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Topological data analysis (TDA) combines concepts from algebraic topology, machine
learning, statistics, and data science which allow us to study data in terms of their latent
shape properties. Despite the use of TDA in a broad range of applications, from
neuroscience to power systems to finance, the utility of TDA in Earth science
applications is yet untapped. The current study aims to offer a new approach for
analyzing multi-resolution Earth science datasets using the concept of data shape and
associated intrinsic topological data characteristics. In particular, we develop a new
topological approach to quantitatively compare two maps of geophysical variables at
different spatial resolutions. We illustrate the proposed methodology by applying TDA to
aerosol optical depth (AOD) datasets from the Goddard Earth Observing System, Version
5 (GEOS-5) model over the Middle East. Our results show that, contrary to the existing
approaches, TDA allows for systematic and reliable comparison of spatial patterns from
different observational and model datasets without regridding the datasets into
common grids.

Keywords: topological data analysis, aerosol optical depth, comparison of spatial patterns, spatial pattern analyses,
aerosols

1 INTRODUCTION

While systematic, multi-model experimentation and evaluation have been undertaken for years (e.g.,
the Coupled Model Intercomparison Project—CMIP—Taylor et al. (2012); Eyring et al. (2016)), the
development and application of methodologies for comparing spatial patterns in key climate
variables from observational and model datasets with different spatial resolutions are less
mature. For example, the following three metrics are widely used to quantitatively compare
spatial patterns of climate variables of interest: 1) the bias of a two-dimensional map against
another map, 2) the root mean square error (RMSE) between two maps, and 3) a pattern correlation
coefficient. The Taylor diagram (Taylor, 2001) is also popular among climate modelers since it
displays both RMSE and a pattern correlation coefficient simultaneously. In this way, Taylor
diagrams provide a concise summary of the similarity in spatial patterns useful for quantitative
comparison of different datasets. The main challenge in using these conventional metrics is the need
to remap datasets onto a common grid prior to calculating the metrics. The regridding process
eliminates native differences in spatial resolutions across datasets. In addition, there is no community
standard for regridding datasets onto common grids, although datasets at higher resolutions are
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usually upscaled onto low-resolution grids for the quantitative
comparison with lower resolution datasets. In this way, the
regridding averages out fine-scale features contained in the
high-resolution datasets without elucidating the information
lost due to the upscaling.

Here, we test the ability to facilitate the comparison of two-
dimensional datasets at different spatial resolutions by applying
tools of topological data analysis (TDA). TDA is emerging
machinery at the interface of algebraic topology, machine
learning, statistics, and data science. The key goal of TDA is
to evaluate the “shape” properties of data. These shape properties
are invariant under continuous transformations such as
stretching, bending, and twisting. TDA has shown high utility
in a diverse range of applications, from social studies to digital
health care, to power systems. However, the utility of TDA in
Earth science applications remains largely unexplored. In
particular, to the best of our knowledge, TDA techniques have
been employed in only two previous Earth science
studies-identifying atmospheric river patterns (Muszynski
et al, 2019) and assessing the influence of various climate
variables on wildfires (Kim and Vogel, 2019). In this study, we
use TDA, specifically one of its tools known as persistent
homology (PH), to build a robust and reliable methodology
that compares spatial patterns in aerosol optical depth (AOD)
maps at different spatial resolutions based on a systematic
assessment of their topology and geometry. In particular, we
assess two AOD datasets from the Goddard Earth Observing
System, Version 5 (GEOS-5) model over the Middle East, and
compare our findings to the two conventional metrics: biases and
RMSEs.

2 DATA

As a primary objective, we focus on comparing biases and RMSEs
with results reported by our TDA measure. In particular, two
different total column AOD simulations from GEOS-5 will be
compared over the Middle East. The Middle East was chosen
because it is one of the largest sources of dust aerosols on Earth
(Yu et al., 2018), and the aerosols originating there significantly
influence radiation budget (Tegen and Lacis, 1996), ocean
biogeochemistry (Li et al, 2018), transportation, and public
health (Thalib and Al-Taiar, 2012). As such, it is important to
identify and characterize spatial patterns of dust storms over the
region using various observational and model datasets.

