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Societal demands on soil functionality in agricultural soil-landscapes are confronted with
yield losses and environmental impact. Soil functional information at national scale is
required to address these challenges. On behalf of the well-known theory that soils and
their site-specific characteristics are the product of the interaction of the soil-forming
factors, pedometricians seek to model the soil-landscape relationship using machine
learning. Following the rationale that similarity in soils is reflected by similarity in landscape
characteristics, we defined soil functional types (SFTs) which were projected into space by
machine learning. Each SFT is described by a multivariate soil parameter distribution along
its depth profile. SFTs were derived by employing multivariate similarity analysis on the
dataset of the Agricultural Soil Inventory. Soil profiles were compared on behalf of differing
sets of soil properties considering the top 100 and 200 cm, respectively. Various depth
weighting coefficients were tested to attribute topsoil properties higher importance.
Support vector machine (SVM) models were then trained employing optimization with
a distributed multiple-population hybrid Genetic algorithm for parameter tuning. Model
training, tuning, and evaluation were implemented in a nested k-fold cross-validation
approach to avoid overfitting. With regards to the SFTs, organic soils were differentiated
from mineral soils of various particle size distributions being partly influenced by
waterlogging and groundwater. Further SFTs reflect soils with a depth limitation within
the top 100 cm and high stone content. Altogether, with SVM predictive model accuracies
between 0.7 and 0.9, the agricultural soil-landscape of Germany was represented with
eight SFTs. Soil functionality with regards to the soil’s capacity to store plant-available
water and soil organic carbon is well characterized. Four additional soil functions are
described to a certain extent. An extension of the approach to fully cover soil functions
such as nutrient cycling, agricultural biomass production, filtering of contaminants, and soil
as a habitat for soil biota is possible with the inclusion of additional soil properties.
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Altogether, the developed data product represents the 3D multivariate soil parameter
space. Its agglomerated simplicity into a limited number of spatially allocated process units
provides the basis to run agricultural process models at national scale (Germany).

Keywords: pedometrics, soil functional types, soil parameter space, machine learning, optimization

1 INTRODUCTION

Soils are at the center of the agricultural ecosystem. On the one
hand, their capacity to cycle and store nutrients and to provide
plant-available water determines agricultural production with the
ultimate goal to feed mankind. On the other hand, the interplay
between their storage and filter capacity determines how much of
the applied fertilizer percolates to the groundwater and
potentially contaminates our drinking water. In today’s
agricultural landscapes in Central Europe and other parts of
the world, we face multiple challenges for soil functionality
impacting ecosystem services. In the last decades, drought
events that empty the soils’ water stores causing yield losses
are becoming more frequent in Europe (van Hateren et al., 2020;
Markonis et al., 2021). Inadequate agricultural management may
lead to losses in soil organic carbon to the atmosphere, whereas
the opposite can enhance carbon sequestration and, thereby, help
to mitigate climate change (Liu et al., 2006; Wiesmeier et al.,
2019). Excessive groundwater nitrate pollution with values of
50–380 mg L−1 is found in areas with intensive agriculture in
Germany (Sundermann et al., 2020). More than 25% of the
respective measurement sites report average values above the
threshold of 50 mg L−1 (Jakobs et al., 2020). Overall, economic
and environmental risk is site-specific and depends on soil
characteristics (Bönecke et al., 2020; Webber et al., 2020).
Hence, the estimation of environmental impact and
vulnerability of the farmer’s income as well as the
development of adequate agricultural management strategies,
policies, and farmers’ subsidies require site-specific soil
information at national scale.

In pedometrics, continuous, site-specific soil information is
generated by pedometric modeling approaches. Pedometrics is an
interdisciplinary science integrating soil science, applied
mathematics, statistics, and geoinformatics. The object of
investigation is the spatial-temporal soil variability at multiple
scales. Empirical modeling approaches are used along with
multiple aspects of soil sensing and geodata analysis. Please
compare Minasny et al. (2013), Rossiter (2018), and Scull
et al. (2003) for a review. Any modeling approach relies on a
conceptual model on how traits and objects presuppose one
another. Pedometric modeling to understand spatial soil
distribution at the landscape scale follows the conceptual
model of pedogenesis (Jenny, 1941), with soils and their site-
specific characteristics being the product of the interaction of the
soil-forming factors through long periods of time. The functional
approach was extended by McBratney et al. (2003) to include
geographic location and proxies to soil itself. The so-called
SCORPAN factors include S (proxies to soil), C (climate), O
(organisms including land use, agricultural management etc.), R
(relief), P (parent material), A (age), and N (geographic location).

Empirical modeling approaches heavily rely on the available
data and how well these data capture or approximate the object of
interest, its causes and drivers, or any functional relation between
them. Limitations in data availability in pedometric modeling
concern 1) the pedosphere and its characteristics, and 2) the soil-
forming factors. In Germany and many other countries, access to
soil profile data is still limited or cumbersome. There is some light
at the horizon with the soil profile database of the Agricultural
Soil Inventory, which was recently published open access
(Poeplau et al., 2020). The same applies to the LUCAS
European topsoil database (Tóth et al., 2013). Still, access to
the large amount of soil profile data that was collected by the
regional and national soil survey institutions requires tedious
negotiation with multiple parties. On the contrary, nationwide
spatially continuous geodata to approximate the soil-forming
factors, are freely available from multiple sources. These include
data products derived from remote sensing, products obtained by
interpolating local point measurements, andmap products. There
are of course restrictions. The landscape’s geomorphology,
climate, vegetation and land use have changed during the long
period of pedogenesis. Whereas the available data to approximate
the soil-forming factors only cover the last decades.

Machine learning algorithms are good at deriving knowledge
from highly complex data. They are, therefore, often applied in
pedometric modeling to extract the functional soil-landscape
relation and to project soil information into space. The
complexity of the task ranges from single variable values at
geographic point locations that are projected into the
continuous two-dimensional univariate soil parameter space
up to multivariate auto-correlated transect data (soil profiles)
that need to be projected into the continuous three-dimensional
multivariate space. Recent applications addressing individual
topsoil properties are presented by e.g. Møller et al. (2020), or
Zeraatpisheh et al. (2020). Approaches to model the three-
dimensional soil parameter space can be summarized as
follows: The ‘2.5D approach’ builds individual models for
single soil properties at selected soil depths and combines the
spatial predictions (e.g. Taghizadeh-Mehrjardi et al., 2020; Ma
et al., 2021). The ‘depth function approach’ fits a continuous
mathematical function through the available horizon data and
then projects the function’s parameters into space (e.g. Bishop
et al., 1999; Veronesi et al., 2012). “3D regression kriging”models
the spatial trend and spatial autocorrelation (e.g. Poggio and
Gimona, 2014; Poggio and Gimona, 2017). Furthermore,
convolutional neural networks are becoming increasingly
popular for multi-target machine learning advancing the 2.5D
approach and the depth function approach (e.g. Behrens et al.,
2018a; Padarian et al., 2019). A somewhat different path to model
the multivariate 3D soil parameter space is the spatial prediction
of soil systematic units (SUs) and their associated soil
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characteristics. It has the benefit that soil profile information is
not disassembled. Horizontation and property characteristics in
the predictions resemble true pedons. Recent studies following
this approach are by Esfandiarpour-Boroujeni et al. (2020) and
Sharififar et al. (2019). However, in many soil classification
systems, important soil properties guiding soil functionality
are only distinguished at a low systematic level and rather
similar soils concerning their properties and functionality are
assigned to different upper-level SUs. The problem concerns the
differentiation betweenmineral and organic soils, soil particle size
distribution, the occurrence of stagnic properties, groundwater
influence and many more. Accordingly, this approach would
largely benefit from the definition of soil functional types (SFTs).

To bring about their full potential, machine learning
algorithms usually require tuning, i.e. searching for the best
combination of the algorithm’s parameters. “Best” means that
the model algorithm is adapted to provide the prediction with the
lowest error on independent data. The approach generally
followed in pedometric modeling, is testing a set of predefined
parameter combinations (e.g. Emadi et al., 2020; Zhang et al.,
2020). While this works fine for algorithms with discrete
parameters (e.g. Random Forest) allowing for an exhaustive
search, it most likely will not find the optimal solution in case
of continuous parameters with an infinite number of possible
values (e.g. boosted regression trees or support vector machines).
Consequently, the flexibility of most machine learning algorithms
can only be exploited if they are combined with optimization
algorithms for parameter tuning. A promising group of
optimization algorithms are the so-called genetic or
evolutionary algorithms, developed by Holland (1975). They
simulate biological processes to optimize highly complex
objective functions. The algorithms optimize parameters with
extremely complex cost surfaces, provide a list of optimal
solutions, and are well suited for parallel computing (Haupt
and Haupt, 1998). Pedometric applications using optimization
for parameter tuning are scarce (e.g. Gebauer et al., 2019;Wadoux
et al., 2019; Gebauer et al., 2020). Further applications related to
soil science include e.g. Ardakani and Kordnaeij (2017), Mazaheri
and Jafarian (2019), and Nguyen et al. (2020).

The currently available spatially continuous soil information
for Germany consists of a conventional digital polygon map
product (BÜK) at map scales 1:1,000,000 and 1:250,000 (BGR,
2013; BGR, 2018). Unfortunately, these valuable map products
with high information content have limitations when it comes to
their usage for soil parametrization in spatially explicit
agricultural process models. This is not surprising as they were
neither intended for this purpose nor to provide site-specific
information. Their spatial map units (SMUs) each define a
paragenesis of SUs with highly differing properties. The spatial
allocation of these SUs within the SMUs is unknown. Further
BÜK derived map products of topsoil, and pedon agglomerated
values of soil properties and functions are commonly generated
by assigning the properties of the SMU’s dominating soil type to
the whole SMU. Further SUs with sometimes high areal coverages
that amount to more than 50% of the SMU are often neglected.
Site-specific data products covering entire Germany were
developed by pedometric modeling approaches at European

and global scale. Nonetheless, the European products only
cover the top 20 soil centimetres (de Brogniez et al., 2015;
Ballabio et al., 2016). The global map products (SoilGrids,
Hengl et al., 2017) are unreliable for German subsoils due to
the previously discussed problem in soil profile data access (Tifafi
et al., 2018).

Soils are complex systems characterised by their horizontation
with the respective physical and chemical properties. It is these
soil characteristics that determine major soil functions (SFs): The
specification of the properties shape the soil as a habitat for
adapted communities of soil organisms (SF1), who subsequently
control nutrient cycling (SF2). SF2 and the soil’s capacity to store
plant-available water (SF3) enable agricultural biomass
production (SF4). Furthermore, in the context of
environmental protection, soils act as a filter for contaminants
(SF5) and contribute to the mitigation of climate change due to
their carbon storage capacity (SF6). The nationwide site-specific
evaluation of the state and potential of our soils with regards to
these functions (e.g. Terribile et al., 2011; Greiner et al., 2018;
Vogel et al., 2019) requires site-specific information targeting soil
functionality. The same applies to the modeling of soil functional
dynamics due to agricultural management (Vogel et al., 2018), the
evaluation and modeling of climate change on agricultural yields
(e.g. White et al., 2011; Webber et al., 2020), and the
environmental impact of agricultural production on ecosystem
services such as clean drinking water (e.g. Knoll et al., 2020;
Sundermann et al., 2020). We ultimately seek to generate the
required nationwide representation of the respective 3D soil
parameter space of the agricultural soil-landscape (Germany).
The approach we follow comprises two parts: First, we distinguish
SFTs, each being represented by the corresponding multivariate
distribution of soil properties along its depth profile. Then we
derive the SFTs’ functional relation with the soil-forming factors
by machine learning, to understand their embedding in the
particular landscape context. Finally, the trained machine
learning models are used to project the SFTs to the
continuous space.

