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In Colombia, the rise of agricultural and pastureland expansion continues to exert
increasing pressure on the structure and ecological processes of savannahs in the
Eastern Plains. However, the effect of land use change on soil properties is often
unknown due to poor access to remote areas. Effective management and
conservation of soils requires the development spatial approaches that measure and
predict dynamic soil properties such as soil organic carbon (SOC). This study estimates the
SOC stock in the Eastern Plains of Colombia, with validation and uncertainty analyses,
using legacy data of 653 soil samples. A random forest model of nine environmental
covariate layers was used to develop predictions of SOC content. Model validation was
determined using the Taylor series method, and root-mean-squared error (RMSE) and
mean error (ME) were calculated to assess model performance. We found that the model
explained 50.28% of the variation within digital SOC content map. Raster layers of SOC
content, bulk density, and coarse rock fragment within the Eastern Plains were used to
calculate SOC stock within the region. With uncertainty, SOC stock in the topsoil of the
Eastern Plains was 1.2 G t ha−1. We found that SOC content contributed nearly all the
uncertainty in the SOC stock predictions, although better determinations of SOC stock can
be obtained with the use of a more geomorphological diverse dataset. The digital soil maps
developed in this study provide predictions of extant SOC content and stock in the topsoil
of the Eastern Plains, important soil information that may provide insight into the
development of research, regulatory, and legislative initiatives to conserve and manage
this evolving ecosystem.

Keywords: digital soil mapping, soil organic carbon, machine learning, random forest, spatial modeling

INTRODUCTION

The development of large-scale commercial cropping systems is rapidly expanding in South America
as natural environments are converted to cropland and pastureland (Laurance et al., 2014). The
impact of these transformations on essential ecosystem services such as biodiversity and soil organic
carbon (SOC) reservoirs are unknown, and there is a growing need for quantitative soil information
that can inform sustainable monitoring and conservation of these fragile ecosystems. In Colombia,
the Eastern Plains (Spanish: Llanos Orientales) are increasingly being converted from natural
savannahs to commercial cropland for cash crops (rice, soy bean, and maize), biofuels (oil palm and
sugar cane), and rubber (Wassenaar et al., 2007; Garcia-Ulloa et al., 2012). However, past and current
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challenges in the region such as a prior Guerrilla control
(Krakowski and Zubiría, 2018) and restricted access to remote
areas due to poor roads and large distances from cities and
villages (Rausch, 2014) have contributed to the lack of soils
data in the Eastern Plains. This gap in knowledge presents
challenges for assessing present and future changes within the
landscape. Nonetheless, the use of digital soil mapping (DSM)
using limited baseline knowledge and secondary data can
facilitate the prediction of soil properties on which efficient
plans for conservation can be drawn.

The Llanos region is a tropical savannah ranging from its
northern extent at the Arauca River and the Colombia-Venezuela
boarder to its southern and eastern boundaries, which are
separated by the Guaviare and Orinoco rivers. While the
landscape within Los Llanos has changed much in the last
century (Rausch, 2013), mapping SOC stock in this region can
serve as a baseline for which Colombia’s positioning in the Paris
Agreement and Sustainable development goals (SDGs) can be
evaluated. For example, an assessment of dynamic soil properties
such as SOC stock in the Llanos region is important for the
development of conservation strategies to mitigate or prevent the
negative impact of urban and agricultural development on this
region. As a key indicator of ecosystem health, gaining a better
understanding of spatial patterns in SOC stock is also important if
we are to evaluate changes in soil fertility and carbon
sequestration, which are two ecosystem services in which SOC
plays a major role in regulating.

In recent decades, DSMhas become a successful framework that
enables soil scientists to model and map continuous soil properties
(Moore et al., 1993; Odeh, McBratney and Chittleborough, 1995;
Zhu et al., 1997, 2001; McBratney et al., 2003; Ashtekar and Owens,
2013; Minasny and McBratney, 2016). Advances in DSM have led
to the creation of spatially enhanced maps that promote greater
understanding of the global distribution of soil attributes (Batjes,
1996). Such maps fulfill the research and applied needs of soil
scientists, landmanagers, and policymakers as DSM can be used to
inform sustainable management and conservation of essential soil
properties such as SOC content and stock. Here, we aim to develop
continuous DSM of the SOC content in this region using random
forest analysis, and uncertainty estimates of total SOC stock within
the topsoil (0–30 cm).

