates. It is
recommended to use a pixel-based approach that exploits the high absorption of water at
NIR wavelengths to estimate and remove LSR. Multiple linear regressions applied to UAS
derived Rrs measurements and in situ chlorophyll a and total suspended solid
concentrations resulted in 37 and 9% relative error, respectively, which is comparable
to coastal water quality algorithms found in the literature. Future research could account for
the high resolution and multi-angular aspect of LSR by using a combination of
photogrammetry and radiometry techniques. Management implications from this
research include improved water quality monitoring of coastal and inland water bodies
in order to effectively track trends, identify and mitigate pollution sources, and discern
potential human health risks.
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INTRODUCTION

Unoccupied aircraft systems (UAS, drones) provide on-demand
remote sensing capabilities at ultra-high resolution (<5 cm)
without the challenges of cloud cover, land adjacency, and
atmospheric effects associated with satellite and airborne
remote sensing (Anderson and Gaston, 2013). UAS are
becoming an integral tool in studying and managing coastal
ecosystems (Johnston, 2019), with applications ranging from
thermal remote sensing (Lee et al., 2016; Dugdale et al., 2019)
and pollutant tracking (Arango and Nairn, 2019; Morgan et al.,
2020), to habitat and population assessments (Gray et al., 2018;
Windle et al., 2019). The increased spatial and temporal
resolution provided by UAS remote sensing can enhance
ecological and biogeochemical research of aquatic ecosystems.
UAS have the potential to characterize the degree of
eutrophication, identify the extent and movement of harmful
algal blooms, and resolve fine-scale coupled biophysical processes
in coastal and inland water bodies.

A number of recent studies have derived optical water quality
parameters using UAS imagery and are listed in Table 1. In these
studies, UAS are equipped with a variety of either multispectral or
hyperspectral imagers that measure light at discrete wavebands in
the visible and near-infrared (NIR) spectrum. Following the large
body of research borne from earth observing satellites (Werdell
and McClain, 2019), many of these studies use a combination of
UAS optical payloads, calibrations, and numerical methods to
determine remote sensing reflectance (Rrs) defined as:

Rrs(θ, Φ, λ) � LW(θ, Φ, λ)
Ed(λ) (1)

where LW (W m−2 nm−1 sr−1) is water-leaving radiance, Ed (W
m−2 nm−1) is downwelling irradiance, θ represents the sensor
viewing angle between the sun and the vertical (zenith), ɸ
represents the angular direction relative to the sun (azimuth),
and λ represents wavelength.

Like all above-water optical measurements, UAS do not
measure Rrs directly as the at-sensor total radiance (LT, W
m−2 nm−1 sr−1) constitutes the sum of LW and incident
radiance reflected off the sea surface into the detector’s field of
view, herein referred to as surface-reflected radiance (LSR). LW is
radiance that emanates from the water and contains a spectral
shape and magnitude governed by optically active water
constituents interacting with downwelling irradiance, while LSR
is independent of water constituents and is instead governed by a
given sea-state surface reflecting light; a familiar example is sun
glint. Here we define UAS total reflectance (RUAS) as:

RUAS(θ, Φ, λ) � LT(θ, Φ, λ)
Ed(λ) (2)

where

LT(θ, Φ, λ) � LW(θ, Φ, λ) + LSR(θ, Φ, λ) (3)

As UAS measurements are typically performed close to the
surface (e.g. United States Federal Aviation Administration’s
maximum allowable altitude of 122m), atmospheric
measurement effects are routinely assumed to be negligible and
ignored (Zeng et al., 2017; Schneider-Zapp et al., 2019). Indeed, this
is a key advantage of UAS imagery as atmospheric effects over
coastal environments can introduce significant uncertainty in
satellite-based measurements (Gordon and Clark, 1980).
However, failure to accurately account for LSR can significantly
influence Rrs, resulting in inaccurate water quality estimates once
algorithms are applied (Su, 2017; Zeng et al., 2017).

The objective of this paper is to evaluate the efficacy of
methods that remove LSR from total UAS radiance
measurements in order to derive more accurate remotely
sensed retrievals of scientifically valuable in-water constituents.
UAS derived radiometric measurements are evaluated against in
situ hyperspectral Rrs measurements to determine the best
performing method of estimating and removing surface
reflected light and derived water quality estimates.

TABLE 1 | Summary of existing UAS aquatic remote sensing literature including the UAS sensor(s) used, radiometric quantity studied (where Rrs represents UAS derived
remote sensing reflectance and RUAS represents UAS derived total reflectance), whether the study accounted for surface reflected radiance (LSR), and the water quality
parameter(s) derived.

Reference UAS sensor(s) Radiometric
quantity

Removal
of LSR?

WQ parameter(s)

Zeng et al. (2017) Ocean optics STS-VIS spectrometers (hyperspectral) RUAS No Chl a, CDOM, turbidity
Shang Z. et al. (2017) AvaSpec-dual spectroradiometers (hyperspectral) Rrs Yes Chl a
Su, (2017) Canon powershot S110 RGB and NIR sensors RUAS Yes Chl a, secchi disk depth, turbidity
Choo et al. (2018) MicaSense RedEdge and DLS (multispectral) RUAS No Chl a
Baek et al. (2019) MicaSense RedEdge and DLS (multispectral) Rrs Yes Chl a
Becker et al. (2019) Ocean optics STS-VIS spectrometers (hyperspectral) RUAS No Cyanobacteria index, chl a TSS
Arango and Nairn.
(2019)

MicaSense RedEdge and DLS (multispectral) RUAS No Secchi disk depth, chl a, TSS,
TN, TP