The GEOS-5 Nature Run (G5NR, Modeling and Office
(2014)) provides simulated AOD for the 2 years between June
2005 and May 2007. Thanks to its higher horizontal resolution of
7 km than most global models, G5NR has been used to simulate
the radiance observed by satellite-based instruments. The
Modern-Era  Retrospective analysis for Research and
Applications, Version 2 (MERRA-2, Randles et al. (2017);
Buchard et al. (2017)) is also based on the GEOS-5 forecast
model, but involves state-of-art reanalysis including assimilation
of AOD from the ground- and satellite-based instruments,
including the Aerosol Robotic Network (AERONET, Holben
et al.  (1998)), the Moderate Resolution Imaging
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Spectroradiometer (MODIS, Levy et al. (2013)), the Multi-
angle Imaging SpectroRadiometer (MISR, Garay et al. (2020)),
and the Advanced Very-High-Resolution Radiometer (AVHRR,
Zhao et al. (2008)). As such, the AOD fields in MERRA-2 are
expected to be more realistic than those in G5NR. The difference
in AOD between G5NR and MERRA-2 shown in Figure 1 is the
primary focus of the current study. A number of previous studies
have demonstrated the added value of the AOD assimilation used
in MERRA-2 through extensive comparisons with independent
observations (e.g., Buchard et al., 2017). However, MERRA-2’s
horizontal resolution of 0.625° x 0.5° is much coarser than
G5NR. The current study used daily mean AOD data from
G5NR and MERRA-2 over the Middle East domain in
Figure 1 between May 16 and June 15 in 2006. To calculate
daily biases and RMSEs of G5NR against MERRA-2, we also
remapped both AOD datasets into the common grids with
102 km grid spacing (designated as R_G5NR and R_MERRA-2
in Figure 1).

3 METHODS

To systematically quantify the latent shape of these AOD datasets,
we employ the TDA tool known as persistent homology (PH). The
key idea of PH is to track the evolution and/or lifespan of
topological features related to the dataset of interest as the
resolution changes. Since the current study focuses on the
comparison of total column AOD maps (2-dimensional
images) between G5NR and MERRA-2, the approach should
ideally account for the natural representation of the gridded
datasets. In the case of image and gridded datasets, a cubical
complex has been found to be the best choice for the efficient
extraction of topological properties (Wagner et al., 2012; Otter
et al., 2017; Garin and Tauzin, 2019; Ramachandran et al., 2020).

The basic unit of a cubical complex is the elementary interval
(i.e., an interval of the form [b, b + 1] or [b, b]; b € Z). A cube in a
g-dimensional space refers to the product of g elementary
intervals. Formally, a cubical complex K € R” is a topological
space built from the union of g-cubes (0 < g < n) such that: 1) for
any cube (7 € K) the face F (1) € K, and 2) for any two cubes
(1,0 € K) their intersection is either empty (&) or the common
face of both cubes (Allili et al., 2001; Garin and Tauzin, 2019).

The PH approach with cubical complexes is based on the
following two key steps. First, we build a cubical complex by
allocating a vertex to every pixel in the image data, connect the
vertices of adjoining pixels that are less than or equal to a
threshold/scale (w>0) with an edge, and fill in the squares
(two-dimensional cubes). The cubical complex K, for the
threshold w is formed as a union of all vertices, edges, squares,
and cubes. With an ordered set of thresholds, w; <w; < ... Wy,
we construct a nested sequence of cubical complexes,
Ky, €Ky, E ... K,,, and quantify the presence of simpler
patterns such as independent components, cycles,
tetrahedrons, etc., as the threshold increases.