2 MATERIAL AND METHODS

2.1 Landscape Setting
Germany covers an area of 357.6 km2 of which 51% are currently
under agricultural land use (Statistisches Bundesamt, 2020).
Figure 1A provides an overview of the spatial pattern on
behalf of the CORINE Land Cover Inventory (Büttner et al.,
2017). Germany comprises four morphologic regions from north
to south: The North German Lowland, the Central German
Uplands, the Alpine Foreland, and the Alps. Figure 1B shows
the altitudinal specification, Figure 1E provides details of
topographical landforms. Most of the North German Lowland
has an altitude below 100 m above sea level (a.s.l.). While there are
wetlands, peatlands and marshy terrain along the North Sea
Coast, the North-Eastern part of Germany shows glacial
influence with many lakes, and moraines. The mountains of
the central upland region are moderate in height, rarely above
1,000 m a.s.l. They were influenced by various phases of upheaval
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and subsidence, developed basin structures with sedimentary
deposits, and comprise alluvial glacial loess deposits in
between them. Besides, many of the mountain ranges display
signs of ancient volcanism altogether leading to a complex
geological pattern. Ranging between c 400 and 750 m a.s.l., the
Alpine Foothills region was shaped under glacial influence and

displays a high variety of geomorphological landforms, being a
molasses basin with sedimentary deposits from Alpine erosion,
morainic hills and aprons. The German part of the Alps belongs
to the Northern Calcareous Alps. U-shaped valleys remind of ice
age influences. Figure 1F shows the soil parent material at map
scale 1:5,000,000. Please compare (Asch et al., 2003; Küster and

FIGURE 1 | Landscape setting, maps of selected parameters. (A) CORINE Land Cover Inventory 2018 (Büttner et al., 2017), (B) EU Digital Elevation Model (©
European Union, Copernicus Land Monitoring Service 2017, European Environment Agency (EEA)), (C) Average air temperature of the summer months (DWD, 2018a),
(D) Sum of precipitation of the summer months (DWD, 2018b), (E) Geomorphographic units (BGR, 2007) [Legend], (F) Parent material (BGR, 2008b) [Legend], and (G)
Soil scapes of Germany (BGR, 2008a) [Legend].
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Stöckhert, 2003; Liedtke and Mäusbacher, 2003) for further
details.

German climate is guided by a decrease in a maritime and an
increase in a continental climatic character from west to east
expressed by an eastward higher yearly temperature range.
Likewise, in the north German lowlands, there is a clear
decrease in the amount of precipitation to the east (Figures
1C,D). This continental effect is less pronounced in central
and southern Germany since the precipitation-differentiating
effect of the central mountain ranges superimposes the west-
east decrease and ensures a more varied, local precipitation
regime. The mountain climate of the low mountain ranges
and the German Alps stands out due to the mean vertical
decrease in air temperature of about 0.6–0.7 K (spring and
summer) and 0.4–0.5 K (autumn and winter) per 100 m
increase in altitude. Mean annual precipitation varies spatially
between c. 400 and 3,200 mm (period 1961–1990). Seasonally,
precipitation is lower in the hydrological winter half-year than in
the summer half-year. Concerning air temperature, there is a
predominant temperature gradient from south to north and from
east to west. The nationwide regional mean value of the air
temperature is 8.2°C (1961–1990). The recorded extremes are a
maximum of 42.6°C and a minimum of −37.8°C. Please refer to
Alexander (2003), Endlicher and Hendl (2003), Klein and Menz
(2003) for further details.

Soil distribution in Germany is primarily determined by
parent material and topography. Figure 1G displays the soil
scapes of Germany (BGR, 2008a). The map distinguishes soils of
the coast region and peatlands, soils of river valleys, soils of
slightly hilly landscapes, soils of the loess region, soils of the
Central German Uplands, and soils of the alpine region. For
further details please refer to Adler et al. (2003) and BGR (2018).

2.2 Data
2.2.1 Soil Profile Database
Soil profile data was collected on an 8 × 8 km raster at 3,104 sites
in the context of the first national Agricultural Soil Inventory
(Jacobs et al., 2018). The dataset available for this study comprises
the soil profile location (coordinates), horizontation and soil
profile description according to the German soil survey system
(Boden, 2005) to a maximum depth of 200 cm, as well as lab
measurements concerning the particle size distribution, bulk
density, stone content, total organic carbon content (TOC),
total inorganic carbon content (TIC), electrical conductivity
(EC) and the pH value in depth increments of 0–10, 10–30,
30–50, 50–70, 70–100, 100–150, and 150–200 cm. Samples were
taken per depth increment while taking into account the
horizontation, i.e. including multiple samples per depth
increment for each corresponding soil horizon present
with ≥5 cm.

Sampling comprised disturbed samples and undisturbed
samples (steel cores). Depending on the present stone content
and the size of the fragments, steel cores of varying sizes (250, 100,
or 5 cm³) were taken to determine the bulk density of the fine
earth fraction. The bag samples were dried to constant weight at
40°C, with samples high in TOC (≥ 87 g kg-1) being dried at a
higher temperature of 60°C. Steel core samples were dried at

105°C to then determine bulk density. Further sample
preparation included sieving to 2 cm to separate the fine earth
fraction from the coarser material. Soil texture determination
with seven particle size separates — sand [2.0–0.63, 0.63–0.2,
0.2–0.063 mm], silt [0.063–0.02, 0.02–0.0063, 0.0063–0.002 mm],
and clay [<0.002 mm] was conducted according to DIN ISO
11277. The total carbon content was determined using dry
combustion. TOC and TIC were differentiated with the
removal of TOC via thermo gradient dry combustion. pH and
EC were determined in H2O. Details of the agricultural soil
inventory soil survey, lab methodology, data overview and
summary statistics can be obtained from Jacobs et al. (2018),
and Poeplau et al. (2020).

2.2.2 Gridded Geo-Information
Proxies of the SCORPAN factors were derived from multiple
sources. Table 1 provides an overview. Concerning SCORPANC,
30 years’ seasonal averages (1961–1990) of air temperature and
the sum of precipitation of the winter (DJF) and the summer
(JJA) months were derived from the German Weather Service
(DWD, 2018a; DWD, 2018b). Seasonal averages of the summer
and winter drought index (DWD, 2018c) were calculated as
P/(T + 10) using the air temperature T (in degree Celsius)
from DWD temperature grids and P (in mm) from DWD
precipitation grids.

To approximate SCORPAN O, four data products were
included. The 2016 and 2018 yearly average composites of two
vegetation indices were derived from the European Data Portal.
The indices were calculated from Sentinel-2 Level 2A data. The
Normalized Difference Vegetation Index (NDVI) combines the
vegetation specific reflection characteristics of the wavelength
ranges 600–700 nm (RED) and 700–1,300 nm (NIR) and,
thereby, provides insight into plant vitality. The Normalized
Difference Red Edge (NDRE) is similar to the NDVI but uses
the NIR range and the red edge inflexion point (Barnes et al.,
2000). Data on dry matter productivity (DMP) and the
Vegetation Productivity Index (VPI) of the time slot June
11th-20th of the years 2016 and 2018 were derived from the
Copernicus Global Land Service. DMP reflects the overall growth
rate of the vegetation with units adapted for agro-statistical
purposes (Swinnen and Van Hoolst, 2019). The VPI assesses
the condition of the vegetation. It is a percentile ranking of the
current NDVI against its historical range of variability. A value of
100% indicates the best, a value of 50% the median vegetation
state (Swinnen and Toté, 2015). Differences between the dry year
2018 and the rather wet year 2016 of all four indices were
additionally included to relate crop phenology affected by
drought to soil properties such as the root-zone plant available
water capacity. They, therefore, also refer to SCORPAN S.

SCORPAN R is represented by a map product of terrain
classification. The geomorphographic map of Germany in map
scale 1:1,000,000 (Figure 1E) comprises 25 discrete units
differentiating between the four major German landscape
types. In addition, terrain parameters relating to surface
topography were calculated by the SAGA — System for
Automated Geoscientific Analyses (Conrad et al., 2015) on
behalf of the EU–DEM v1.0 digital elevation model. An
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overview of the terrain parameters and the respective modules to
calculate them is given in Table 2. The circular variable “aspect”
was decomposed into northness and eastness. Hydrological
terrain parameters were calculated on behalf of the pre-
processed DEM: Sinks were filled and the stream network was
burned into the DEM. Major streams and further river segments
were derived from the CCM River and Catchment Database
(Vogt and Foisneau, 2007). The German coastline was added to
the river network previous to calculating the overland flow
distance, to take the inclination towards the sea into account.

The map of the “Groups of soil parent material” in Germany
(BAG, Figure 1F) was included to approximate SCORPAN P.
Lithology and stratigraphy according to the hydrogeological map
of Germany (HÜK, map scale 1:250.000, BGR and SDG, 2019)
were additionally incorporated. While the geological information
on lithology, stratigraphy, and genesis of the geological map of
Germany provided the basic data, the information was replaced

and completed by other regional geological and hydrogeological
maps and data where necessary.

Proxies to soil itself (SCORPAN S) can generally be included in
the form of conventional soil polygon maps, and remote sensing
data products relating to soil properties (e.g. Castaldi et al., 2019;
Safanelli et al., 2020; Vaudour et al., 2021).We included the map of
the German soil scapes (Figure 1G). It subdivides Germany into 12
soil regions comprising clearly defined soil scapes that follow
topography and geology. As previously mentioned, differences
in vegetation indices between the dry year 2018 and the rather
wet year 2016 relate to crop phenology affected by drought.
Accordingly, they may relate to soil properties such as root-
zone plant available water capacity.

All obtained covariates were resampled to the INSPIRE —
Infrastructure for Spatial Information in Europe— grid topology
at 100 m resolution (JRC, 2013). The nearest-neighbor method
was used for categorical predictors, B-spline interpolation was

TABLE 1 | Geo-information data source.