Olivetti et al. (2020) Parrot sequoia (multispectral) RUAS No TSS
McEliece et al. (2020) Sentera multispectral sensor (4 visible bands) RUAS No Chl a, turbidity
Kim et al. (2020) MicaSense RedEdge-M and DLS (multispectral) Rrs Yes Chl a (but not focus of paper)
Castro et al. (2020) MicaSense RedEdge and DLS (multispectral) Rrs No Chl a
O’Shea et al. (2020) Resonon Pika L spectrometer (hyperspectral) *deployed on a

tower, not UAS
Rrs Yes Chl a
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Background/Theory
If a water surface was perfectly flat, incident light would reflect
specularly and could be measured with known viewing geometries.
This specular reflection of a level surface is known as the Fresnel
reflection; however, most water bodies are not flat as winds and
currents create tilting surface wave facets. Due to differing orientation
of wave facets reflecting radiance from different parts of the sky, LSR
can vary widely within a single image. A common approach to model
LSR is to express it as the product of sky radiance (Lsky, W m−2 nm−1

sr−1) and ⍴, the effective sea-surface reflectance of the wave facet
(Mobley, 1999 ; Lee et al., 2010):

LSR(θ, Φ, λ) � ρ(θ, Φ, λ) p Lsky(θ, Φ, λ) (4)

Rearranging Eqs. 3 Eqs. 4, ⍴ can be derived by:

ρ(θ, Φ, λ) � LT(θ, Φ, λ) − Lw(θ, Φ, λ)
Lsky(θ, Φ, λ) (5)

Given measurements of Lsky, an accurate determination of ⍴ is
critical to derive Rrs by:

Rrs(θ, Φ, λ) � RUAS(θ, Φ, λ) − Lsky(θ, Φ, λ) p ρ(θ, Φ, λ)
Ed(λ) (6)

Methods using the statistics of the sea surface, for a given wind
vector, can be used to predict ⍴; tabulated values have been derived
from numerical simulations with modelled sea surfaces, Cox and
Munk wave states (wind), and viewing geometries (Cox and Munk,
1954; Mobley, 1999; Mobley, 2015). Mobley (1999) provides the
recommendation of collecting radiance measurements at viewing
directions of θ � 40° from nadir and ɸ � 135° from the sun to
minimize the effects of sun glint and nonuniform sky radiance with a
⍴ value of 0.028. The suggested viewing geometries and ⍴ value from
Mobley (1999) have been used to estimate and remove LSR in UAS
remote sensing studies (Ruddick et al., 2006; Shang S. et al., 2017; Baek
et al., 2019; Kim et al., 2020). However, more recent studies have
shown that ⍴ can be spectrally dependent due to the degree of sky
polarization and the ratio of diffuse to direct light; assuming a spectally
constant ⍴ in a roughened sea surface with multi-angular wave facets
can lead to erroneous estimates of LSR (Lee et al., 2010;Mobley, 2015).
Lee et al. (2010) proposed a spectral optimization approach using
spectral inherent optical properties to model Rrs, which has been
applied in UAS remote sensing studies (O’Shea et al., 2020).

An alternative method to remove LSR relies on the so-called dark
pixel assumption that assumes LW in the NIR is negligible due to
strong absorption of water. Where this assumption holds, at-sensor
radiance measured in the NIR is solely LSR (Gordon and Wang,
1994; Siegel et al., 2000) and allows⍴ to be calculated if Lsky is known.
Studies have used this assumption to estimate and remove LSR;
however, the assumption tends to fail in more turbid waters where
high concentrations of particles enhance backscattering and LW in
theNIR (Siegel et al., 2000; Lavender et al., 2005). Other novel image-
processing techniques such as nonlocal mean filtering and a
matching pixel by pixel algorithm have been proposed to reduce
the effects of LSR variation from UAS imagery; however, these
region-specific methods exhibit some limitations for applications
in other water bodies (Su, 2017; Totsuka et al., 2019).

METHODS

Study Area
This study was conducted in the Choptank River, a major tributary
of the Chesapeake Bay (United States). The 1,756 km2 coastal plain
watershed is dominated by agriculture and forest with a relatively
low population density, transitions from non-tidal, freshwater
reaches to a brackish, tidal mouth, and is eutrophic (Fisher et al.,
2021). Data from eight stations located downriver and extending
from the mouth of the Choptank River were collected on September
16, 2020 with a relatively clear sky, data from eight stations located
up river were collected on October 1, 2020 with varying cloud cover,
and data from thirteen stations located in between the downriver
and upriver stations were collected on October 22, 2020 with a clear
sky (Figure 1).

In situ Rrs
At each station, a set of hyperspectral radiometers (TriOS
RAMSES; Rastede DE) deployed on a float provided in situ Rrs

measurements at every station. The float held a downwelling
irradiance sensor (Ed) and an inverted radiance sensor (Lw)
positioned above the surface water and with a small black
plastic cone that extended just below the surface to block LSR
(i.e. light blocking technique, Ahn et al., 1999; Lee et al., 2019).
The TriOS radiometers collect 256 wavelength bands at 3.3 nm
intervals within the 320–950 nm range. All in situ hyperspectral
measurements were interpolated at 1 nm intervals. In order to
compare these measurements to the UAS, spectral response
functions (SRFs) of the five MicaSense wavebands were
applied to the in situ hyperspectral Rrs data (Figure 2).

In situ Water Quality Data
At each station, surfacewater grab samples were collected tomeasure
chlorophyll a and total suspended solids (TSS) concentrations.
Chlorophyll a concentration was measured in duplicate following
EPAmethod 445.0 (Arar and Collins, 1997). Briefly, 100ml of water
from each station was filtered on 47mm GF/F filters, immersed in
20ml of 90% acetone and placed in a dark freezer for 24 h.
Chlorophyll a fluorescence was measured on 5ml of extract
using a fluorometer (Turner 10 AU Fluorometer, San Jose CA)
calibrated against chlorophyll a pigment standards (DHI, Horsholm
DK) before and after acidification with 0.1 ml of 6 N hydrochloric
acid. TSS was measured using a gravimetric analysis (American
Public Health Association (APHA), 1995). 350ml of water from
each station was filtered using pre-weighed and combusted (450°C)
GF/F filters and placed into a 105°C drying oven for at least 2 h.
Filters were reweighed and the concentration was calculated by TSS
(mg/L) � Wpost(g) - Wcombust(g) x 1,000/V(L).