To our knowledge, there have been four attempts to utilize
spatial analysis methodology to estimate SOC content or SOC
stock in the Llanos region. Determinations of SOC stock have been
measured using machine learning and statistics on the global and
regional/national scales by SoilGrids (Hengl et al., 2017) and the
Global Soil Partnership (FAO and ITPS, 2018), respectively. As
part of its sustainable land use initiative to promote sustainable
agriculture in South American savannas, the World Wildlife Fund
(WWF) Colombia conducted an integrated analysis of flora
biodiversity and carbon content in the Llanos region (Rincón
et al., 2014). Ashtekar et al. (2014) was the first to use
measured soils data to generate soil class maps and continuous
soil property maps throughout the region. In this study, the derived
soil property maps used the fuzzy logic approach with 64 sampled
point data, and Ashtekar et al. (2014) quantitatively defined each
soil class based on the distribution of three environmental

covariates (percent slope, wetness index, and normalized
height). Furthermore, Ashtekar et al. (2014) validated the soil
property maps using an independent set of 69 sampled soil
points. In this study, we use hundreds of measured point data
collected throughout the Llanos region, environmental covariates
with a higher resolution, and the digital soil mapping technique of
random forest analyses to measure SOC carbon and determine
SOC stocks within the Eastern Plains.

MATERIAL AND METHODS

Study Site
The Eastern Plains of Colombia is located in the northeastern
departments of Arauca, Casanare, Meta, and Vichada, covering
an area of approximately 26 million hectares (Figure 1). The
tropical and isothermal climate is characterized by distinct wet
and dry seasons, and mean annual temperatures range between
24°C and 28°C in the plains and between 13°C and 21°C in the
mountains. The region has a unimodal precipitation regime with
an average annual precipitation of 2,991 mm. Boarded by the
Andean Eastern Cordillera in the west and the Amazon in the
south, the Llanos includes major tributaries of the Orinoco River
such as the Arauca, Meta, and Vichada rivers. The Eastern Plains
is divided into six landscapes -piedmont, alluvial terraces, alluvial
overflow plain, aeolian plain, alluvium, and the high plains-with
an elevation that rarely exceeds 300 m. Predominant soils in the
Eastern Plains are Oxisols and Ultisols that originate from alluvial
deposits transported from erosion of the Eastern Cordillera
during the late Pleistocene (Goosen, 1971). Native vegetation
is typical of savannah, although forest vegetation can be found
along the major rivers and their tributaries.

Input Data
This study examines legacy data collected by the International
Center for Tropical Agriculture (CIAT) in collaboration with
AGROSAVIA (before Corpoica), the Agustin Codazzi
Geographical Institute (IGAC), and the Institute of Hydrology,
Meteorology and Environmental Studies (IDEAM) for
Colombia’s National Forest Inventory (IFN). Data obtained
from CIAT and AGROSAVIA consisted of 158 point
observations with three replicates from the topsoil (0–30 cm)
sampled in 2013, and 64 soil profiles from IGAC, the Colombian
institute responsible for producing and hosting soil information
(http://ssiglwps.igac.gov.co:8888/siga_sig/Agrologia.seam).
Following the IFN sampling strategy (Peña et al., 2014) IDEAM
has collected 107 soil samples from 30 sites (conglomerates of
subsamples) distributed in the Arauca, Meta, and Vichada
departments. Sites are characterized by five sub-parcels that
were arranged in the form of a square wherein four sub-
parcels were collected 80 m in each cardinal direction of a
central sample. Data collection and analysis by the IDEAM
and the IFN are still on going, therefore many of the sites
contain a range of one to five sub-parcels. Soil organic carbon
content of data provided by CIAT-AGROSAVIA and IGAC were
determined by the Walkley-Black methodology (Walkey and
Black, 1934), and dry combustion by the IDEAM.
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We acknowledge that the models are created using SOC
content determined using different laboratory methods,
without the use of a correction factor to collaborate findings.
However, as measurements were very similar in areas of
proximity we proceeded with the full data set. In total, 653
topsoil point samples were used in this study.

Environmental Covariates
To predict the amount and distribution of SOC quantities
according to the scorpan (a mnemonic for factors used in the
prediction of soil attributes) framework developed by McBratney
et al. (2003), we used a range of primary and secondary geospatial
datasets to build a stack of environmental covariates. A 90 m
resolution digital elevation model (DEM) was used to derive
terrain parameters using Arc-GIS and SAGA-GIS (Jarvis et al.,
2008). The DEM is a product of the United States National
Aeronautics and Space Administration’s (NASA) Shuttle Radar
Topographic Mission (SRTM), and the data voids were filled by
Jarvis et al. (2008). Prior to use for digital soil mapping, the DEM
was corrected to remove depressions and sinks and to ensure a
regular flow of the landscape surface. A basic terrain analysis was
conducted to derive representative terrain attributes using
SAGA-GIS (analytical hill shading, aspect, slope, wetness
index, profile and plan curvature, convergence index, and
catchment area).