Soil forming factor Abbreviation Description Data source

Climate PRESU Average seasonal precipitation (summer) [raster, 1,000 m] DWD (2018b)
PREWI Average seasonal precipitation (winter) [raster, 1,000 m]

TEMSU Average seasonal temperature (summer) [raster, 1,000 m] DWD (2018a)
TEMWI Average seasonal temperature (winter) [raster, 1,000 m]

DINSU Average seasonal drought index (summer) [raster, 1,000 m] DWD (2018c)
DINWI Average seasonal drought index (winter) [raster, 1,000 m]

Organisms/ Soil NDV16 Normalized difference vegetation index, June 2016 [raster, 10 m] https://www.europeandataportal.eu
NDV18 Normalized difference vegetation index, June 2018 [raster, 10 m]
NDV86 Normalized difference vegetation index, NDV18–NDV16 [raster, 10 m]
NDR16 Normalized difference red edge, June 2016 [raster, 10 m]
NDR18 Normalized difference red edge, June 2018 [raster, 10 m]
NDR86 Normalized difference red edge, NDR18–NDR16 [raster, 10 m]

DMP16 Dry matter productivity, June 2016 [raster, 300 m] Swinnen and Van Hoolst (2019)
DMP18 Dry matter productivity, June 2018 [raster, 300 m]
DMP86 Dry matter productivity, DMP18–DMP16 [raster, 300 m]

VPI16 Vegetation productivity index, June 2016 [raster, 300 m] Swinnen and Toté (2015)
VPI18 Vegetation productivity index, June 2018 [raster, 300 m]
VPI86 Vegetation productivity index, VPI18–VPI16 [raster, 300 m]

Topography GMK Geomorphographic map of Germany [raster, 250 m resolution, map scale 1:
1,000,000]

BGR (2007)

DEM Digital elevation model [raster, 25 m resolution], and derived products
(Table 2)

© European Union, Copernicus Land Monitoring
Service 2017, European Environment
Agency (EEA)

Parent material/Soil LIT Lithology, Hydrogeological map of Germany [polygon shapefile, map scale 1:
250,000]

BGR and SDG (2019)

STR Stratigraphy, Hydrogeological map of Germany [polygon shapefile, map scale
1:250,000]

BGR and SDG (2019)

BAG Groups of soil parent material in Germany [polygon shapefile, map scale 1:
5,000,000]

BGR (2008b)

BGL Soil scapes in Germany [map scale 1:5,000,000] BGR (2008a)

Geographic location LAT00 INSPIRE Latitude JRC, 2013
LON00 INSPIRE Longitude
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applied for numeric predictors. INSPIRE latitude and longitude
were additionally included to represent geographic location
(SCORPAN N), and particularly to represent spatial patterns not
captured in the other data sources. The national border and coastline
of Germany were derived on behalf of the digital land model at map
scale 1:250,000 (version 2.0) provided by the Federal Agency for
Cartography and Geodesy (© GeoBasis-DE / BKG, 2020).

2.3 Procedure to Derive Soil Functional
Types
The aforementioned major soil functions are determined by the
soil’s physical and chemical properties. The soil’s habitat function
(SF1) is characterised by most if not all of the properties. Particle
size distribution, bulk density, organic matter content and
composition, redox conditions, pH, and salinity shape the
composition of the biological community. Nutrient cycling (SF2)
depends on the biological community and the aforementioned
characteristics. The storage of plant available water (SF3)
depends on the corresponding soil volume’s particle size
distribution, the organic matter content, bulk density, and the
depth to a root-impenetrable layer or bedrock. Agricultural
biomass production (SF4) depends on SF1, SF2, and SF3.
Furthermore, prolonged times of water logging negatively impact
plant roots. The particle size distribution and the amount of coarse
fragments shape the soil’s pore space and hence determine water
percolation to the groundwater. Together with the soil’s buffering
capacity through soil mineralogy and organic compounds these

properties determine the soil’s filter capacity for contaminants
(SF5). Last but not least, the soil’s storage capacity for TOC
(SF6) in mineral soils is determined by the particle size
distribution. In organic soils, it largely depends on the thickness
of the peat layer. Decomposition processes of the organic matter
change during prolonged periods of water logging. However, long-
term stabilization of SOC depends on multiple aspects which shall
not be elaborated in the context of this study.

The variables available from the soil profile database were used
to approximate these soil characteristics. The variables particle size
distribution, bulk density, stone content, TOC, and pH were
included. Furthermore, horizon symbols according to the
German soil survey system were considered to a certain extent.
The occurrence, depth and thickness of horizons with symbol H
(peat horizon) was included to differentiate organic from mineral
soil horizons. The occurrence, depth and thickness of symbol S
(stagnic horizon) were included to acknowledge zones of frequent
water logging. Likewise, symbol G (gleyic horizon) was included to
defer to the zone of groundwater influence. The occurrence, depth
and thickness of the C horizon were included to attribute to layers
little affected by pedogenetic processes and, hence, the absence of
pedogenic oxides, organic matter, and soil structure. Likewise,
symbol mC (a subcategory of C) was included to acknowledge
depth to bedrock (Boden, 2005). Though, it has to be mentioned
that it sometimes occurred in only part of the horizon.
Additionally, EC was included to refer to soil salinity. TIC was
considered to differentiate soils originating from calcareous parent
material.

TABLE 2 | Computation of DEM-derived terrain parameters.

Abbreviation Variable Library Module Search
radii

DEM00 Elevation

SLO01, SLO05,
SLO10

Slope Terrain analysis/
morphometry

Morphometric features 1, 5, 10 cells

NOR01, NOR05,
NOR10

Northness Morphometric features & Grid
calculator

1, 5, 10 cells

EAS01, EAS05, EAS10 Eastness 1, 5, 10 cells
TST01, TST05, TST10 Terrain surface texture Terrain Surface Texture 1, 5, 10 cells
TSR01, TSR05, TSR10 Terrain surface ruggedness Terrain Ruggedness Index 1, 5, 10 cells
CON01, CON05,
CON10

Convergence Index Convergence Index (Search Radius) 1, 5, 10 cells

SLH00 Slope Height Relative Heights and Slope Positions 1 cell
VAD00 Valley depth 1 cell
NOH00 Normalised Height 1 cell
WIN00 Wind Exposure Wind Effect 1 cell

NOP00 Negative openness Terrain analysis/Lighting,
Visibility

Topographic Openness 1 cell
POP00 Positive openness 1 cell

VOF0S Vertical overland flow
distance (VOF)

xxx0M � major
rivers

Terrain analysis/Channels Overland Flow distance to Channel
Network

1 cell
VOF0M

xxx0S � all
segments

1 cell

HOF0S Horizontal overland flow
distance (HOF)

1 cell
HOFOM 1 cell

SWI00 SAGA wetness index Terrain analysis/Hydrology SAGA Wetness Index 1 cell
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SFTs were then derived by grouping soil profiles similar in
their properties. This was done in the form of a pair-wise
comparison by 1 cm depth slices using R-package “AQP”
(Beaudette et al., 2013). Slice-wise depth weighting was
implemented by an exponential decay function:

Wi � e−k·i (1)

The weight of each slice i is determined according to depth
weighting coefficient k. Gower’s generalized dissimilarity
metric (Gower, 1971) was used since it accounts for any
combination of binary, categorical, or continuous variables.
For the horizon symbol information, each depth slice was
assigned a 1 for the occurrence and a 0 for the non-occurrence.
As each additionally considered soil property reduces the
impact of the other soil properties on the dissimilarity
metric, dissimilarity matrices with a varying number of soil
properties were calculated. All of the 50 variables sets included
the particle size distribution. They differed 1) in the number of
particle size separates (2, 3, or 7), 2) in the inclusion of horizon
information (none| H, S, G and C | H, S, G, C, and mC), and 3)
the additionally considered physical properties (stone content,
bulk density), and 4) the considered chemical properties
(TOC, TIC, pH, and EC). All variable sets were tested
alongside with two soil depths (0–100 or 0–200 cm) and
three depth weighting coefficients (k � 0.00, 0.01, and 0.1).
Increasing values of the latter indicate that topsoil information
was assigned a higher weight compared to subsoil information.
A value of 0 indicates that no depth weighting was applied, a
value of 0.1 indicates that between-profile differences were
dominated by topsoil properties. To account for variable soil
depth in the dissimilarity calculations, undefined
dissimilarities were replaced by the maximum between-slice
dissimilarity. Undefined dissimilarities were only preserved,
when both depth slices represented non-soil material, i.e.
bedrock. For each of the computed 300 dissimilarity
matrices (50 variable sets × 2 soil depths × 3 coefficients), a
cluster analysis with algorithm Ward (Ward, 1963) was
conducted to test cluster solutions with 2–50 clusters. R
package “NbClust” (Charrad et al., 2014) was used for this
purpose. The overall best cluster solution per dissimilarity
matrix was then selected according to the Silhouette Index
(Kaufman and Rousseeuw, 1990). Of the, thereby, resulting
300 cluster solutions only those with a reasonable high number
of clusters (≥8) were kept, assuming that solutions with very
few clusters would be way too simple to represent the
variability of German soils under agricultural use.
Furthermore, cluster solutions with <50 soil profiles in any
of their clusters were excluded.

The remaining cluster solutions were then compared according
to their specification with respect to the soil properties. Among the
soil properties, a good definition with regards to particle size
distribution, symbol H, symbol S, and symbol G was given
priority over the other soil properties due to their importance
for all six soil functions. The final aim was to select one overall best
cluster solution. Each cluster of this best cluster solution would
then define an SFT with a multivariate distribution of soil
properties along its depth profile.

2.4 Modeling
2.4.1 Model Algorithm
Machine learning algorithms are often applied for supervised
classification problems. In this case, landscape positions were
classified according to the presence or absence of a particular SFT.
Each landscape position was described by an n-dimensional
vector of predictor values extracted from nationwide gridded
geodata, i.e. proxies of the soil-forming factors. The machine
learning algorithm was then used to build a model that learns on
behalf of a training dataset — landscape positions of known
presence or absence — to then spatially apply the model
throughout the respective landscape.

There is a high variety of machine learning algorithms applied
in pedometric modeling. And while random forest is becoming
increasingly popular (Padarian et al., 2020), due to its simplicity
in structure and parameter tuning, the high potential of
algorithms such as support vector machines (SVMs) is not yet
well exploited. Nonetheless, SVMs are a “hot topic” in the broader
machine learning community due to their high flexibility and
potential to perform complex learning tasks (e.g. Bennett and
Campbell, 2000; Meyer, 2019). SVMs were developed by Cortes
and Vapnik (1995). In binary classification tasks, they search for
the hyperplane that maximizes the margin between the two
classes’ closest points. The properties of this decision surface
ensure the SVM’s high generalization ability (Cortes and Vapnik,
1995). Points along the boundary are called support vectors. The
data are projected to the higher dimensional space via kernel
techniques to allow for separation in case of nonlinearity. The
radial basis function (RBF) kernel is commonly applied for this
purpose. It helps to build complex decision boundaries and
includes two parameters: C and c. Their choice is crucial for
obtaining good results. The c parameter can be interpreted as the
inverse of the radius of influence of the support vectors. C is often
referred to as the cost or penalty parameter. With a small C, the
penalty for misclassified points is low; high values increase the
risk of overfitting. Finally, it balances the misclassification of
training samples against the simplicity of the hyperplane. R
package “e1071” provides the R interface to the LIBSVM
library for Support Vector Machines (Chang and Lin, 2011;
Meyer, 2019).