To quantify the shape properties of the AOD data and to assess
the “life cycle” of appearing and disappearing topological features,
we use the notion of the persistence diagram (PD, Carlsson
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FIGURE 1 | (Top) Daily mean AOD from (A) G5NR and (B) MERRA-2 on May 27th, 2006. (C) and (D) are remapped (A) and (B) into lower-resolution pixels with
102 km grid spacing. (Middle) (E)-(H) are same as (A)-(D), but for June 3rd, 2006. (Bottom) (I}-(L) are same as (A)-(D) but for June 8th, 2006.
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(2009); Zomorodian (2010); Kerber et al. (2016)). A PD is a multi-
set D of points in R* whose x and y coordinates indicate the
“birth” (appearance) and “death” (disappearance) of each
topological feature, respectively. Since birth always precedes
death, x <y, and the difference, y —x, is called the “lifespan”
of the topological feature. The longer the lifespan of a feature
(i.e., the farther the point is in the PD from the line y = x), the
more likely it is that the feature contains some important
information about the underlying data properties. These
topological features are said to “persist,” while features with
shorter lifespans are referred to as “topological noise.”

Figure 2LII illustrate the mechanism underlying the
cubical complex filtration and how to obtain PDs using a
simple array of 16 AOD values. With a sequence of AOD
thresholds, w =0.05,0.10,0.20,0.30,0.60, we first form a
nested sequence of cubical complexes and then track the
resulting topological summaries. For instance, with w = 0.05,
the cubical complex contains only three connected
components (0-dimensional topological features, indicated
by the three shaded regions). However, with w = 0.20 the
cubical complex now has only one connected component (the
black ring) and one hole (a 1-dimensional topological
feature). The PD in Figure 2III summarizes the evolution
and lifespan of the three 0-dimensional topological features
and the one 1-dimensional topological feature as a function
of the threshold, w. While this toy example is only intended
for illustration purposes, it is apparent even in this simple
case that the PH approach reveals important information

about the distribution of AODs in the array. In the PD, one of
the 0-dimensional features (i.e., the ring) and the 1-
dimensional feature (i.e., the hole) are far from the y =x
line. Inspection of the AOD values in the array reveals that
the hole corresponds to a group of AODs that are larger than
the surrounding values, which is why these features have
longer lifetimes in the PD.

In our TDA approach, we do not directly compare AOD maps.
Instead, two AOD maps from MERRA2 and G5NR, G; and G,
can be compared in terms of their respective persistence diagrams
D, and D, respectively, using the r-th Wasserstein distance

W, (D,,D,) = (irylf D

x € DiUA

1/r
||x—y(x)||;o> , reZ" (1)

where y ranges over all bijections between D;UA and D,UA,
A = {(x,x)|x € R}, and ||z||o, = max;|z;|. In our experiments we
set ¥ = 2, which is a standard choice in applied TDA (Wasserman,
2018).

4 RESULTS

On each day between May 16th and June 15th, 2006, we
calculated the Wasserstein distances, W5, between D; and D,
for the quantitative comparison of the two daily mean AODs
from G5NR and MERRA-2. We further calculated the daily
Wasserstein distances for both original (W;) and the

Frontiers in Environmental Science | www.frontiersin.org

June 2021 | Volume 9 | Article 684716


https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles

Ofori-Boateng et al. TDA of AOD Maps

0.03 0.10 020 0.15
0.20 0.40 030 0.03
0.03 0.33 0.60 0.03
0.09 0.19 0.10 0.09

Array of AOD observations

IL

A0D < (w0 = 0.05) A0D < (w = 0.10) A0D < (w = 0.20) A0D < (0 =10.30) A0D < (0 =10.60)

0.6

4 e VAN /

. : /

1 @ s dimension

| *® e 0
1

T
00 01 02 03 04 05 06
Birth

0.4

Death
\

0.2
N\

0.0
L

FIGURE 2 | lllustration of cubical complex filtration with its respective summary of topological features. (I) A map of AOD observations, which can also be viewed as

a two-dimensional array. (ll) Filtration of cubical complexes from the array of AOD observations. Shaded regions constitute two-dimensional elementary cubes
(i.e., squares) formed as the similarity scale changes. (Ill) Persistence diagram reflecting the lifespan of connected components (0-dimensional objects) and holes
(1-dimensional objects) seen in Il.
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FIGURE 3| The red solid line represents normalized W, between daily AOD maps from GENR and MERRA-2. Normalized W2r (red dashed line), biases (blue sold
line), and RMSEs (green solid line) were calculated between R_G5NR and R_MERRA-2 daily AODs from May 16th, 2006 to June 15th, 2006.