Other environmental covariates included:

• A topographic wetness index (TWI) of the DEM was
derived in SAGA GIS as a representative of topographic
control on hydrological processes.

• Monthly precipitation and average temperature rasters from
the WorldClim Organization were used to estimate the
precipitation effectiveness index (PEI). As PEI is
common signifier of climate variation, and climatic
regions across the Eastern Plains were classified
according to the Thornthwaite (1931) classification scheme.

• A geomorphological classification was performed to assess
patterns in the slope and elevation of the terrain. A pattern
recognition approach (Jasiewicz and Stepinski, 2013) was
used to conduct a terrain analysis, which categorized
common landform elements into geomorphons based on
slope and elevation. The ten landforms categories were
reduced to the following five geomorphons classifications:
flat, ridges, slope, valley, and foot-slope.

• A geology raster containing 29 classes (IGAC (http://www.
igac.gov.co/igac))

• A modified version of IDEAM 2010–2012s land use map
was also used in the model (IDEAM et al., 2012). The
classification legend of the original land use map was a
simplified to delineate the following categories: wetlands,
forest, cropland, agriculture, pasture, settlements/urban
areas, and other land uses.

Modeling Soil Organic Carbon Content
The amount and distribution of SOC content in the Eastern
Plains of Colombia was determined by the random forest
approach (Breiman, 2001) using the R environment (R Core
team, 2016). Prior to the generation of the model, each
environmental covariate was resampled to the resolution of
the DEM and a principal component analysis (PCA) was used

FIGURE 1 | Distribution of soil samples in the Eastern Plains used to build the spatial predictive maps of soil organic carbon (SOC) content and stock.
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to reduce the number of environmental covariates and determine
the primary covariates that were most representative of the
landscape. The multivariate PCA was conducted in SAGA-GIS.

The exploratory analysis of the data showed that the dataset
was not normally distributed (Anderson-Darling test <0.05),
negatively skewed (coefficient of skew <0), and had a high
degree of peakedness (Kurtosis >1). Therefore, a Box-Cox
transformation was used to normalize data prior to input for
spatial modeling.

Random forest modeling is a non-parametric technique that
fits classification trees to the dataset, and aggregates similarities
among the observations to fit decision trees. This method consists
of the selection of a random sample from the dataset to build a
tree. This sample was then randomly replaced by others in the
dataset (bootstrapped) and added to the training dataset. The
trees were then split at nodes that were defined by a random
subset of the predictor variables. The size of the predictor subset
was determined by the square root of the total number of
predictor variables, and nodes were split based the predictor
that minimizes the regression error. A “forest”was then created as
this process was repeated several times, until no further
improvements in error could be achieved. Data that were not
used are called “out-of-bag” samples and used to determine the
regression errors for the trees. In this study, a random forest
model with 500 trees, and a node size of three was ran with nine
predictors using the randomForest R-package (Liaw and Wiener
2002). Although there is still debate about the best digital
modeling methodology, this model has several advantages
when compared to other digital mapping strategies as the
bootstrap samples and random selection across the many
predictors helps to reduce variance among the predictors
(Breiman, 2001).

Model Validation
A cross-validation analysis was conducted to assess the
predicative performance of the random forest model. Due to
the small amount of data points, 90% of the dataset was used in
the training dataset to develop the model, and the remaining 10%
was used for model testing. The model was cross-validated 100
times, and the performance matrix of each repetition was
averaged. A diagnostic comparison of the predicted and
observed SOC values was performed to illustrate the predictive
performance of the random forest model. The coefficient of
determination (R2), mean error (ME), and root-mean-squared
error (RMSE) were used to determine the model performance.

Soil Organic Carbon Stocks
Soil organic carbon stock (ton/ha) was calculated using the SOC
content, bulk density, and coarse rock fragment maps of the
Eastern Plains according to Eq. (1). The SOC content map was
the product of the random forest methodology, and the bulk
density and coarse fragment maps were retrieved from the
International Soil Reference and Information Center’s (ISRIC)
SoilGrids automated soil mapping database. ISRIC SoilGrids
maps were used for this project due to the lack of bulk density
and coarse fragments data within this region. The SoilGrids maps
are created using state-of-the-art machine learning methods that

utilize soil profiles and environmental covariate data to globally
map soil properties at a spatial resolution of 250 m. Prior to the
determination of SOC stock, the bulk density and coarse
fragment maps were clipped to the boundary of the Eastern
Plains using GRASS-GIS.