2.4.2 Optimization Approach
The search for optimal SVM parameters was conducted by
optimization employing a genetic algorithm (GA). Figure 2
provides an overview of the procedure that was implemented
with R package “GA” (Scrucca, 2013; Scrucca, 2017). The GAs’
operational structure is inspired by the general principles of
biological evolution involving mutation, crossover, selection,
and elitism. The parameter space to be searched for the
optimal combination of tuning parameter values has to be
predefined by providing a minimum and maximum value for
each parameter. Then, a random population of n vectors of SVM
parameters is evaluated by a problem-specific fitness function.
Weights are assigned to each individual of the population (each
vector) according to its fitness function value. Then “selection” of
population individuals is done with a selection probability
according to the assigned weight by sampling with

Frontiers in Environmental Science | www.frontiersin.org June 2021 | Volume 9 | Article 6929598

Ließ et al. Multivariate 3D Soil Parameter Space

https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


replacement. “Elitism” allows the survival of the best individuals
in case they were not selected. The resulting individuals from the
reproducing population are then altered by two further genetic
operators: “mutation” and “crossover.”Mutation randomly alters
individual tuning parameter values. Crossover forms new vectors
from two existing vectors by combining values from both. This
process is iterated until an initially defined fitness value is
achieved by any of the vectors, until a maximum number of
iterations (maxiter) is reached, or until the fitness values do not
improve for a certain number of consecutive iterations (run).
Please refer to Affenzeller et al. (2009) for further information on
genetic algorithms.

GAs can balance between the exploration of new areas of the
given parameter space and the exploitation of good solutions.
Exploitation (Exploitation 1, Figure 2) is usually controlled by the
two operators, selection and elitism, whereas exploration
(Exploration 1, Figure 2) is conducted by mutation and
crossover. The trade-off between exploitation and exploration
is controlled by aspects such as the population size, and the
probability for mutation (pmutation) and crossover (pcrossover). In
this particular case, we used a hybrid GA which was run in
parallel. “Hybrid” means that the GA was combined with a local
optimizer. The latter extends exploitation (Exploitation 2,
Figure 2) by starting a local search from one of the current
best solutions after a predefined iteration interval (determined by
poptim). The approach was parallelized by subdividing the original
population into several subpopulations, with each being assigned
to an individual island. Each of these subpopulations was then
undergoing a separate optimization process. The islands are

connected by a ring topology allowing for a unidirectional
scarce exchange of individuals between the islands. This
exchange is controlled by the migrationRate (proportion of
individuals migrating) and the epoch, which defines the
number of iterations i after which the migration takes place.
The top individuals of a certain island, thereby, replace random
individuals (excluding the elite ones) of the subsequent island.
This approach is known as distributed multiple-population GA
or island parallel GA (ISLPGA). Hybrid GAs can find a global
solution more efficiently than conventional evolutionary
algorithms. The ISLPGA introduces diversity into the
subpopulations, and is, thereby, extending exploration
(Exploration 2, Figure 2), and preventing the search from
getting stuck in local optima.

A couple of test runs were conducted to choose the GA settings
starting from recommendations given by Scrucca (2017). Finally,
GA search was conducted in the two-dimensional space
considering the SVM parameters c and C to range between
0.01 and 10. The population size was set to 125, and the
number of islands for parallel search to 5. The interval for the
migration between islands was set to 20, the migration rate to 0.1.
Single-point crossover between parameter vectors was conducted
with a probability of 0.8, uniform random mutation with a
probability of 0.1. Linear rank selection was applied allowing
for the best five individuals to survive at each generation (elitism).
The probability of applying local search was set to 0.1, and the
selection pressure to 0.7. The overall maximum number of
iterations was set to 500, the number of consecutive
generations without any improvement in the best fitness value

FIGURE 2 | Parallelized optimization with a hybrid genetic algorithm.
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before the GA was stopped was set to 20. Please refer to Scrucca
(2017) and Scrucca (2013) for the details and available options.

2.4.3 Model Training and Evaluation
For SVM, the n-dimensional vectors of predictor data can only
include real numbers. Accordingly, all categorical predictors were
recoded into dummy variables. All numerical data were scaled to
the range 0, 1 to avoid misbalance and numerical problems. The
predictor-response dataset was then compiled by extracting the
predictor values at the soil profile sites and assigning each soil
profile to the respective SFT. SVMmodels were trained separately
for each SFT. Accordingly, the response data was coded into
presence-absence data. The misbalance between SFT occurrence
and absence was taking into account through the assignment of
weights during model building.

A nested approach of 5-fold stratified cross-validation (CV)
was applied for model training, tuning and evaluation to obtain
robust models (Figure 3). For model evaluation, the outer CV
cycle was repeated five times. Overall, in both CV cycles, the
available predictor-response dataset (X-Y) was subdivided into
five folds of equal size using the response variable for
stratification. Of these five folds, then always one fold was
kept out as a test set while the other four were combined to
form the model training set, leading to five separate test set
evaluations (one per data instance). Each of the outer CV’s
training sets was again subdivided to provide the datasets for
parameter tuning in the inner CV cycle. Accordingly, the inner
CV cycle reflects the fitness function for the GA optimization
procedure. To combat computation time, the optimization was
conducted for only 1 out of 25 training sets. Predictions from the
five test sets were combined to compute model performance on
behalf of the confusion matrix as accuracy accounting for
sensitivity and specificity, i.e. true positives and true negatives.
The value ranges between 0 and 1 with a value of 0.8 indicating
that 80% of the data instances were classified correctly.

The coding into dummy variables led to a dominance of the
categorical information (258 predictors) over the numerical (50)
predictors. The original data sources differ in their degree of
reproducibility and the amount of included expert knowledge.
This will affect the obtained modeling result and, therefore,
requires careful consideration. The numerical predictors were
mostly derived from measured data, i.e. the topographical
predictors derived from digital terrain analysis (SCORPAN R:
30 predictors), vegetation proxies derived from remote sensing
(SCORPAN O: 12), and latitude, longitude (SCORPAN N: 2).
The climate proxies are slightly different, for they were
interpolated from point data on behalf of the DEM
(SCORPAN C: 6). The categorical predictors were derived
from spatial vector information (polygons), i.e. SCORPAN P:
195, R: 25, and S: 38. All of these data include expert knowledge.
However, while GMK provides a classification on behalf of
numerical data (DEM), the others have used geological and
soil data at point locations to derive map products with spatial
map units separated by strict boundaries drawn according to
expert judgment. The corresponding map products HÜK, BAG,
and BGL are of high value, particularly due to their high
information content with regards to SCORPAN P.
Nonetheless, while using these data to train spatial prediction
models, these map units’ boundaries are taken for granted since
their uncertainty is unknown. As the modeling approach is
empirical, it heavily relies on the quality of the used data. Still,
excluding data sources of unknown uncertainty is no option
either as we would neglect valuable information. However, we
may consider balancing between numerical and categorical data.
And there is yet another aspect to consider in model training
concerning the usage of categorical predictor data. Categories that
are not well represented in the data used for model training,
tuning and evaluation, will hamper model performance. So finally,
the number of dummy variables was reduced for two reasons: 1) to
address the misbalance between categorical and numerical

FIGURE 3 | Resampling approach for model tuning and evaluation. (A) Nested 5-fold cross-validation with repeating the outer cycle. (B) Zoom in on 5-fold cross-
validation.
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predictors, and 2) to build robust models, i.e. guarantee adequate
predictor representation in training, tuning, and test datasets. Data
subdivision according to the nested CVmade it a reasonable choice
to delete all categories with less than 100 occurrences. In this way,
each data subset for testing in the inner CV cycle would still include
16 instances on average. After data subdivision, it was verified
whether each data subset included at least 10 instances. Finally, 89
predictors were included: 50 numerical and 39 categorical
predictors. The following indicates the original number of
categories per predictor (x/_/_), the number of categories after
extraction at point locations (_/x/_), and the remaining number
after excluding all categories with non-sufficient instances (_/_/x):
GMK 25/24/12, BAG 18/17/8, LIT 80/47/5, STR 97/73/7, and BGL
38/36/7.

2.4.4 Model Interpretation
It is a common perception that machine learning models are
black-box models which hampers their interpretation. While
there are restrictions concerning the visualization of the
complex model structure — particularly in the case of a high
number of interacting predictors— there are, nonetheless, useful
tools to understand the importance of individual predictors and
their functional relation with the target variable. Variable
importance (VI) plots display the importance of individual
predictors. A general approach to compute them independent
of the particular machine learning algorithm relies on predictor
permutation. Individual predictors are permuted in the test set
before model application to eliminate any predictor-response
relationship present with regards to that predictor. The resulting
relative loss in model performance can then be attributed as VI
value to the respective predictor. According to the five times
repeated 5-fold CV approach (outer CV cycle), our VI plots
display boxplots of 25 VI values for each predictor. Values of 5
permutations were averaged.

Partial dependence plots (PDPs) are helpful to visualize the
relationship between the predictors and the response. They are

low-dimensional graphical renderings of the prediction function
accounting for the average effect of the other predictors in the
model (Friedman, 2001; Greenwell, 2017). But they may be
misleading in the case of strong predictor interaction. An
approach to address this issue are individual conditional
expectation (ICE) plots (Goldstein et al., 2015). They display
the estimated relationship between a selected predictor and the
response for each observation. The PDP can then be obtained by
averaging the corresponding ICE curves across all observations.
PDPs according to the latter approach were computed with R
package “pdp” (Greenwell, 2018). The five times repeated 5-fold
CV approach resulted in 25 PDP realisations per SFT model. The
median of these 25 realisations was used to analyze the functional
relationships.

3 RESULTS AND DISCUSSION

3.1 Comparison Between Cluster Solutions
The original 300 best cluster solutions (best solution per
dissimilarity matrix) were reduced to 22 solutions due to the
criteria 1) number of clusters ≥8 and 2) minimum number of
profiles ≥50 in any of their clusters. The remaining cluster
solutions (Supplementary Table S1), were sorted according to
a decreasing number of clusters (12–8) and a decreasing number
of considered input variables (14–7), and, hence, from higher to
lower complexity. From these 22 solutions, only three correspond
to a soil depth of 0–200 cm, the others to a soil depth of 0–100 cm.
Most of the solutions (16 out of 22) were derived while no depth-
weighting was applied. None of the solutions was obtained with a
depth weighting coefficient of 0.1, which would indicate a
dominance of topsoil information for the calculation of the
between-profile dissimilarity. This gives a first hint on the
importance of subsoil dissimilarity when it comes to
agricultural soils, whose topsoils are strongly managed to serve
agricultural production, and are, hence, less diverse. Concerning

FIGURE 4 | 11-digits barcode assignment scheme to allow for the comparison of cluster solutions.
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the considered input variables, the picture is more diverse. Each
of the considered soil properties was included in a couple of
cluster solutions. Though, it has to be mentioned that particle size
distribution with a number of 2, 3, or 7 particle size classes had
been included in all 300 dissimilarity matrices due to its high
importance for soil functionality.

In General, each cluster solution defines its clusters differently
by grouping soil profiles according to their similarity on behalf of
a different set of variables. Accordingly, cluster IDs do not match.
To still allow for their comparison with regards to the definition
of their multivariate distributions along the depth profile,
attributes were assigned to each of the clusters, reflecting soil

FIGURE 5 | Number of soil profiles per cluster solution and barcode. (A) S1, (B) S2, (C) S3, (D) S4, (E) S5.