remapped AODs (W3g). Then, we compared the W, and Wr Wasserstein ~ distances, W,r, has a Pearson correlation
values of the Wasserstein distance against conventional metric ~ coefficient of 0.81 and 0.76 in comparison to the bias and
values (i.e., biases and RMSEs) obtained for the R_G5NR vs. ~ RMSE, respectively. This is comparable to the correlation
R_MERRA-2 AODs. coefficient of 0.87 between the bias and the RMSE. The
Figure 3 compares the results as a function of day. Each metric ~ greater variability in the original Wasserstein distances, W, is
is normalized to fall in the range from 0 to 1. The first thing thatis  indicative that topological features are lost when the higher
apparent is that all four metrics have similar overall behavior,  resolution dataset is remapped to a lower resolution.
which means that Wasserstein distances are consistent with In general, G5NR and MERRA-2 show poorer agreement
biases and RMSEs. The time series of the remapped  between about May 21st and May 31st, with the worst
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FIGURE 4 | (Top) Persistence diagrams for (A) G5NR and (B) MERRA-2 on May 27th, 2006. (Bottom) Same as (A)—(B) but for June 8th, 2006.
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agreement (highest bias and RMSE) on May 27th. According
to Figure 1 (top row), this is when G5NR indicates a dust
storm (high AODs), while MERRA-2 does not have
significant dust. Conversely, on June 8th, all the metrics
show the best agreement between G5NR and MERRA-2,
which is consistent with Figure 1 (bottom row). Figure 4
presents PDs generated from the daily mean AOD maps from
G5NR and MERRA-2 on May 27th (worst agreement) and
June 8th (best agreement), respectively. Notice that the
structure of the PDs (fraction of points close to the y =x
line and fraction of points far from the line) are much more
similar on June 8th, compared to May 27th, consistent with
the overall agreement.

What is perhaps most interesting are those few cases when the
conventional metrics and W indicate good agreement between
the two datasets, whereas they are topologically different from
each other with relatively large W,. For example, on June 3rd
(middle row in Figure 1), the bias and RMSE are relatively low,
but W, has its highest value. This indicates that G5NR and
MERRA-2 at their original spatial resolutions are topologically
different. For example, the high concentration of AOD over
Pakistan (center right) in both datasets results in a low bias
and low RMSE. However, MERRA-2 lacks the two clusters of
high AOD over the Arabian Sea that appear in G5NR (bottom
center). There is also a clear difference in AOD over Egypt
between the two datasets (top left). These topological
differences on June 3rd show the value added by W, as it
reflects the difference in spatial resolutions of the two datasets.
When the two datasets are remapped into the lower-resolution
grids, Wy is less able to capture the key differences in the spatial
patterns.

Until now, we have shown that there are considerable
topological differences in the AOD maps between G5NR and
MERRA-2, even during the relatively short period of one month.
It is important to check if these differences are sensitive to biases
in G5NR’s AOD. Overall, G5NR AOD exhibits a positive bias of
0.1 against MERRA-2, which is the difference averaged spatially
and temporally. Figure 5 shows the sensitivity of W, to the mean
bias (&) of GSNR AOD. We first added «, which ranges from —0.1
to 0.5 with an interval of 0.05, to all AOD values in G5NR, then
calculated W, between G5NR +a and MERRA-2 for each alpha
value. Not surprisingly, W, increases as « increases, while not
altering the structure of the time series shown in Figure 3. This
simple sensitivity test indicates that W, reflects the overall
difference between maps.