Multispectral Sensor: MicaSense
RedEdge-MX Sensor
The MicaSense RedEdge-MX sensor (MicaSense, Seattle,
Washington, United States) is a 8.7 × 5.9 × 4.5 cm
multispectral camera capable of capturing five simultaneous
bands on the electromagnetic spectrum in 12 bit radiometric

Frontiers in Environmental Science | www.frontiersin.org May 2021 | Volume 9 | Article 6742473

Windle and Silsbe Evaluation of Aquatic UAS Remote Sensing

https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


resolution: blue (475 nm center, 32 nm bandwidth), green
(560 nm center, 27 nm bandwidth), red (668 nm center, 14 nm
bandwidth), red edge (717 nm center, 12 nm bandwidth), and
NIR (842 nm center, 57 nm bandwidth). The sensor has up to one
capture per second, a 47.2° field of view with a spatial resolution of
8 cm per pixel at 120 m altitude. The sensor was mounted on a

DJI Phantom four Pro UAS using a 10° 3D-printed mount which
resulted in a direct nadir viewing angle while in flight (Figure 2).
The sensor also includes a downwelling light sensor (DLS) which
measures Ed in the same spectral wavebands during in-flight
image captures. The DLS measures light incident on a diffuser,
providing a downwelling hemispherical irradiance measurement

FIGURE 1 | Location of Choptank River (38.63N, −76.33W) in Chesapeake Bay, Maryland, United States and locations of stations where data was collected.

FIGURE 2 | (A) MicaSense RedEdge-MX multispectral sensor and downwelling light sensor (DLS) collects total radiance (LT) (sum of water-leaving radiance, Lw
and surface reflected radiance, LSR) and downwelling irradiance (Ed) measurements while in a low altitude flight. Sky radiance (Lsky) is collected by positioning the sensor
at 40° angle from zenith away from sun. (B) MicaSense RedEdge-MX multispectral sensor and DLS collects LT and Ed in five wavebands: red, green, blue, red-edge,
near-infrared. (C) Approximate spectral response functions of MicaSense RedEdge-MX sensor.
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(Mamaghani and Salvaggio, 2019). The DLS was mounted above
the UAS to eliminate shading and collected incident light at a 0°

zenith angle. Images were collected at an average flight altitude of
70 m which resulted in 0.02 m pixel resolution (923 × 1219).

At each station, measurements of LT, Lsky, and Ed were
collected by the MicaSense RedEdge-MX multispectral sensor
and DLS. First, measurements of Lsky were collected by
positioning the camera 40° from zenith with an approximate
azimuthal viewing direction of 135° and taking several image
captures (Figure 2). Lsky at each waveband was computed as the
grand mean of all station-specific measurements. Next, the UAS
was manually flown and images were automatically captured
every 2 s. TheMicaSense multispectral sensor has a built-in global
positioning system (GPS) and inertial measurement unit (IMU)
which recorded the positioning (latitude, longitude, altitude) and
orientation (yaw, pitch, roll) of each image capture. Thirty image
captures taken at the highest altitude from each station were used
in subsequent analyses. This information along with solar
elevation, image size, and coordinated universal time (UTC)
time, were recorded in the metadata of each image capture.

Pre-Processing
Data collected by the multispectral sensor were radiometrically
calibrated using a Python workflow provided by MicaSense1. The
process of converting raw pixel values (digital number, DN) into
total spectral radiance (LT) values with units of W/m/sr/nm is
given in Eq 7:

LT � V(x, y) p
a1
g

p
DN − DNBL

te + a2y − a3tey
(7)

The radiometric calibration compensates for dark pixel
subtraction (DNBL), sensor gain (g), exposure settings (te), and
lens vignette effects (V(x,y)). Coefficients a1, a2, and a3 are
radiometric calibration coefficients and x,y is the pixel column
and row number, respectively. Lens distortion effects, such as
band-to-band image alignment, were removed from image
captures by an unwarping procedure and wavebands were
aligned to form a stacked TIFF for each image set.

A filtering procedure was applied to all images to remove
specular sun glint and instances of the boat when it was present in
the image. Studies have suggested filtering out high total radiance
values, or instances of specular sun glint, before removing LSR
from LT (Hooker et al., 2002). Specular sun glint arises when
direct sunlight reflects off of a wave facet or surface at the viewing
angle of the sensor. Sun glint pixels were masked using an
empirical upper limit of RUAS measurements in the NIR, and
this mask was then propagated to pixels at all other wavebands.
Specifically, in situ measurements and values from radiative
transfer model simulations (see methods below) were used in
Eq. 8 to solve for an upper limit of RUAS(NIR) and pixels with
values greater than this upper limit were masked in each
waveband.

RUAS(NIR) � Rrs(NIR) + ρ(NIR) p Lsky
Ed

(8)

Where Rrs(NIR) � 0.005 is based on in situmeasurements in this
study and consistent with other turbid waters (Tzortziou et al.,
2006), ⍴(NIR) varied depending on station, and Lsky/Ed � 0.39 is
derived from radiative transfer model simulations (HydroLight
v6.0, Numerical Optics Ltd., United Kingdom). A lower limit of
RUAS(green) � 0.007 was used to mask out the dark canopy of the
boat when present in images.