FIGURE 6 | Boxplots of predictive model performance corresponding to the eight clusters similar among the five solutions S1–S5. (A) organic, (B) skeletic, (C)
sandy, (D) sandy-gleyic, (E) sandy-stagnic, (F) silty, (G) silty-gleyic, and (H) silty-stagnic.
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traits. These attributes were assigned on behalf of each cluster’s
mean of the median depth profile for the respective soil property.
An 11-digits barcode was then assigned to each cluster according
to the scheme depicted in Figure 4. The 22 cluster solutions were
first grouped according to their number of clusters. Then, from
each group, the cluster solution was kept that would best
differentiate its clusters according to the multivariate
distributions along the depth profile. Exceptionally, the two
cluster solutions with 12 clusters were both kept as there was
no clear prevalence of one over the other. Finally, 5 solutions
remained, labeled S1–S5 as indicated in Supplementary Table
S1. These remaining five solutions consider a rather differing
number of clusters 8–12 and a similar number of variables 10–11.
Still, the variables themselves also differ. They all comprise the
same basic set of the following variables: particle size distribution
(three classes), stone content, and the information on the
occurrence, depth, and thickness of the horizons H, S, G, and
C. Information concerning the mC horizon was included in all
but S3. S4 was the only solution that additionally includes bulk
density and no further properties. S1, S2, S3, and S5 differ in the
additional chemical properties they consider.

Figure 5 provides a summary indicating the number of
profiles per solution and barcode. Similar colors reflect similar
soils. Clusters with organic soils are displayed in dark brown
colors, clusters of soils with a high stone content with red colors,
clusters with gleyic soils by blue colors, clusters with stagnic soils
by turquoise colors, clusters with sandy soils in yellow, and

clusters with silty soils in light brown. Please be aware that the
two to three shades for the clusters with gleyic and stagnic soils
also reflect a difference in their particle size distribution. While
there is a high percentage of soils defined by a sandy or silty
texture and soils being influenced by ground water or displaying
stagnic properties, there are much fewer profiles attributed to the
clusters which are predominantly organic, with a high stone
content, or with a depth limitation in the top 100 cm.

Finally, due to the different definition of clusters, i.e. SFTs, it was
expected that the SFTs of certain cluster solutions could be better
related to the soil-forming factors than those of others, and would,
therefore, result in a better performance of the models for their
spatial prediction. Accordingly, the best overall model performance
would then determine the final definition of SFTs. SVMmodels were
trained for all five cluster solutions. Comparison with regards to
model performance between the solutions was based on those eight
clusters similar among them. As all of the solutions only include one
cluster with the first barcode digit corresponding to organic, these
clusters’ spatial models were compared. The same applies for one
cluster with a high stone content (bar code digit “skeletic” � 3 if
available, otherwise � 2), three clusters with sandy properties
(barcode digit “sandy” � 1), and three clusters with a
comparatively high silt content (barcode digit “silty” � 1). Of the
three sandy and silty clusters, there was one cluster with additional
gleyic properties and one with additional stagnic properties,
respectively. For S1 and S3, from the two clusters with gleyic
properties, one fulfilled the criterion of sandy, the other had a

FIGURE 7 |Multivariate soil parameter distribution along the depth profiles of the SFTs, part 1: horizon occurrence probability. (A) organic horizon (symbol H), (B)
horizon with stagnic properties (symbol S), (C) groundwater influence (symbol G), (D)C horizon, and (E) depth limitation by bedrock (symbol mC). Percentages along the
right figure margin indicate the contributing fraction of soil profiles per 20 cm depth increment.
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somewhat too little silt content to classify as silty. Both were still
included in this comparison.

Figure 6 displays the predictive model performance of the eight
clusters similar in all five cluster solutions. The boxplots reflect 5
values (repeated outer CV cycle). S4 achieved the best predictive
model performance. It had the best median accuracy for four out of
eight, and the highest average accuracy among the eight considered
clusters. S3 was superior in model performance concerning the three
clusters corresponding to organic, sandy, and sandy-gleyic soils
(Figures 6A, C, D). The slightly different assignment of soil
profiles to these clusters led to a better spatial prediction. Overall,
there is very little difference in model performance for certain
clusters, namely those with organic, sandy-gleyic, and sandy-
stagnic soils (Figures 6A, D, E), likely due to a large overlap in
soil profile assignment.

3.2 Soil Functional Types With Multivariate
Soil Parameter Distributions Along the
Depth Profile
S4 is the cluster solution that considered the particle size
distribution (three classes), the stone content, the bulk density,

and the occurrence, depth and thickness of the horizons H, S, G,
C, and mC to compute soil profile similarity to differentiate the
SFTs (Supplementary Table S1). Figures 7, 8 display the
corresponding multivariate distribution along the depth profile
(0–100 cm) of the nine SFTs corresponding to S4. Soil profile data
were aggregated per 1 cm depth slice and displayed as horizon
occurrence probability (Figure 7), and median values with the
interquartile range in the case of continuous data (Figure 8).
Figure 5D indicates the barcodes corresponding to the respective
SFTs. For simplicity, these barcodes were now renamed to refer to
the SFTs more easily. The following naming convention was
applied. SFTs with similar properties were assigned to the same
main identifier: this applies for two SFTs with stone contents
≥10% and ≥30% (SFT2.1 and 2.2), three SFTs with sandy
properties (SFT3.1, SFT3.2, and SFT3.3), and three SFTs with
silty properties (SFT4.1, SFT4.2, and SFT4.3). Of the sandy and
silty soils, there is one SFT with additional gleyic and one with
additional stagnic properties each. Altogether, this results in the
following naming convention: SFT1 (organic), SFT2.1 (skeletic),
SFT2.2 (skeletic with depth limitation), SFT3.1 (sandy), SFT3.2
(sandy-gleyic), SFT3.3 (sandy-stagnic), SFT4.1 (silty), SFT4.2
(silty-gleyic), and SFT4.3 (silty-stagnic).

FIGURE 8 | Multivariate soil parameter distribution along the depth profile of the SFTs, part 2: median of soil properties with interquartile range. (A) particle size
distribution, displayed as sand, silt, and clay content [mass-%], (B) stone content [vol-%], and (C) bulk density [g cm−3]. Percentages along the depth profiles indicate the
contributing fraction of soil profiles per 20 cm depth increment.
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Figure 7 reflects the occurrence probability of the horizons H,
S, G, C, and mC from top to bottom. Figure 7A indicates that
soils that include an organic horizon in some part throughout
their profile (SFT1) were well separated from soils that do not
include an organic horizon. However, SFT1 still includes a high
variety of soils: Soils that are organic throughout the top 100 cm
were combined with soils that include mineral soil horizons in
their top 20 cm (10%) and/or below c. 50 cm (10–30%).
Furthermore, 10–28% of the soils have groundwater influence
in some part of their profile (Figure 7C). For the mineral soils,
most soils with groundwater influence (SFT3.2 and SFT4.2) were
well separated from soils with no groundwater influence. The
same applies to soils with stagnic properties in the top 100 cm
(SFT3.3 and SFT4.3, Figure 7B). SFT2.1 and SFT2.2 include
many soils with a C horizon starting at low soil depths indicating
rather initial stages of soil development (Figure 7D). 20% of these
soils have a C horizon starting at 20 cm (SFT2.2) or 25 cm
(SFT2.1) soil depth. Further down the pedon, this percentage
augments to 80 and 75%, respectively. The decrease in C horizon
probability below these depths is because many soil profiles in
these SFTs have a soil depth <100 cm as indicated by the
decreasing contributing fraction: Only 49% of the profiles of
SFT2.1 are deeper than 80 cm, SFT2.2 soil depth does not reach
below 80 cm at all. SFT2.1 and SFT2.2 are also the two SFTs with
profiles including bedrock (Figure 7E). From the SFTs
corresponding to sandy soils (SFT3.1, SFT3.2, and SFT3.3), it
is the exclusively sandy SFT3.1 which includes a rather high
percentage of profiles with C horizon occurrence within the top
100 cm: 40% at 52 cm depth augmenting to 70% at 72 cm depth.
The same applies to the silty SFT (SFT4.1). Although, the silty-
stagnic soils (SFT4.3) also partly include a C horizon within their
top 100 cm (Figure 7D).

Figure 8 displays the second part of the multivariate soil
parameter distribution along the depth profile of the SFTs,
corresponding to measured soil properties. This includes
particle size distribution (Figure 8A), stone content
(Figure 8B), and bulk density (Figure 8C). The multivariate
distributions along the depth profile of each SFT are represented
by the following quantiles: Q5, Q25, Q50, Q75, and Q95 (Ließ,
2021). SFT1 is described by sandy soil material in the top 20 cm
and below 80 cm depth. In between, most soils have organic
horizons as observed from H horizon probability (Figure 7A)
and the contributing fraction (Figure 8A). As expected from the
barcodes and reflected in the naming convention, SFT3.1,
SFT3.2, and SFT3.3 have a particle size distribution
dominated by the sand content, whereas SFT4.1, SFT4.2, and
SFT4.3 have a particle size distribution dominated by the silt
content. Among the former, SFT3.2 displays the highest median
sand content throughout the top 100 cm. Among the latter,
SFT4.1 has the lowest sand and highest silt content. The
difference in texture between SFT2.1 and 2.2 is not so
pronounced. Still, SFT2.2 differs from SFT2.1 by its
increasing sand and decreasing clay content with depth. The
stone content of SFT2.1 and 2.2, the two skeletic SFTs, is much
higher as compared to the other SFTs (Figure 8B). In both SFTs
the stone content is increasing with depth, reaching its
maximum somewhere around 60 cm. Figure 8C displays the

SFT’s distribution of the depth profile with regards to bulk
density. As expected, the organic SFT1 has much lower values
compared to the others. The rather high interquartile range
below 70 cm corresponds to the high amount of soils with
mineral horizons starting at this depth. The other SFTs’
distributions along the depth profile display a clear step
around 10 cm depth reflecting the loosely settled soil after
tillage operations by cultivators (croplands) and/or the crump
structure caused by an active soil fauna on grassland or non-
tilled soils. SFT2.2 differs from the other mineral SFTs due to a
slightly lower bulk density with a higher interquartile range
throughout its depth and a step of decreasing bulk density
around 70 cm depth. Further soil properties were not
included in the multivariate distributions along the depth
profiles of the SFTs as they were not part of the variable set
to compute the dissimilarity matrix of S4.