5 DISCUSSION

To the best of our knowledge, there is yet no quantitative metric
to measure differences in spatial patterns between Earth science
datasets at different spatial resolutions without regridding them
onto a common grid. In this work, we have utilized TDA
concepts and, in particular, persistence diagrams to
summarize the spatial patterns in AOD maps. Our analysis
suggests that the Wasserstein distance between the persistent
diagrams of two datasets can be a competitive alternative for the
conventional metrics and Taylor diagrams. The time series of
the Wasserstein distance between the regridded datasets is
consistent with the two conventional metrics, biases and
RMSEs, which are widely used by climate scientists. Contrary
to these existing approaches that require regridding the data to a
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FIGURE 5 | W, for the 31 days between MERRA-2 AOD and G5NR AOD including a bias adjustment, a. « ranges from -0.1 to 0.5.

common spatial scale, our new TDA-based measure allows us to
systematically evaluate multi-resolution data without requiring
regridding.

However, there are intrinsic uncertainties in any AOD output
from the GEOS-5 model, including G5NR and MERRA-2. The
issue is that these uncertainties are high variable spatially and
temporally, thus cannot be reasonably represented by the mean
bias, «, as in Figure 5. As such, examination of the sensitivity of
these uncertainties to topological features and W, is crucial for
more comprehensive multi-resolution comparisons of AOD
maps. Further examination using independent ground-truth
observations will clarify how uncertainties in AOD influence
persistence diagrams and W,.

In addition, theoretical analysis on consistency and stability as
validation criteria for testing multi-resolution data yet does not
exist, not only in applied sciences but also in pure mathematics in
general, as it entails the development of new fundamental
concepts in both algebraic and computational topology.
However, most recently there have appeared some attempts to
address topological properties associated with utilizing persistent
homology as a measure of quality for Voronoi interpolation
(Melodia and Lenz, 2020). Given the fundamental problems in
pure mathematics and the applied nature of the journal, we leave
the development of theoretical analysis for our proposed method
to future research.

Nevertheless, the utility of TDA to address multi-resolution
image data matching remains largely untapped not only in the
Earth science applications but in image analyses, in general. Using
the two AOD datasets from the GEOS-5 model as an illustrative
case study, we have taken the first step toward a better
understanding of the intrinsic relationships among topological
properties in Earth science datasets at different spatial
resolutions, to glean insight into what gains (if any) are
delivered by an increasing spatial resolution of a dataset.

Our findings suggest that TDA enables us to quantify some
higher-order image properties which are inaccessible with the
standard multi-resolution matching routines. Consequently, this

opens a wider prospect for the application of topological
approaches in Earth sciences as demonstrating the added value
of high-resolution datasets using the criterion of topological
information loss and developing TDA-based toolkits for
weather and climate model evaluation against observations at
various spatial resolutions.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in
the article/Supplementary Material, further inquiries can be
directed to the corresponding author.

AUTHOR CONTRIBUTIONS

Conceptualization: YG and HL. Methodology: YG and DO.
Software: DO and HL. Validation: MG. Formal Analysis: DO
and HL. Original Draft Preparation: DO. Review and Editing:
MG, and KG. Visualization: DO and HL.

FUNDING

This research was carried out at the Jet Propulsion Laboratory,
California Institute of Technology, under a contract with the
National Aeronautics and Space Administration and funded
through the internal Research and Technology Development
program and National Science Foundation DMS 1925346.

ACKNOWLEDGMENTS

This research was carried out at the Jet Propulsion Laboratory,
California Institute of Technology, under a contract with the
National Aeronautics and Space Administration.

Frontiers in Environmental Science | www.frontiersin.org

June 2021 | Volume 9 | Article 684716


https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles

Ofori-Boateng et al.

REFERENCES

Allili, M., Mischaikow, K., and Tannenbaum, A. (2001). Cubical Homology and the
Topological Classification of 2d and 3d Imagery. In Proceedings 2001 International
Conference on Image Processing (Cat. No.01CH37205). vol. 2, 173-176.