Removal of Surface Reflected Light (LSR)
At each station, LSR was estimated using one of four different
methods to ultimately derive Rrs following Eq. 6. These methods
are provided below, and herein referred to as “⍴LUT,” “NIR � 0,”
“NIR > 0” and “Deglinting.” Resultant UAS Rrs estimates were then
compared to paired in situ Rrs data across stations and wavebands.
Statistical evaluations to assess the relationship included root mean
square error (RMSE), relative root mean squared error (RRMSE),
coefficient of determination (R2), and p-values.

⍴LUT. The ⍴LUT method follows from Mobley (1999) and
involved developing a look-up table (LUT) of ⍴ values using
HydroLight simulations. HydroLight is a numerical model that
solves the radiative transfer equation to compute the radiance
distribution within and at the surface of a water body. Inputs
include absorbing and scattering properties of a water body, the
nature of the wind-blown sea surface (Cox-Munk sea surface
slopes), and the sun and sky radiance incident on the sea surface
(Mobley, 1999). Outputs include the full radiance distribution,

FIGURE 3 | Visualization of the three-dimensional ⍴ look-up table
derived from HydroLight simulations with varying solar zenith angles, wind
speed (m/s), and cloud cover (%) corresponding to a nadir viewing angle.

1MicaSense RedEdge Image Processing Tutorials. Retrieved online at https://
github.com/micasense/imageprocessing.
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including an effective ⍴ value for a range of geometries and
wavelengths. Batch HydroLight runs incorporating varying solar
zenith angles (0, 10, 20, 30, 40, 50, 60°), wind speeds (0, 2, 4, 6,
8 m/s), and fractional cloud cover (0, 0.2, 0.4, 0.6, 0.8, 1%) were
used to develop a multidimensional look-up table of ⍴ values that
correspond to a nadir viewing angle (Figure 3). HydroLight
returned spectrally explicit ⍴(θ, ɸ, λ) values and MicaSense
SRFs were applied to ⍴(θ, ɸ, λ) for each waveband. ⍴(θ, ɸ, λ)
values were obtained for each station according to the solar zenith
angles obtained from MicaSense metadata, wind speed was
collected from the Global Forecast System2, and cloud cover
was determined by the Lsky images. Data in this study were
collected at solar zenith angles ranging from 36.5 to 58.6°, wind
speeds ranged from 1.1 to 3.1 m/s and cloud cover ranged from 0
to 60%.

NIR � 0. LSR was also estimated using a pixel based dark pixel
assumption to derive ⍴. Assuming Rrs(NIR) equals 0, Eq. 6 can be
rearranged to solve for ⍴ (Eqs. 9 and 10). This ⍴ value is used to
calculate Rrs across all wavebands (Eq. 11).

0 � LT(NIR) − Lsky(NIR) p ρ (9)

ρ � LT(NIR)/Lsky(NIR) (10)

Rrs(θ, Φ, λ) � RUAS(θ, Φ, λ)

− Lsky(θ, Φ, λ) p (LT(NIR)/Lsky(NIR))
Ed(λ) (11)

NIR > 0. Since the dark pixel assumption is invalid in turbid
waters including the Chesapeake Bay (Siegel et al., 2000) an
alternative pixel based approach was developed to instead
estimate a baseline Rrs(NIR). Specifically, Rrs(NIR) was estimated
empirically by a nonlinear regression using in situ Rrs(NIR) and
RUAS data (Figure 4). The ratio of RUAS(blue)/RUAS(rededge) led to
the most robust predictions of Rrs(NIR) using Eq 12:

Rrs(θ, Φ, λ) � 0.025e−5.469pRUAS(blue)/RUAS(red edge) + 0.00013 (12)

Conceptually, this relationship makes sense because with
increasing particle concentrations, water becomes less blue and
Rrs(NIR) increases.

“Deglinting.” LSR was also estimated following the “deglinting”
methods of Hochberg et al. (2003) and Hedley et al. (2005). For
each station, a minimum NIR value was determined by finding
the lowest 10% of RUAS(NIR) across all images. For each band, a
linear regression was made between all RUAS(NIR) and
RUAS(visible) values and the slope (bi) was determined. Each
pixel was corrected by subtracting the product of bi and the NIR
brightness of the pixel (Hedley et al., 2005):

Rrs(i) � RUAS(i) − bi(RUAS(NIR) −min(RUAS(NIR))) (13)

Water Quality Retrievals
Rrs values from each LSR removal method were compared against in
situ chlorophyll a and TSS data (n � 28) using multiple linear
regressions. The best performing model (highest R2 and lowest
RMSE, RRMSE, p-values) was used in a stepwise model selection by
Akaike information criterion (AIC, “stepAIC” in R). The AIC
stepwise regression iteratively added and removed wavelengths in
order to determine the combination of data that resulted in the best
performing model with low prediction error, while taking into
account model simplicity. Rrs values were used as input into
optical algorithms derived from the best performing multiple
linear regressions and mean chlorophyll a and TSS concentration
at each station was obtained by averaging values across all images.
The resulting arrays were georeferenced using the Python libraries
“CameraTransform” (Gerum et al., 2019) and “Rasterio” using
archived metadata including latitude, longitude, image width,
image height to position the images accurately in a known
coordinate system (WGS84). Georeferenced arrays were exported
as individual TIFFs and mapped using ArcGIS Pro (ESRI Inc.
Redlands, CA, United States).

RESULTS

In situ Data
Chlorophyll a concentration ranged from 5.19 to 53.30 ug/L with
an average of 17.13 ± 10.96 ug/L. TSS concentration ranged from
19.94 mg/L to 39.69 mg/L with an average of 28.25 ± 5.21 mg/L.
In general, in situ Rrs spectra were representative of a eutrophic
system (Figure 5, Gitelson et al., 2007; Spyrakos et al., 2018). Due
to absorption of chromophoric dissolved organic matter
(CDOM) and chlorophyll a in lower wavelengths, Rrs is low in
the blue region with a distinct peak in the green region

FIGURE 4 | Nonlinear relationship between a blue (475 nm) to red edge
(717 nm) ratio of total UAS reflectance to in situ Rrs in the NIR band (842 nm).
An exponential model was used to estimate UAS derived Rrs(NIR) baseline in
order to estimate LSR.