SOCstock � 10 p(SOCcontent

1000
p
30
100

pBLD p
(100 − CRF)

100
) (1)

Where SOCstock is the SOC stock (t ha−1), SOCcontent the soil
organic carbon content (g kg−1), BLD is the bulk density (units)
and CRF the coarse rock fragments (units). The equation is
multiplied by a factor of 10 to convert from kg m−2 to t ha−1.

Model Uncertainty
The Taylor series method was used to assess SOC stock
predictions throughout the region. This method was chosen in
lieu of other uncertainty analyses because it allows for the
identification of the main source of error in prediction
estimates. Global accuracy measures for the three soil
properties were used since bulk density and coarse rock
fragment data either do not exist or could not be obtained for
this specific study area. While global measures may not apply to
the study area, they are the best estimates for this understudied
region. The following standard deviations of the SoilGrids
prediction error for SOC content, bulk density, and coarse
rock fragment were used to calculate the standard deviation of
the SOC stock map over 0–30 cm: sd (SOC) � 32.8 mg/kg, sd
(bulk density) � 164.7 kg/m3, sd (coarse rock fragment) � 10.9%.
The standard deviation of SOC stock predictions was determined
as the square root of the prediction variance, and the relative error
was calculated as the ratio of the standard deviation and the SOC
stock prediction.

RESULTS

The Predicted Soil Organic Carbon Content
In total, the following nine environmental covariates were used to
predict SOC in the Eastern Plains of Colombia: analytical hill
shading, aspect, slope, catchment slope, TWI, PEI, geology,
geomorphon, and land use. The continuous property map of
SOC content (g kg−1) in the Llanos region is presented in
Figure 2. Soil organic carbon content was generated to the
resolution of the DEM (90 m), and spatial predictions are
shown to represent the amount of SOC contained in the
topsoil (0–30 cm). The predicted SOC content was similarly
distributed in each department, with values ranging between
3.6–35.6 (g kg−1). The amount and distribution of SOC
content reflects the differences in geology, and thus elevation
and slope, across the landscape.

Model Validation
Model assessment was performed as the 100-fold cross-validation
of 65 data points. Based on the cross-validation results, 50.28% of
the variation within SOC content was explained by the model.
RMSE is 0.461 and ME in the predictions of SOC was
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approximately 0.038. Since the ME value is close to zero, it
indicates that there was a very low bias in the predictions and
that there was no systematic over or under-prediction of the SOC

content in the Eastern Plains. However, a plot of the predicted
versus observed values indicated that the model under-predicted
low values and over-predicted high values (Figure 3). Therefore,

FIGURE 2 | Predicted SOC content (g kg−1) in the Eastern Plains.

FIGURE 3 | Diagnostic comparison of the predicted and observed SOC content (g kg−1), with the line of perfect fit (red) and best line of fit (blue).
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high and low SOC content on the predicted map should be
treated with caution.

Soil Organic Carbon Stock and Model
Uncertainty
The total predicted SOC stock in the topsoil of the Eastern
Plains is approximately 1.2 Gt ha−1 (Figure 4). This indicates
that the amount of carbon stored in the study area in tons of
CO2 equates to 3.7 Gt, which is equivalent to approximately
14 times of total Colombia emissions (258.35 Mt CO2-eq)
reported in the National Inventory of Greenhouse Gas
Emissions (Ideam et al., 2016) and which represents 0.42% of
the global emissions for the year 2012.

Based on the Taylor series method the standard deviation of
the uncertainty propagation ranged between 30.8–171.2 (t ha−1)
(Figure 5). Of the three soil properties, uncertainty about the
SOC content is the main source of uncertainty (99.69%), and this
source of uncertainty is magnitudes higher than that of bulk
density (0.16%) and coarse rock fragment (0.15%). Lower ranges
of uncertainty are concentrated in areas closes to the Eastern
Cordillera, while the largest amount of uncertainty were found in
the southern region of the Plains and the northern regions of the
Dissected High Plains. Furthermore, the mean relative error of
the SOC stock predictions was 325.42%. Although not ideal, large
estimates were expected since the SOC stock predictions were
small in most areas of the Eastern Plains. As the ratio of the
prediction error standard deviation and the prediction itself, since
the standard deviation was large, the relative error of the
estimates was large as well.