Buchard, V., Randles, C. A., da Silva, A. M., Darmenov, A., Colarco, P. R,
Govindaraju, R., et al. (2017). The Merra-2 Aerosol Reanalysis, 1980
Onward. Part Ii: Evaluation and Case Studies. J. Clim. 30, 6851-6872.
doi:10.1175/Jcli-D-16-0613.1

Carlsson, G. (2009). Topology and Data. Bull. Am. Math. Soc. 46. doi:10.1090/
50273-0979-09-01249-x

Eyring, V., Bony, S., Meehl, G. A,, Senior, C. A,, Stevens, B., Stouffer, R. ., et al.
(2016). Overview of the Coupled Model Intercomparison Project Phase 6
(Cmip6) Experimental Design and Organization. Geosci. Model. Dev. 9,
1937-1958. doi:10.5194/gmd-9-1937-2016

Garay, M. J., Witek, M. L., Kahn, R. A, Seidel, F. C., Limbacher, J. A., Bull, M. A,,
et al. (2020). Introducing the 4.4 Km Spatial Resolution Multi-Angle Imaging
Spectroradiometer (Misr) Aerosol Product. Atmos. Meas. Tech. 13, 593-628.
doi:10.5194/amt-13-593-2020

Garin, A., and Tauzin, G. (2019). A Topological” reading” Lesson: Classification of
Mnist Using Tda (arXiv preprint arXiv:1910.08345.

Holben, B. N., Eck, T. F., Slutsker, L., Tanré, D., Buis, J. P., Setzer, A., et al. (1998).
AERONET-A Federated Instrument Network and Data Archive for Aerosol
Characterization. Remote Sensing Environ. 66, 1-16. doi:10.1016/S0034-
4257(98)00031-5

Kerber, M., Morozov, D., and Nigmetov, A. (2016). Geometry Helps to Compare
Persistence Diagrams. In Proceedings of the 18th Workshop on Algorithm
Engineering and Experiments (ALENEX), 103-112.

Kim, H., and Vogel, C. (2019). Deciphering Active Wildfires in the Southwestern
usa Using Topological Data Analysis. Climate 7, 135. d0i:10.3390/cli7120135

Levy, R. C,, Mattoo, S., Munchak, L. A,, Remer, L. A,, Sayer, A. M., Patadia, F., et al.
(2013). The Collection 6 Modis Aerosol Products over Land and Ocean. Atmos.
Meas. Tech. 6, 2989-3034. doi:10.5194/amt-6-2989-2013

Li, W. Z,, El-Askary, H., Qurban, M. A., Proestakis, E., Garay, M. J., Kalashnikova,
0.V, etal. (2018). An Assessment of Atmospheric and Meteorological Factors
Regulating Red Sea Phytoplankton Growth. Remote Sensing 10. doi:10.3390/
rs10050673

Melodia, L., and Lenz, R. (2020). Persistent Homology as Stopping-Criterion for
Voronoi Interpolation. Springer International Publishing), Combinatorial
Image Analysis, 29-44. doi:10.1007/978-3-030-51002-2_3

Modeling, G., and Office, A. (2014). File Specification for the 7-km GEOS-5 Nature
Run, Ganymed Release. Rep. Earth Sci. Division, NASA Goddard Space Flight
Cent.

Muszynski, G., Kashinath, K., Kurlin, V., Wehner, M., and Prabhat (2019).
Topological Data Analysis and Machine Learning for Recognizing
Atmospheric River Patterns in Large Climate Datasets. Geoscientific Model.
Dev. (Online) 12. doi:10.5194/gmd-12-613-2019

TDA of AOD Maps

Otter, N., Porter, M. A,, Tillmann, U., Grindrod, P., and Harrington, H. A. (2017).
A Roadmap for the Computation of Persistent Homology. EPJ Data Sci. 6, 17.
doi:10.1140/epjds/s13688-017-0109-5

Ramachandran, R. K., Kakish, Z., and Berman, S. (2020). Information Correlated
Levy Walk Exploration and Distributed Mapping Using a Swarm of Robots.
IEEE Trans. Robotics.