2Wind speed data was retrieved from https://earth.nullschool.net/about.html.
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(∼550 nm). A secondary peak in the red region (∼700 nm)
corresponds to chlorophyll fluorescence emission (Spyrakos
et al., 2018). Overall, spectra collected from upriver stations on
10/01/20 were larger in magnitude and contained a tertiary peak
in the NIR region (∼800 nm).

Removal of Surface Reflected Light (LSR)
UAS measurements of Lsky were approximately proportional to
the fourth power of the wavelength (Lsky ≈ λ−4, Figure 5) and
were used with estimations of ⍴ to calculate and remove LSR from
RUAS measurements at each station. Figure 6 illustrates the initial
masking and methods to remove LSR using an individual UAS

image taken in the green band. When LSR was estimated using the
⍴ look-up table (⍴LUT), Rrs values did not change much from
RUAS values; however, Rrs values using the pixel-based dark pixel
assumptions (NIR � 0, NIR>0) and “deglinting” approach
declined and became more homogenous across pixels (Figure 6).

UAS derived reflectance measurements from each LSR
removal method were plotted as spectra (Figure 7) and
compared against in situ Rrs values (Figure 8). UAS
reflectance spectra are similar in shape to in situ Rrs spectra
and display a distinct peak in the green band (560 nm) and
often a secondary peak in the red band (668 nm)
corresponding to chlorophyll a reflectance and fluorescence,

FIGURE 5 | (A) In situ remote sensing reflectance (Rrs) spectra collected with hyperspectral TriOS radiometers and (B) Sky radiance (Lsky) spectra collected with
MicaSense RedEdge-MX multispectral camera at stations along the Choptank River on 9/16/20 (blue), 10/01/20 (brown), and 10/22/20 (green).

FIGURE 6 | Example of an individual UAS image (green band) with different radiometric values: (A) RUAS, (B) RUAS with initial sun glint masking and (C–F) remote
sensing reflectance (Rrs) using various methods to remove surface reflected light: (C) ⍴ look-up table (LUT) from HydroLight simulations, (D) Dark pixel assumption with
NIR � 0, (E) Dark pixel assumption with NIR >0, (F) Deglingting methods following Hochberg et al. (2003).
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respectively (Figure 7). Spectra collected on the second
sampling day (upriver sites) shift to longer wavelengths
likely due to scattering of inorganic particles (Figure 7).
RUAS spectra are higher in magnitude and are overestimated
when compared to in situ Rrs due to the inclusion of LSR (R2 �
0.55, RMSE � 0.004, p < 0.05). When LSR is estimated using the
⍴LUT, spectra are similar in shape to in situ spectra, but are
higher in magnitude and overestimated compared to in situ
measurements (R2 � 0.85, RMSE � 0.003, p < 0.05). When LSR
is estimated with the dark pixel assumption (NIR � 0), Rrs

spectra are lowest in magnitude, had the poorest fit to in situ
data (R2 � 0.18, RMSE � 0.004, p < 0.05), and produced
negative Rrs values in the lower wavelengths. This is not
surprising given that the in situ measurements in the NIR
(Figure 5A) are not negligible which leads to an
overestimation in LSR. When LSR is estimated using a
basline NIR value (NIR>0), Rrs spectra are higher in
magnitude with a lower error but still indicate negative
values in the lower wavelengths, indicating LSR was still
slightly overestimated (R2 � 0.50, RMSE � 0.002, p < 0.05).
Rrs spectra with the “Deglinting” approach are similar in shape
to in situ spectra but are slightly higher in magnitude
(Figure 7). This approach contained the second highest
correlation and lowest RMSE (R2 � 0.65, RMSE � 0.002,
p < 0.05), but still tended to overestimate Rrs values (Figure 8).

Water Quality Retrieval Algorithms
Rrs measurements with LSR estimated using a baseline NIR value
(NIR>0) performed best when compared to in situ chlorophyll a data
(R2 � 0.37, RMSE � 5.89, RRMSE � 37%, p < 0.05). A stepwise model
selection by AIC demonstrated that the green, red edge, and NIR
bands weremost important in estimating chlorophyll a concentration
(Figure 9, R2 � 0.42, RMSE � 5.90, RRMSE � 37%, p < 0.05) and a
remotely sensed chlorophyll a algorithm was determined as:

Chlorophyll a (ug/L) � 24.02 + Rrs(560)
* − 4337.88 + Rrs(717) * 9639.75 + Rrs(842)

* − 2922.80

Rrs measurements with the “deglinting” technique performed
best when compared to in situ TSS data (R2 � 0.72, RMSE � 2.53,
RRMSE � 9%, p < 0.05). A stepwise model selection by AIC
demonstrated that the blue, red, red edge, and NIR bands were
most important in estimating TSS concentration (Figure 9, R2 �
0.73, RMSE � 2.53, RRMSE � 9%, p < 0.05) and a remotely sensed
TSS algorithm was determined as:

TSS (mg/L) � 30.57 + Rrs(475) * 1364.86 + Rrs(668) *−5255.88 + Rrs(717) * 2548.08 + Rrs(842) * 4579.36
Algorithms were applied to respective UAS derived Rrs values

and average chlorophyll a and TSS concentrations were
mapped, along with mosaiced georeferenced TIFFs of

FIGURE 7 | Total UAS reflectance (RUAS) (A) and remote sensing reflectance (Rrs) spectra using various methods to remove surface reflected light: (B) ⍴ look-up
table from HydroLight simulations, (C) Dark pixel assumption with NIR � 0, (D) Dark pixel assumption with NIR >0, (E) Deglinting methods following Hochberg et al.
(2003), and (F) In situ Rrs spectra from TriOS sensors with MicaSense SRFs applied. Negative values are not shown in plots.
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FIGURE 8 | Comparison of UAS radiometry and in situ Rrs in all bands at each station (n � 28) using different methods to remove surface reflected light after initial
sun glint masking. (A) Total UAS derived reflectance (RUAS), (B) ⍴ look-up table from HydroLight simulations, (C) Dark pixel assumption with NIR � 0, (D) Dark pixel
assumption with NIR >0, (E) Deglinting methods following Hochberg et al. (2003). Negative values are not shown in plots.