Altogether, organic soils were differentiated frommineral soils of
various particle size distributions partly influenced by waterlogging
and groundwater within their top 100 cm. Further SFTs reflect soils
with a depth limitation and a high stone content. In the evaluation
of the various cluster solutions, higher importance was given to
particle size distribution and characteristics distinguishing organic
horizons, horizons of water logging and horizons of groundwater
influence due to their uttermost importance for all previously listed
soil functions. As a consequence, the SFTs of the selected solution S4
do not differentiate well concerning the soil properties TOC and
EC. Accordingly, we decided to reduce the parameter space of the
SFTs to those soil properties included in the computation of the
dissimilarity matrix of S4. Organic soils differ from mineral soils in
their pedogenesis, composition and structure. Soil particle size
distribution largely determines the available water capacity in the
root zone and, hence, the soil’s capability to cope with drought and
prevent yield losses. Furthermore, it determines the soil’s storage
potential for SOC. Accordingly, it largely determines soil fertility
and the soils’ production function. Periodic water logging in the
root zone affects the soil microbial community, decomposition
processes, and nutrient turnover. The closeness of the soil horizon
with changing groundwater level determines — after fertilizer
application and percolation through the profile — how much
nitrate increases groundwater contamination. And while the
properties that are currently included in the definition of the
SFTs’ multivariate distributions along the depth profile are
reflecting the most important properties, we are well aware that
processes such as nutrient cycling and filtering of contaminants
require the inclusion of further soil properties particularly
stabilizing and buffering agents related to soil mineralogy and
cation exchange capacity. Currently, only C horizon occurrence,
thickness and depth and the assumed absence of pedogenic oxides,
structure and TOC give some hint to approximate this aspect. And
while other soil properties such as pH and TOC are manipulated
through fertilization and liming, the soils have different states of
origin with regards to these properties which should also show as
they provide important information for agricultural management
planning and intitial values for agricultural process modeling. Still,
the current definition of soil functional types provides a decent basis
to represent soil functionality with regards to the storage of plant
available water (SF3), and the soil’s storage capacity for TOC
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(SF6). The other four soil functions are represented to a certain
extent. Vogel et al. (2019) argue that it is the inherent soil
properties (properties that do not change within decades) that

allow for the evaluation of the soil’s potential to fulfill the soil
functions. Whereas it is those properties changed under
agricultural management that allow for the evaluation of the

FIGURE 9 | Predicted median occurrence probability of the SFTs at national scale. (A) SFT1, (B) SFT2.1, (C) SFT2.2, (D) SFT3.1, (E) SFT3.2, (F) SFT3.3, (G)
SFT4.1, (H) SFT4.2, (I) SFT4.3. Non-agricultural areas were masked out on behalf of the CORINE Land Cover Inventory 2018 (Figure 1A). The corresponding predictive
model accuracy is indicated in the bottom right corner.
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current state and fulfilment of the soil functions with regards to
these potentials.

Pedon similarity with regards to the multivariate soil
profile information has previously been considered in the
context of numerical soil classification as opposed to
conceptual soil classification (e.g. Rayner, 1966; Moore
et al., 1972). However, to our knowledge, it has not been
used to derive soil functional types for agricultural
landscapes. The data-driven approach we follow may further
benefit by considering property-specific depth weighting to
differentiate between soil properties affected by agricultural
management and those that don’t. The consideration of soil
properties such as TOC, pH, EC and bulk density to define
SFTs in agricultural landscapes is tricky as they are heavily
manipulated by fertilizer application, liming, and tillage
operations. Nonetheless, past agricultural management may
also have impacted the occurrence, depth and thickness of
mineral and organic soil horizons. Particularly in northwest
Germany, nutrient-poor, sandy topsoil was often improved by
mixing it with grass or heather plagues and, thereby, altering
their particle size distribution and SOC content. This praxis
was still common at the beginning of the 20th century but
stopped with upcoming mineral fertilisers. In the same area,

the deep ploughing of peatlands and Podsols for amelioration
until a depth of 1.50 m took place. The result was a mixture of
organic with mineral — mostly sandy — underlying soil
material, or alternating inclined layers of mineral and
organic soil material.

3.3 Spatial Prediction, Model Interpretation,
and Evaluation
Figure 9 shows the median occurrence probability of the SFTs
throughout Germany. Median predictive model performance is
indicated by the respective accuracy in the bottom right corner
of each map. Please be aware that Figure 8B has a different map
legend due to the predicted low probabilities. Median predictive
model performance decreases in the following order: SFT1 –
SFT4.2 – SFT3.2 – SFT2.2 – SFT4.1 – SFT3.3 – SFT4.3 – SFT3.1
– SFT2.1 from 0.87 to 0.67 and the exceptional low predictive
performance of 0.54 for SFT2.1. Model performance was
particularly good for SFT1 (organic) and the two SFTs
representing gleyic soils (SFT3.2, SFT4.2). Sandy-gleyic
(SFT3.2) and sandy-stagnic (SFT3.3) soils could be better
predicted than sandy soils without gleyic or stagnic
properties (SFT3.1). The same applies to silty-gleyic (SFT4.2)

FIGURE 10 | VI plots. The Subfigures display the VI values for the individual models to predict the occurrence probability of the SFTs. The boxplots reflect the
variance in VI due to the CV approach. (A) SFT1, (B) SFT2.1, (C) SFT2.2, (D) SFT3.1, (E) SFT3.2, (F) SFT3.3, (G) SFT4.1, (H) SFT4.2, and (I) SFT4.3.
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as compared to silty soils (SFT4.1), but not for silty-stagnic soils
(SFT4.3).

Figure 10 shows the variable importance (VI) for the nine
models corresponding to S4. High relative VI values that
amount to a multiple of 100% display a high degree of
predictor interaction within the models. Most dummy
predictors have values above 30 or even 40%. Some
predictors have very low VI values close to zero. Still, the
exclusion of predictors below VI values of 2 led to a reduced
model performance (results not shown). In the first predictor
group (SORPAN C), the drought index of the winter and
summer months was of low importance for all SFTs,
probably due to its calculation from temperature and
precipitation, which were also included as predictors. Still,
the exclusion of highly correlated predictors led to a
decreased model performance (results not shown).
Temperature (TEMSU, TEMWI) and precipitation (PREWI,
PRESU) of the summer and winter months have VI values above
10% for all SFTs. For most SFTs they are around 20%. For SFT1
(Figure 10A) and SFT2.1 (Figure 10B), they are above 30 or
even 40%. Among the SCORPAN O proxies, there is an increase
in VI values in the order DMP – NDR – NDV – VPI, with VPI
being of comparatively much higher importance for all SFTs.
The selected time slot in June displays the percentile ranking of
the current NDVI against its historical range of variability and
is, therefore, a good indicator of comparatively dry (2018) or wet

(2016) conditions. Vegetation on sandy soils will likely have
been more impacted by drought than vegetation on silty soils,
although the opposite may apply in case the soils are covered by
a narrow sandy topsoil horizon. The NDVI and NDRE values of
yearly composites of single years will not show this effect as
strongly, even though the spatial resolution of the data is higher.
Again the vegetation indices (particularly VPI) are of
comparatively higher importance for SFT1 and SFT2.1. This
might be due to a prevailing usage as grasslands of the soils
assigned to these SFTs. A similar effect is observable in the next
predictor group concerning these two SFTs (R1). For all SFTs,
elevation (DEM00) and easting (EAS) have rather low
importance. The low importance of elevation is not that
surprising as it is often included in pedometric models to
reflect the climatic gradient, which is in this case already
captured by predictor group C. The remaining predictors of
the group have particularly high importance for SFT1 and
SFT2.1, but even for the other SFTs, they reach VI values
above 10 or 20%. Among the hydrological terrain parameters
(R2), VOF0S and VOF0M display the highest importance
followed by SWI00. The high information content contained
in the geomorphographic map units (R3) displayed by
particularly high VI values of 30–50%, likely reduces the
importance of the numerical predictors (R1, R2). The
particularly high importance of the dummy predictors is also
observable for predictor groups P and S. Latitude and longitude

FIGURE 11 |Median PDPs of selected continuous predictors. (A) PRESU, (B) TEMSU, (C) NDV18, (D)NDV86, (E)NOP00, (F) POP00, (G) SLH00, (H) SLO10, (I)
TST10, (J) TRI10, (K) VAD00, (L)WIN00, (M) SWI00, (N) VOF0M, and (O) VOF0S. Please refer to Tables 1,2 for the predictor abbreviations. The predictor values along
the X-axis correspond to the values extracted from the normalized nationwide gridded geodata.
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display VI values around 10% for SFT2.1 indicating that there
are likely some spatial patterns not captured by the other
predictors. Consequently, a less restrictive approach in the
consideration of the categorical predictors could even
improve model performance. Though the benefit of including
additional predictors may differ among the SFTs. The
transmission of polygon map boundaries to the pedometric
modeling result is a well-known problem particularly observed
while applying recursive partitioning algorithms (e.g. Behrens
et al., 2018b; Nussbaum et al., 2018).

The spatial patterns of the sandy SFT3.1, the sandy-gleyic
SFT3.2, and the sandy-stagnic SFT3.3 (Figures 9D–F), display
their development from sandy parent material (yellow color in
Figure 1F). Soils of the sandy SFT3.1 additionally developed from
sandstones, acid magmatites and metamorphites in the mountains
of the Central German Upland region and loose material in the
Alpine Foreland. Likewise, the spatial patterns of the silty SFT4.1
(Figure 9G) and the silty-stagnic SFT4.3 (Figure 9I) display their
development from loess (light orange color, Figure 1F). On the
other hand, soils that developed from clay stones (mud color,
Figure 1F) and are, therefore, likely to have a clayey texture, are
seldom used for agriculture (Figure 1A), which explains the lack of
a corresponding SFT. The spatial prediction of the silty-gleyic
SFT4.2 (Figure 9H) is clearly showing the strong influence of

certain dummy predictors derived from the BAG (Figure 1F). The
soil of the silty-gleyic SFT4.2 developed from floodplain sediments
and sediments in the tidal range. Their distinction is also visible
from terrain morphology (Figure 1E). The spatial patterns of
SFT2.1 (Figure 9B) and SFT2.2 (Figure 9C) are similar. They
mainly occur in the mountains of the Central German Uplands
(Figure 1B), which explains their high stone contents.

The direct influence of selected numerical predictors on the
respective SFTs is displayed in the PDPs in Figure 11. The shown
probability values for the individual SFTs are rather low due to
the averaging over all ICE plots. The plots are probably good to
see general trends but not in reflecting a comparison concerning
these average probabilities between SFTs. Still, it is interesting to
see that the two skeletic SFTs SFT2.1 and SFT2.2 show very
similar trends with SFT2.2 always displaying higher probabilities.
Both SFTs are likely assigned to the same raster cells and can
probably not be well separated in space. The two gleyic SFTs
(SFT3.2 and SFT4.2) and the two stagnic SFTs (SFT3.3 and
SFT4.3) show a remarkable similarity in sudden changes in
the slope for a couple of SCORPAN R proxies such as
NOP00, SLH00, SLO10, TRI10, VOF0M, and VOF0S. Having
developed from different parent material, these soils likely occur
in similar topographical landscape positions. Though, not all
trends can be well explained. Overall, the predictors are proxies

FIGURE 12 | Map displaying SFT distribution.
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describing today’s landscape while the changing interaction of the
soil-forming factors throughout time is not captured by the
available data.

Model results concerning the predicted SFT probability were
combined to generate the final spatial allocation of the SFTs
(Figure 12) in the following way: For each SFT, the median
probability of the 25 predicted values (CV approach) was
calculated per raster cell (Figure 8). Then for each raster cell,
the SFT with the highest median occurrence probability was
assigned (Figure 11). Due to its low probabilities (Figure 8B),
SFT2.1 was not assigned to any raster cell, as we also assumed on
behalf of the PDPs. As can be seen from the corresponding model
accuracy of 0.54, this was also the SFT whose spatial distribution
could not be well predicted.