DISCUSSION

Digital soil maps of SOC content and stock within the topsoil of
the Eastern Plains of Colombia were created along with validation
and uncertainty estimates in accordance to the Global Soil Map
Requirements (Hartemink et al., 2010). Soil organic carbon
content was low throughout much of the Llanos region, which
is consistent with other investigations of SOC content in the
topsoil of the Eastern Plains (Ashtekar et al., 2014; Libohova et al.,
2016). Higher SOC content were observed in some regions of the
High and Low Plains (Figure 2). These sparse regions of high
SOC content were mainly centered in the southern part of the
Arauca and Casanare departments, which are dominated by
savannah type vegetation that favors the accumulation of SOC
(Blydenstein, 1967). It is unexpected that SOC content was not
distinctively lower in the High Plains, because severe erosion
caused by natural and anthropogenic factors is common in this
area (Goosen, 1971).

As indicated by the model validation assessments, predictions
of SOC content in the Eastern Plains can be improved. Namely,
the continuous SOC content map generated from the random
forest model of nine soil covariate layers only marginally
highlights differences associated with the diverse
geomorphology and soils in the Llanos region. While the
random forest model and covariate inputs are succinct and
have been successfully applied in other studies (see Grimm
et al., 2008), the quality of the SOC content predictions in this
region can be improved by a larger and more diverse array of soil
sample inputs. In a review of map quality measures Brus et al.
(2011) found that the collection of additional independent data

FIGURE 4 | Predicted SOC stock (t ha−1) in the Eastern Plains.

Frontiers in Environmental Science | www.frontiersin.org July 2021 | Volume 9 | Article 6858196

Rainford et al. Soil Organic Carbon Stock

https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


for validation of digital soil maps is superior to validation by
cross-validation because the latter method may not provide
unbiased estimates of map accuracy. Bias arise with clustered
soil samples points in the cross-validation assessments because
the prediction errors of the data used for validation are spatially
correlated with the data used to generate the map.

Furthermore, since most of the soil samples in the legacy data
were collected along roads near agricultural fields, the innate
diversity throughout the Llanos region was not captured as well.
Accounting for land area and geospatial variability, similar
studies have demonstrated that soil properties can be
adequately predicted using sample sizes between 80–137

FIGURE 5 | Maps of the (a) standard deviation (t ha−1) and (b) relative error (%) of SOC stock predictions.
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sample points (see Fang et al., 2005; Xie et al., 2011). Clustering is a
known problem with legacy data, and when examined in this study,
the sample size decreases from 653 to roughly 30 sample points for
SOC content. Therefore, the soil samples of the legacy data used
here may have failed to capture the spatial variability present within
the region. The latter method has the advantage of geospatial
technologies that can be used to characterize patterns of soil
properties over various spatial scales. For this methodology to be
effective, the sampling design must include a subset of points that
are representative of various macro- and micro-ecosystems. Given
the vast range of the Eastern Plains of Colombia, however, much of
the physical area can only be covered with limited scope. Strategic
planning of sample design can overcome these challenges by
identifying an effective sample size and data collection locations
that can be used to draw scientifically based conclusions and
develop soil carbon baseline for land use planning and GHG
emissions monitoring. Therefore, it is logical that large estimates
of uncertainty among SOC stock predictions were found to be
caused by variability in SOC content. Goidts et al. (2009) used an
error propagationmethod to assess the relative contribution of SOC
content, sampling depth, bulk density, and rock fragments used in
the determination of SOC stock variability in Southern Belgium.
Like this study, for non-stony soils they found that the main source
of uncertainty in the SOC stock predictions was the SOC content,
which represented an average of 47% of the SOC stock variability.

This presentedmap of SOC stock in the Eastern Plains is far from
perfect, but it highlights areas for future sampling and management
initiatives. Our analysis indicated that predictions of SOC content
and SOC stockwithin this regionwould be greatly improved if future
data collection initiatives focused in Casanare, Arauca and Vichada
department. Given the vast size and geological diversity within the
Eastern Plains, it is recommended that future sampling initiatives
concentrate on collecting more soil samples from more diverse
landscapes in future mapping initiatives. Doing so will likely reduce
uncertainty propagation standard deviation and relative error of
SOC content predictions, which will contribute to more accurate
assessments of SOC stock in the topsoil of the Llanos region.

CONCLUSION

Developing digital soil maps of the Eastern Plains of Colombia
presents many challenges. However, the SOC content and stock
maps developed in this study provide meaningful understanding
landscape dynamics of two essential soil properties. Given natural
hazards and anthropogenic factors such as climate change and

land use change, this study is important as results can be used to
inform sustainable development and management of future soil
sampling initiatives within this region. Determinations of current
SOC content and stock will also help inform future and ongoing
policy conservation strategies for this evolving landscape.
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