FIGURE 9 | Comparison between in situ and modelled (A) chlorophyll a concentration and (B) TSS concentration from multiple linear regressions.
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individual image captures (Figure 10). Average chlorophyll a
concentration tended to increase at upriver sites while average
TSS concentrations were higher at downriver sites (Figure 10).
This trend was also seen in the in situ data. Within the mosaic of
individual TIFFs, slight variations in chlorophyll a and TSS
concentration are visible (Figure 10).

DISCUSSION

This study is one of the first to compare methods to remove
surface reflected light from high resolution UAS multispectral
measurements. An initial filtering procedure and four methods
to remove LSR were evaluated against in situ Rrs measurements.
Water quality algorithm performance is compared to those
found in the literature. Results have broad implications for
improving UAS derived water quality measurements in
coastal waters, but several aspects and caveats of this study
merit additional discussion.

Performance of Methods to Remove
Surface Reflected Light (LSR)
Removing surface reflected light from the total radiance
measured by a UAS ensures only water-leaving information is
used as input into water quality retrievals. Initial filtering

techniques successfully masked instances of specular sun glint
and non-water objects (i.e. boat) in the UAS imagery using
empirical upper and lower Rrs limits. This primary step
ultimately improved final Rrs measurements and derived water
quality products. While the magnitude of Lsky can impact LSR, the
spectral dependence (∼λ−4) is constrained and can be measured;
therefore, the effective sea-surface reflectance of a wave facet (⍴)
needs to be accounted for. Nonetheless, it is important to consider
the impact of the varying absolute magnitude of Lsky and future
work should analyze the effect of Lsky variability on UAS Rrs

measurements.
The ⍴LUT method utilized a ⍴ lookup table approach developed

from HydroLight simulations where ⍴ values were obtained
depending on the solar zenith angle, wind speed, and cloud cover
at the time of UAS data collection. Mobley (1999) HydroLight
simulations led to recommendations of specific sensor viewing
angles with a corresponding constant ⍴ value to reduce effects of
LSR; however, most consumer gradeUAS sensors andmounts do not
have the ability to change viewing angles and are fixed at a nadir
viewing angle. Therefore, the ⍴ values in the look-up table
correspond to nadir viewing angles. This method resulted in
UAS Rrs values that were generally greater than in situ Rrs values,
indicating LSRwas underestimated. This canmost likely be attributed
to a constant ⍴ value that was used to estimate LSR across all pixels in
each image, which averaged out the multifaceted characteristic of a
water surface.

FIGURE 10 | (A) Average chlorophyll a concentration across image captures (n � 30) at each station. (B) Example of mosaiced georeferenced TIFFs collected at
one station with chlorophyll a algorithm applied. (C) Average TSS concentration across image captures (n � 30) at each station. (D) Example of mosaiced georeferenced
TIFFs (n � 30) collected at one station with TSS algorithm applied.
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The NIR � 0 and NIR >0 methods took advantage of the NIR
waveband on the multispectral sensor and incorporated aspects
of the dark pixel assumption which allowed LSR to be removed
from visible wavelengths by assuming that 1) a NIR signal is
composed of LSR and/or a spatially homogeneous NIR
component in the water and 2) the amount of LSR in the NIR
band is linearly related to the amount of LSR in the visible bands
(Mobley, 1999; Siegel et al., 2000). Unlike the ⍴LUT method that
applies a single value to an entire image, the dark pixel
assumption approaches estimate LSR on a per pixel basis
which decreases resultant Rrs variability (Figures 6, 8). When
NIR was assumed to be entirely negligible, calculated Rrs values
were generally lower compared to in situ Rrs which can be
attributed to an enhancement of NIR due to the presence of
scattering inorganic particles in turbid waters. Thus, when a
baseline NIR value was estimated, the method performed
better (higher R2, lower RMSE and RRMSE); however,
negative Rrs values in the lower wavelengths indicated LSR was
still likely overestimated at some stations.

The “deglinting” method, modelled off a glint removal algorithm
introduced by Hochberg et al. (2003), and later Hedley et al. (2005),
calculated a constant ‘ambient’ NIR brightness level which was
removed from all pixels in all wavelengths. This approach resulted
in UAS Rrs measurements slightly overestimated compared to in situ
values but produced the highest R2 and lowest RMSE of all methods.
This method was applied by averaging pixel values across all thirty
images collected at each station and is likely to perform better when
applied on individual images.

The ⍴LUT method uses ⍴ values that are based on probability
distributions of sea surface slopes which are related to the scale of
satellite pixel resolution (100–1000 m) (Cox and Munk, 1954).
For images with much higher pixel resolution ( >1–10 m),
statistical assumptions about the surface of water composed of
many reflecting facets are less likely to hold (Kay et al., 2009).
Therefore, to collect accurate water-leaving reflectance
measurements from high resolution UAS imagery, it is
recommended to use a pixel-based approach exploiting the
high absorption of water at NIR wavelengths to estimate and
remove LSR. If a baseline NIR measurement can be retrieved, the
dark pixel assumption should be used to remove LSR. Otherwise,
the ‘deglinting’ methods following Hochberg et al. (2003) and
Hedley et al. (2005) are recommended. In open ocean waters
without a strong influence of optically active properties, a pixel-
based approach assuming NIR is negligible is expected to
perform well.