Together the SFT spatial allocation (Figure 12) and the SFT-
specific multivariate soil parameter distributions along the depth
profiles provide a representation of the multivariate 3D soil
parameter space of the agricultural soil-landscape (Germany)
which can be used to evaluate certain soil functions, and as input
data to agricultural process models. While being operated at
national scale, the latter require a representation of the
pedosphere with regards to its spatially varying properties. The
pedosphere constitutes a spatial continuum. Its properties vary in
the magnitude of micrometres, centimetres or meters. But, at this
high spatial resolution, the provision of soil information at
national scale would result in inconceivable amounts of
multivariate data in three dimensions. However, this is hardly
necessary to answer current agricultural challenges. The
modeling of the impact of drought on agricultural yield, the
storage of soil organic carbon, or excess fertilizer percolation to
the groundwater, would merely require a spatial resolution to
represent individual agricultural fields. And while we maintain
this spatial resolution, we may, still, agglomerate soils according
to their similarity in their properties with the ultimate fin to

provide a limited set of spatially assigned process units of
specified characteristics to run agricultural process models,
and, thereby, reduce the required computing power. For
example, the agricultural soil-landscape of Germany at a
spatial resolution of 100 m augments to 19.5 million raster
cells. And this amount is multiplied while we acknowledge the
pedon behind each raster cell by its multivariate parameter
distribution along the depth profile, and the corresponding
site-, property-, and depth-specific uncertainty resulting from
pedometric modeling. Process models considering this high
amount of data would likely run into problems concerning the
required computing power.

To spatially represent the soil continuum in maps, soil
scientists have since long started to agglomerate soils into SUs.
It is these SUs that may then depict SMUs in soil maps of a large
map scale. At small map scales, the SUs are often combined with
other SUs to form larger SMUs still visible at that scale. However,
the SUs defined in soil classification systems have the main
purpose to facilitate communication about the complex system
of soil. They are nowadays often reflecting pedogenesis, and are,
therefore, not necessarily well suited to represent soil
functionality (Mueller et al., 2010). In many soil classification
systems, important soil properties guiding soil functionality are
only distinguished at a low systematic level and rather similar
soils concerning their properties and functionality are assigned to
different upper-level SUs. This partly also hampers their spatial
differentiation in pedometric modeling. Promising to derive
spatial units to represent soil functionality are also approaches
that spatially predict characteristic soil horizons relating to
stagnic properties, or organic carbon accumulation and soil
depth instead of SUs (e.g. Gessler et al., 1995; Gastaldi et al.,
2012; Ließ et al., 2012). Overall, the domain of application-
oriented pedometric mapping follows the same rationale: Ließ
et al. (2011) and Ließ and Huwe (2012) estimate natural landslide

FIGURE 13 | Soil property-wise model performance for selected soil depths. Boxplots of 5 RMSE values per soil property and depth. (A) sand content, (B) silt
content, (C) clay content, (D) stone content, and (E) bulk density. The horizontal line below each boxplot refers to the RMSE of the original SFT assignment of the soil
profiles. Concerning the first line of figures, residuals for the RMSE calculation refer to the difference to the SFTs’ 5–95% interquantile range for the respective property of
the multivariate distribution of the depth profile. Concerning the second line of figures, the interquartile range was considered for computing the RMSE.
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risk in a tropical mountain environment. Jeong et al. (2017) assess
land potentials in forest soils under monsoon climate. Greiner
et al. (2018) thematise uncertainty indication in soil
function maps.

To adequately simulate and evaluate the impact of climate
change on crop production, it is important to assess the impact
of local to regional soil variability with regards to soil water
conditions at critical crop development states (e.g. Challinor
et al., 2009; White et al., 2011; Kasampalis et al., 2018).
Accordingly, approaches that estimate the impact of
drought on agricultural yields throughout Germany could
largely benefit from the developed data product. Currently,
they rely on the initially described soil maps with spatially-
unresolved SMUs and can, therefore, not provide site-specific
predictions (e.g. Zink et al., 2016; Webber et al., 2020). Besides
knowledge on nitrogen surplus on soils under agricultural use
and lateral transport in aquifers, studies to investigate nitrate
pathways to the groundwater would also clearly benefit from
continuous, site-specific soil information (e.g. Knoll et al.,
2020).

The soil-property-wise evaluation of the final product for selected
depths (5, 20, 40, 60, and 80 cm) shows a good predictive
performance (Figure 13). The increase of the RMSE with depth
corresponding to the original SFT assignment while considering the
interquantile ranges (Q5–Q95 and Q25–Q75) of the respective
distribution along the depth profile, indicates that the properties
of the subsoil need to be weighted more heavily in the similarity
analysis to identify the SFTs. For the RMSE values of the model
predictions (boxplots), this increase with depth is even stronger. This
is because the SFTs differ more in their subsoil compared to their
topsoil. Correspondingly, misclassifications show a stronger effect.
Overall, the good model performance indicates successful model
training and tuning due to the implemented SVMwith optimization.
The corresponding RMSE values of predictive model performance
for topsoil texture from the European (Ballabio et al., 2016) and
global (Hengl et al., 2017) predictions, evaluated on behalf of the
same test data sets, are 17.3 and 18.8% for sand, 13.6 and 15.3% for
silt, and 9.1 and 9.5% for clay.

4 CONCLUSION

The presented approach to derive a realisation of the multivariate
3D soil parameter space of the agricultural soil-landscape
(Germany) consists of 1) the differentiation of SFTs with
multivariate distributions along their depth profiles, and 2) the
projection of these SFTs to continuous space by machine
learning. It simplifies the agricultural soil-landscape by
agglomerating similar soils according to their properties. This
has two benefits: On the one hand, it well addresses the general
concept behind pedometric modeling at the landscape scale,
which seeks to explain similarity in soils by similarity in
landscape characteristics related to the soil-forming factors. In
this sense, it provides a valuable approach to model multiple soil
properties with their respective 3D distribution simultaneously.
On the other hand, the obtained data product reduces the
multivariate complexity of the spatial soil continuum to a

limited number of spatial process units to run agricultural
process models at national scale. The required computing
power is reduced to a large extent.

Overall, the current product published alongside this
manuscript (Ließ, 2021) has to be understood as a first
version in the iterative process of pedometric modeling. The
current definition of SFTs provides a decent basis to represent
soil functionality with regards to the storage of plant available
water (SF3), and the soil’s storage capacity for TOC (SF6). The
other four soil functions are represented to a certain extent.
Perspectively, it shall be further enhanced by extending the
multivariate distributions along the depth profiles by further
soil properties and adapting the definition of the SFTs through
the implementation of property-specific depth weighting. This
will likely increase the number of SFTs and reduce the
respective ranges of their multivariate distribution along the
depth profiles. Moreover, any pedometric model can be further
improved by including an ever-increasing amount, and
information content of input data, and by enhancing the
modeling approach to derive an ever-increasing predictive
accuracy. We are positive that the implemented machine
learning approach resulted in robust models that extracted
the highest possible information content concerning the
landscape allocation of SFTs due to the implemented
resampling and SVM with optimization. A further
improvement would, therefore, mainly rely on additional soil
profile data, and the inclusion of further gridded geodata to
approximate the soil-forming factors. And the latter will never
be sufficient as we strive to model the result of 10,000 years of
pedogenesis by data covering the last few decades.

DATA AVAILABILITY STATEMENT

The dataset of the multivariate 3D soil parameter space is
available from DOI 10.17605/OSF.IO/GQBMD (Ließ, 2021).

AUTHOR CONTRIBUTIONS

Conceptual approach, programming, modeling, scientific
embedding, and preparation of figures (ML), predictor
preparation (ML and AG), manuscript writing (ML, AD, and AG).

ACKNOWLEDGMENTS

This work is part of the SoilSpace3D-DE project and contributes
to the BonaRes Centre — Soil as a Sustainable Resource for the
Bioeconomy — modeling framework.

SUPPLEMENTARY MATERIAL

The SupplementaryMaterial for this article can be found online at:
https://www.frontiersin.org/articles/10.3389/fenvs.2021.692959/
full#supplementary-material

Frontiers in Environmental Science | www.frontiersin.org June 2021 | Volume 9 | Article 69295921

Ließ et al. Multivariate 3D Soil Parameter Space

10.17605/OSF.IO/GQBMD
https://www.frontiersin.org/articles/10.3389/fenvs.2021.692959/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fenvs.2021.692959/full#supplementary-material
https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


REFERENCES

Adler, G., Behrens, J., Eckelmann,W., Hartwich, R., and Richter, A. (2003). “Böden
im Überblick,” in ifL: Nationalatlas Bundesrepublik Deutschland, Band 2 –

Natur und Umwelt I: Relief, Boden und Wasser (Leipzig: Leibniz-Institut für
Länderkunde), 100–103.

Affenzeller, M., Winkler, S., Wagner, S., and Beham, A. (2009). Genetic Algorithms
and Genetic Programming. Boca Raton, FL: Taylor and Francis Group.

Alexander, J. (2003). “Die heißesten und kältesten Gebiete,” in ifL: Nationalatlas
Bundesrepublik Deutschland, Band 3 - Natur und Umwelt II: Klima, Pflanzen-
und Tierwelt (Leipzig: Leibniz-Institut für Länderkunde), 36–37.

Ardakani, A., and Kordnaeij, A. (2017). Soil Compaction Parameters Prediction
Using GMDH-Type Neural Network and Genetic Algorithm. Eur. J. Environ.
Civ. Eng. 23, 449–462. doi:10.1080/19648189.2017.1304269

Asch, K., Lahner, L., and Zitzmann, A. (2003). “Die Geologie von Deutschland –
ein Flickenteppich,” in ifL: Nationalatlas Bundesrepublik Deutschland - Relief,
Boden und Wasser (Leipzig: Leibniz-Institut für Länderkunde), 32–35.

Ballabio, C., Panagos, P., and Monatanarella, L. (2016). Mapping Topsoil Physical
Properties at European Scale Using the LUCAS Database. Geoderma 261,
110–123. doi:10.1016/j.geoderma.2015.07.006

Barnes, E. M., Clarke, T. R., and Richards, S. E. (2000). “Coincident Detection of
Crop Water Stress, Nitrogen Status and Canopy Density Using Ground-Based
Multispectral Data,” in Proceedings of the Fifth International Conference on
Precision Agriculture. Bloomington, MN, United States

Beaudette, D. E., Roudier, P., and O’Geen, A. T. (2013). Algorithms for
Quantitative Pedology: A Toolkit for Soil Scientists. Comput. Geosci. 52,
258–268. doi:10.1016/j.cageo.2012.10.020

Behrens, T., Schmidt, K., MacMillan, R. A., and Viscarra Rossel, R. A. (2018a).
Multi-Scale Digital Soil Mapping With Deep Learning. Sci. Rep. 8, 2–10. doi:10.
1038/s41598-018-33516-6

Behrens, T., Schmidt, K., Viscarra Rossel, R. A., Gries, P., Scholten, T., and
MacMillan, R. A. (2018b). Spatial Modelling with Euclidean Distance Fields
and Machine Learning. Eur. J. Soil Sci. 69, 757–770. doi:10.1111/ejss.12687

Bennett, K., and Campbell, C. (2000). Support Vector Machines: Hype or
Hallelujah. SIGKDD Explor. 2, 1–13. doi:10.1145/380995.380999

BGR (2008a). Soil Scapes in Germany 1:5,000,000. BGL5000. Hanover: Federal
Institute for Geosciences and Natural Resources.

BGR (2008b). Groups of soil parent material in Germany 1:5,000,000. BAG5000,
Version 3.0. Hanover: Federal Institute for Geosciences and Natural Resources.