Randles, C. A., da Silva, A. M., Buchard, V., Colarco, P. R, Darmenov, A.,
Govindaraju, R., et al. (2017). The Merra-2 Aerosol Reanalysis, 1980
Onward. Part I: System Description and Data Assimilation Evaluation.
J. Clim. 30, 6823-6850. doi:10.1175/Jcli-D-16-0609.1

Taylor, K. E., Stouffer, R. J., and Meehl, G. A. (2012). An Overview of Cmip5 and
the experiment Design. Bull. Am. Meteorol. Soc. 93, 485-498. doi:10.1175/
Bams-D-11-00094.1

Taylor, K. E. (2001). Summarizing Multiple Aspects of Model Performance in a
Single Diagram. J. Geophys. Res. 106, 7183-7192. doi:10.1029/2000jd900719

Tegen, L, and Lacis, A. A. (1996). Modeling of Particle Size Distribution and its
Influence on the Radiative Properties of mineral Dust Aerosol. J. Geophys.
Research-Atmospheres 101, 19237-199619244.

Thalib, L., and Al-Taiar, A. (2012). Dust Storms and the Risk of Asthma
Admissions to Hospitals in kuwait. Sci. Total Environ. 433, 347-351. doi:10.
1016/j.scitotenv.2012.06.082

Wagner, H., Chen, C., and Vugini, E. (2012). Efficient Computation of Persistent
Homology for Cubical Data. In Topological methods in data analysis and
visualization II. Springer, 91-106. doi:10.1007/978-3-642-23175-9_7

Wasserman, L. (2018). Topological Data Analysis. Annu. Rev. Stat. Appl. 5,
501-532. doi:10.1146/annurev-statistics-031017-100045

Yu, Y., Kalashnikova, O. V., Garay, M. J., Lee, H., and Notaro, M. (2018).
Identification and Characterization of Dust Source Regions across north
Africa and the Middle East Using Misr Satellite Observations. Geophys. Res.
Lett. 45, 6690-6701. doi:10.1029/2018gl078324

Zhao, T. X. P, Laszlo, I, Guo, W., Heidinger, A., Cao, C,, Jelenak, A., et al. (2008).
Study of Long-Term Trend in Aerosol Optical Thickness Observed from
Operational Avhrr Satellite Instrument. J. Geophys. Research-Atmospheres
113. doi:10.1029/2007jd00906 1

Zomorodian, A. (2010). Fast Construction of the Vietoris-Rips Complex. Comput.
Graphics 34, 263-271. doi:10.1016/j.cag.2010.03.007

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2021 Ofori-Boateng, Lee, Gorski, Garay and Gel. This is an open-access
article distributed under the terms of the Creative Commons Attribution License (CC
BY). The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice.
No use, distribution or reproduction is permitted which does not comply with
these terms.

Frontiers in Environmental Science | www.frontiersin.org

June 2021 | Volume 9 | Article 684716


https://doi.org/10.1175/Jcli-D-16-0613.1
https://doi.org/10.1090/s0273-0979-09-01249-x
https://doi.org/10.1090/s0273-0979-09-01249-x
https://doi.org/10.5194/gmd-9-1937-2016
https://doi.org/10.5194/amt-13-593-2020
https://doi.org/10.1016/S0034-4257(98)00031-5
https://doi.org/10.1016/S0034-4257(98)00031-5
https://doi.org/10.3390/cli7120135
https://doi.org/10.5194/amt-6-2989-2013
https://doi.org/10.3390/rs10050673
https://doi.org/10.3390/rs10050673
https://doi.org/10.1007/978-3-030-51002-2_3
https://doi.org/10.5194/gmd-12-613-2019
https://doi.org/10.1140/epjds/s13688-017-0109-5
https://doi.org/10.1175/Jcli-D-16-0609.1
https://doi.org/10.1175/Bams-D-11-00094.1
https://doi.org/10.1175/Bams-D-11-00094.1
https://doi.org/10.1029/2000jd900719
https://doi.org/10.1016/j.scitotenv.2012.06.082
https://doi.org/10.1016/j.scitotenv.2012.06.082
https://doi.org/10.1007/978-3-642-23175-9_7
https://doi.org/10.1146/annurev-statistics-031017-100045
https://doi.org/10.1029/2018gl078324
https://doi.org/10.1029/2007jd009061
https://doi.org/10.1016/j.cag.2010.03.007
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles

	Application of Topological Data Analysis to Multi-Resolution Matching of Aerosol Optical Depth Maps
	1 Introduction
	2 Data
	3 Methods
	4 Results
	5 Discussion
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	References