It is important to note a potential caveat to the LSR method
evaluation. In this study, in situ Rrs measurements were provided
by hyperspectral radiometers with a skylight blocking approach
(Ahn et al., 1999; Lee et al., 2019). This approach consists of
attaching an open-ended apparatus, or tube, to the front of a
downward looking radiance radiometer and lowering it a few
centimeters into the water, blocking surface-reflected light and
allowing for a direct measurement of LW. It is important to note
that measurements from this technique are subject to instrument
self-shading, which is a function of the water’s optical properties,
sun elevation, and the size of the skylight-blocking cone (Zhang
et al., 2017; Lee et al., 2019). Zhang et al. (2017) estimated that

self-shading accounts for approximately 1–20% error under most
water properties and solar positions. Methods to correct for this
self-shading have been derived (Zhang et al., 2017; Yu et al., 2021)
and if applied, have the potential to improve relationships with
UAS Rrs measurements.

Performance of Water Quality Algorithms
Performance of the multiple linear regressions developed in this
study were compared to existing chlorophyll a and TSS
algorithms designed for coastal waters to determine if UAS
measurements can produce accuracy within the range of other
water quality algorithms. Performance of the UAS derived
chlorophyll a multiple linear regression (R2 � 0.43, RRMSE �
37%) is comparable to other chlorophyll a algorithms found in
the literature (Ruddick et al., 2001; Gons et al., 2002; Gitelson
et al., 2007). A three-band chlorophyll algorithm calibrated using
a variety of coastal waters, including the Choptank River, resulted
in a RRMSE of 51.9% (Gitelson et al., 2007), a two-band
algorithm (red/NIR) with adaptive optimization in the second
band calibrated with measurements from the North Sea and Lake
Ijless, Netherlands resulted in a RRMSE of 37% (Ruddick et al.,
2001), and a two-band algorithm (red/NIR) designed for the
Medium Resolution Imaging Spectrometer (MERIS) satellite
sensor and calibrated using a variety of coastal and inland
waters including Lake IJssel (Netherlands), the Chinese Lake
Tau Hu, and the Hudson/Raritan Estuary (New York/New
Jersey) resulted in a standard error of 9.2 ug/L (Gons et al.,
2002). Performance of the UAS derived TSS multiple linear
regression (R2 � 0.73, RMSE � 2.53, RRMSE � 9%) is also
comparable to existing TSS algorithms found in the literature
(Nechad et al., 2010; Novoa et al., 2017). Algorithms including a
single-band (NIR) second-order polynomial and single-band
(red/green) linear models calibrated with measurements from
the Gironde Estuary, France resulted in RRMSE values ranging
from of 9.11–16.41% (Novoa et al., 2017) and a non-linear
regression calibrated with measurements from the Southern
North Sea resulted in RRMSE values less than 30% (Nechad
et al., 2010). Future work will include improving water quality
algorithms.

UAS Sensor Considerations
The innovative use of UAS technology for environmental
research is a relatively new field and researchers are only
beginning to understand and alleviate the various
methodological and sensor performance challenges. Sensors
degrade over time from use and environmental conditions
which can impact the accuracy of the data being collected.
The most recent MicaSense model, the MicaSense RedEdge-
MX, is integrated with low-cost, image-frame complementary
metal-oxide semiconductor (CMOS) sensors, which compared to
typical charged-coupled device (CCD) sensors, tend to generate
more noise and have lower sensitivity levels (Mamaghani and
Savaggio, 2019). In the present study, raw values were
radiometrically calibrated using a workflow1 provided by
Micasense which implements default metadata parameters that
remain the same unless a new factory calibration is performed.
Due to sensor degradation, these values are likely to gradually
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decline over time, lessening the accuracy of the radiometric
calibration processing (Mamaghani and Savaggio, 2019).
Studies have improved sensor performance by performing
vicarious radiometric calibration using ground targets and
panels with known radiometric accuracy, calibrating sensors
using National Institute of Standards (NIST)-traceable
equipment in a laboratory, and developing look-up tables for
correction factors to update calibration parameters (Del Pozo
et al., 2014; Mamaghani and Salvaggio, 2019; Cao et al., 2020).
Baek et al. (2020) conducted an assessment on radiometric
accuracy for the MicaSense RedEdge-MX sensor by comparing
data to hyperspectral sensors with NIST-traceable calibration
(TriOS RAMSES) and showed that MicaSense RedEdge-MX
radiance is approximately 5–16% lower, and irradiance is
approximately 1–20% lower, depending on wavelength (Baek
et al., 2020). The radiometric accuracy of a new or recently/
vicariously calibrated UAS sensor should meet the required
radiometric accuracy of 5% that is expected with ocean color
satellites (McClain et al., 1992).

Precise registration of multispectral bands within a UAS image
capture is also important to derive accurate spectral radiometric
values across pixels. Sources of misregistration include a
difference in the lens location for each band, image acquisition
times, and exposure times which can all influence Rrs and
resulting water quality variables (Kim et al., 2020). In the
present study, images collected in each band were registered
using MicaSense’s default alignment function1. This three step
process unwarps images using built-in lens calibration,
determines a transformation to align each band to a common
band, and crops pixels which do not overlap in all bands.
Although this method seemed to perform well in this study; it
is acknowledged that this type of band registration can perform
poorly with images of locational errors, such as moving water,
and can produce noise even after removing surface reflected light
(Kim et al., 2020). Kim et al. (2020) developed a novel
morphological band registration technique designed for high
resolution water quality analysis which effectively removes
misregistration noise and improves the accuracy of Rrs. Future
aquatic UAS remote sensing work should consider adapting this
technique to improve UAS remotely sensed retrievals over water.

Caveats and Considerations
Many UAS aquatic remote sensing studies use Structure-from-
Motion (SfM) photogrammetric techniques to stitch individual
UAS images into ortho- and georectified mosaics (Arango and
Nairn, 2019; Castro et al., 2020; McEliece et al., 2020; Olivetti
et al., 2020). This approach applies matching key points from
overlapping UAS imagery in camera pose estimation algorithms
to resolve 3D camera location and scene geometry (Westoby
et al., 2012; Arango et al., 2020). Commonly used software (e.g.
Pix4D) provide workflows that radiometrically calibrate,
georeference, and stitch individual UAS images using a
weighted average approach to create at-sensor reflectance 2D
orthomosaics (Olivetti et al., 2020). LSR removal methods and
water quality algorithms can be directly applied to reflectance
orthomosaics to effectively derive water quality products of an
entire water body. However, current photogrammetry techniques

are not capable of stitching UAS images captured over large
bodies of water due to a lack of key points in images of
homogenous water surfaces (Arango et al., 2020).
Orthomosaics of smaller water bodies or rivers can be created
if UAS images contain enough surrounding land features
containing keypoints that the photogrammetry software can
use to successfully stitch the images containing water. This can
be accomplished by increasing flight altitude, with the trade-off of
lower spatial resolution. Alternative methods include a statistical
interpolation method; however interpolated reflectance values
can be imprecise when compared to true reflectance values
(Arango et al., 2020).

Management Implications and Future
Research
Water quality monitoring is important for tracking water quality
trends, identifying and mitigating pollution sources, and discerning
potential human health risks. Traditional in situ based methods of
sampling at discrete stations can be expensive due to high costs for
boat time and analysis and can also potentially omit important water
quality phenomena. Traditional satellite remote sensing can capture
variability throughout time and space; however, limitations
including the presence of clouds, atmospheric effects, land
adjacency effects, and spatial resolution can hinder periodic
monitoring (Shi and Wang, 2009; Becker et al., 2019). UAS fill
an operational gap between in situ and satellite remote sensing
methods.While the current available commercial multispectral UAS
sensor technology is geared toward terrestrial applications, mostly
precision agriculture, the spectral bands have been useful in
retrieving water quality parameters in aquatic water bodies (Choo
et al., 2018; Arango and Nairn, 2019; Baek et al., 2019; Castro et al.,
2020; Olivetti et al., 2020). A UAS sensor package designed for
aquatic environments would undoubtedly improve remotely sensed
retrievals and water quality measurements.

Since UAS are deployed at a low altitude, atmospheric
corrections and remedies to the land adjacency effect are
eliminated. UAS are rapidly deployable and can provide the
spatial and temporal variability required for useful water
quality monitoring in a dynamic and rapidly evolving
environment. UAS can enhance fine-scale physical oceanography
research by resolving small-scale phenomena and physical processes
such as patchy algal blooms, frontal structures, and turbulence
characteristics (Figure 11, Shang Z. et al., 2017; Osadchiev et al.,
2020). UAS remotely sensed water quality retrievals will also likely
improve with the development of lightweight, off-the-shelf
hyperspectral sensors, allowing for higher spatial and spectral
resolution to better distinguish optical properties of the water
(Shang S. et al., 2017; O’Shea et al., 2020).

Future research in turbid coastal waters may benefit from sensor
packages that use longer wavelengths (e.g. shortwave infrared,
SWIR). SWIR wavelengths have shown to be more effective in
satellite atmospheric correction techniques in turbid waters due to
the stronger water absorption relative to NIR (Shi andWang, 2009).
This will be advantageous for removing LSR and will improve Rrs
retrievals in coastal, turbid waters. Future research could also
consider combining UAS radiometry with photogrammetry
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computer vision to estimate LSR. Schneider-Zapp et al. (2019)
developed a method to estimate a hemispherical-directional
reflectance factor (HDRF) from multi-angular UAS
measurements. From a combination of photogrammetry and
radiometry, a precise estimation of the downwelling light sensor
position and orientation can be used to derive a multi-angular
reflectance factor, which has the potential to significantly improve
estimates of the multifaceted aspect of LSR. An alternative approach
to reduce LSR is installing additional hardware to a UAS sensor.
O’Shea et al. (2020) tested a hardware-based vertical polarizer on a
hyperspectral spectrometer which effectively blocked horizontally
polarized reflected skylight. This relatively simple approach could be
an attractive solution to researchers andmanagers who are interested
in applying a single algorithm to Rrs values to derive water quality
parameters and should be further investigated.

CONCLUSION

UAS-based applications of multispectral or hyperspectral remote
sensing in aquatic remote sensing have the potential to effectively
fill current observation gaps in aquatic remote sensing and
provide critical information needed for water quality
forecasting, ecosystem monitoring, and ultimately climate
change research. While atmospheric effects can usually be
ignored in low altitude UAS flights, the effect of sun glint and
surface reflected light should be accounted for in order to obtain
the highest accuracy of water quality data. The inclusion of
surface reflected light can lead to an overestimation of Rrs and

remotely sensed water quality retrievals. This study presents a
comparison of four approaches to remove sun glint and surface
reflected light that can be applied to UAS remote sensing to derive
water quality parameters such as chlorophyll a and TSS
concentration. Overall, the performance of the MicaSense
RedEdge-MX multispectral sensor appears sufficient for
providing high resolution water quality estimates of coastal
water bodies when surface reflected light is removed. Of the
four approaches examined, a pixel-based deglinting procedure
utilizing the brightness of the NIR band performed best when
compared to in situ Rrs measurements. This method also led to
the best estimates of TSS while a pixel-based approach utilizing an
ambient NIR signal to estimate and remove surface reflected light
led to the best estimates of chlorophyll a concentration. Future
work will include improving algorithms for water quality
parameters. Future research should also consider the effects of
sensor calibration and the residual misregistration between bands
of a UAS multispectral camera.
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