BGR (2007). Geomorphographic Map of Germany, GMK1000. Hanover: Federal
Institute for Geosciences and Natural Resources.

BGR (2013). Soil Map of Germany 1:1,000,000. BÜK1000. Hanover: Federal
Institute for Geosciences and Natural Resources.

BGR (2018). Soil Map of Germany 1:250,000. Hanover: Federal Institute for
Geosciences and Natural Resources.

BGR and SDG (2019). Hydrogeological Map of Germany 1:250,000 (HÜK250).
Hanover: Federal Institute for Geosciences and Natural Resources (BGR) and
German State Geological Surveys (SGD).

Bishop, T. F. A., McBratney, A. B., and Laslett, G. M. (1999). Modelling Soil
Attribute Depth Functions With Equal-Area Quadratic Smoothing Splines.
Geoderma 91, 27–45. doi:10.1016/S0016-7061(99)00003-8

BKG (2020). Digital Land Model at Map Scale 1:250,000 (version 2.0). Federal
Agency for Cartography and Geodesy

Boden, Ad-hoc-A. G. (2005). Bodenkundliche Kartieranleitung. 5th Edn.
Hannover, Germany: E.Schweizerbart’sche Verlagsbuchhandlung.

Bönecke, E., Breitsameter, L., Brüggemann, N., Chen, T. W., Feike, T., Kage, H.,
et al. (2020). Decoupling of Impact Factors Reveals the Response of German
Winter Wheat Yields to Climatic Changes. Glob. Change Biol. 26, 3601–3626.
doi:10.1111/gcb.15073

Büttner, G., Kostztra, B., Soukup, T., Sousa, A., and Langanke, T. (2017). CLC2018
Technical Guidelines. Vienna: European Environment Agency. Available at:https://
land.copernicus.eu/user-corner/technical-library/clc2018technicalguidelines_final.
pdf (Accessed June 1, 2020)

Castaldi, F., Chabrillat, S., Don, A., and van Wesemael, B. (2019). Soil Organic
Carbon Mapping Using LUCAS Topsoil Database and Sentinel-2 Data: An
Approach to Reduce Soil Moisture and Crop Residue Effects. Remote Sens. 11,
2121. doi:10.3390/rs11182121

Challinor, A. J., Ewert, F., Arnold, S., Simelton, E., and Fraser, E. (2009). Crops and
Climate Change: Progress, Trends, and Challenges in Simulating Impacts and
Informing Adaptation. J. Exp. Bot. 60, 2775–2789. doi:10.1093/jxb/erp062

Chang, C.-C., and Lin, C.-J. (2011). Libsvm. ACM Trans. Intell. Syst. Technol. 2,
1–39. doi:10.1145/1961189.1961199

Charrad, M., Ghazzali, N., Boiteau, V., and Niknafs, A. (2014). NbClust:
AnRPackage for Determining the Relevant Number of Clusters in a Data
Set. J. Stat. Soft. 61, 1–36. doi:10.18637/jss.v061.i06

Conrad, O., Bechtel, B., Bock, M., Dietrich, H., Fischer, E., Gerlitz, L., et al. (2015).
System for Automated Geoscientific Analyses (SAGA) v. 2.1.4. Geosci. Model
Dev. 8, 1991–2007. doi:10.5194/gmd-8-1991-2015

Cortes, C., and Vapnik, V. (1995). Support-Vector Networks. Mach. Learn. 20,
273–297. doi:10.1007/BF00994018

de Brogniez, D., Ballabio, C., Stevens, A., Jones, R. J. A., Montanarella, L., and van
Wesemael, B. (2015). A Map of the Topsoil Organic Carbon Content of Europe
Generated by a Generalized Additive Model. Eur. J. Soil Sci. 66, 121–134. doi:10.
1111/ejss.12193

DWD (2018a). Seasonal Grids of Monthly Averaged Daily Air Temperature (2m)
Over Germany. version v1.0. Offenbach, Deutscher Wetterdienst.

DWD (2018b). Seasonal Grids of Sum of Precipitation over Germany. version v1.0.
Offenbach, Deutscher Wetterdienst.

DWD (2018c). Seasonal Grids of Sum of Drought Index (de Martonne) Over
Germany. version v1.0. Offenbach: Deutscher Wetterdienst.

Emadi, M., Taghizadeh-Mehrjardi, R., Cherati, A., Danesh, M., Mosavi, A., and
Scholten, T. (2020). Predicting and Mapping of Soil Organic Carbon Using
Machine Learning Algorithms in Northern Iran. Remote Sens. 12 (14), 2234.
doi:10.3390/rs12142234

Endlicher, W., and Hendl, M. (2003). “Klimaspektrum zwischen Zugspitze und
Rügen,” in ifL: Nationalatlas Bundesrepublik Deutschland, Band 3 - Natur und
Umwelt II: Klima, Pflanzen- und Tierwelt (Leipzig: Leibniz-Institut für
Länderkunde), 32–33.

Esfandiarpour-Boroujeni, I., Shahini-Shamsabadi, M., Shirani, H., Mosleh, Z.,
Bagheri-Bodaghabadi, M., and Salehi, M. H. (2020). Assessment of Different
Digital Soil Mapping Methods for Prediction of Soil Classes in the Shahrekord
Plain, Central Iran. Catena 193, 104648. doi:10.1016/j.catena.2020.104648

Friedman, J. H. (2001). Greedy Function Approximation: A Gradient Boosting
Machine. Ann. Statist. 29, 1189–1232. doi:10.1214/aos/1013203451

Gastaldi, G., Minasny, B., and Mcbratney, A. B. (2012). “Mapping the Occurrence
and Thickness of Soil Horizons within Soil Profiles,” in Digital Soil Assessments
and beyond. Editors B. Minasny, B. P. Malone, and A. McBratney (London,
United Kingdom: Taylor & Francis Group), 145–148.

Gebauer, A., Brito Gómez, V. M., and Ließ, M. (2019). Optimisation in Machine
Learning: An Application to Topsoil Organic Stocks Prediction in a Dry forest
Ecosystem. Geoderma 354, 113846. doi:10.1016/j.geoderma.2019.07.004

Gebauer, A., Ellinger, M., Brito Gómez, V. M., and Ließ, M. (2020). Development
of Pedotransfer Functions for Water Retention in Tropical Mountain Soil
Landscapes: Spotlight on Parameter Tuning in Machine Learning. Soil 6,
215–229. doi:10.5194/soil-6-215-2020

Gessler, P. E., Moore, I. D., McKenzie, N. J., and Ryan, P. J. (1995). Soil-Landscape
Modelling and Spatial Prediction of Soil Attributes. Int. J. Geogr. Inf. Syst. 9,
421–432. doi:10.1080/02693799508902047

Goldstein, A., Kapelner, A., Bleich, J., and Pitkin, E. (2015). Peeking inside the
Black Box: Visualizing Statistical Learning with Plots of Individual Conditional
Expectation. J. Comput. Graph. Stat. 24, 44–65. doi:10.1080/10618600.2014.
907095

Gower, J. C. (1971). A General Coefficient of Similarity and Some of its Properties.
Biometrics 27, 857–874. doi:10.1109/ultsym.1987.199076

Greenwell, B. M. (2017). pdp: An R Package for Constructing Partial Dependence
Plots. R. J. 9, 421–436. doi:10.32614/rj-2017-016

Greenwell, B. (2018). Package “pdp” - Partial Dependence Plots. CRAN Repos.
Greiner, L., Nussbaum, M., Papritz, A., Zimmermann, S., Gubler, A., Grêt-

Regamey, A., et al. (2018). Uncertainty Indication in Soil Function Maps -
Transparent and Easy-to-Use Information to Support Sustainable Use of Soil
Resources. Soil 4, 123–139. doi:10.5194/soil-4-123-2018

Haupt, R. L., and Haupt, S. E. (1998). Practical Genetic Algorithms. New York, NY:
John Wiley & Sons, Inc.

Hengl, T., Mendes De Jesus, J., Heuvelink, G. B. M., Ruiperez Gonzalez, M.,
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Multispectral Models From Bare Soil Composites for Mapping Topsoil
Properties Over Europe. Remote Sens. 12, 1369. doi:10.3390/RS12091369

Scrucca, L. (2013). GA: A Package for Genetic Algorithms inR. J. Stat. Soft. 53,
1–37. doi:10.18637/jss.v053.i04

Scrucca, L. (2017). On Some Extensions to GA Package: Hybrid Optimisation,
Parallelisation and Islands Evolution on Some Extensions to GA Package:
Hybrid Optimisation, Parallelisation and Islands Evolution. R. J. 9, 187–206.
doi:10.32614/RJ-2017-008

Scull, P., Franklin, J., Chadwick, O. A., and McArthur, D. (2003). Predictive Soil
Mapping: A Review. Prog. Phys. Geogr. Earth Environ. 27, 171–197. doi:10.
1191/0309133303pp366ra

Sharififar, A., Sarmadian, F., Malone, B. P., and Minasny, B. (2019). Addressing the
Issue of Digital Mapping of Soil Classes With Imbalanced Class Observations.
Geoderma 350, 84–92. doi:10.1016/j.geoderma.2019.05.016

Statistisches Bundesamt (2020). Land Use - Agriculture and Forestry,
Fisheries. Available at: https://www.destatis.de/EN/Themes/Economic-
Sectors-Enterprises/Agriculture-Forestry-Fisheries/Land-Use/_node.html;
jsessionid�D40446229B48722918EED994173D1868.internet8732 (Accessed
August 14, 2020).

Sundermann, G., Wägner, N., Cullmann, A., von Hirschhausen, C. R., and Kemfert,
C. (2020). Nitrate Pollution of Groundwater Long Exceeding Trigger Value:
Fertilization Practices Require More Transparency and Oversight. DIW Weekly.
Berlin, Germany: Deutsches Institut für Wirtschaftsforschung (DIW).

Swinnen, E., and Toté, C. (2015). Gio Global Land Component - Lot I ”Operation
of the Global Land Component Framework Service Contract N° 388533, JRC,
Normalized Difference Vegetation Index (NDVI) V2, Vegetation Condition
Index, Vegetation Productivity Index. Algorithm Theor. Basis Doc. (I2.11).
Available at: https://land.copernicus.eu/global/sites/cgls.vito.be/files/products/
GIOGL1_ATBD_NDVI-VCI-VPI_I2.11.pdf (Accessed June 1, 2020)

Swinnen, E., and Van Hoolst, R. (2019). Copernicus Global Land Operations
“Vegetation and Energy”. Version 1. Available at: https://land.copernicus.eu/

Frontiers in Environmental Science | www.frontiersin.org June 2021 | Volume 9 | Article 69295923

Ließ et al. Multivariate 3D Soil Parameter Space

https://doi.org/10.1371/journal.pone.0169748
https://doi.org/10.1371/journal.pone.0169748
https://doi.org/10.1016/j.catena.2017.02.006
http://inspire.ec.europa.eu/
http://inspire.ec.europa.eu/
https://doi.org/10.3390/jimaging4040052
https://doi.org/10.1088/1748-9326/ab7d5c
https://doi.org/10.17605/OSF.IO/GQBMD
https://doi.org/10.1016/j.geomorph.2011.05.015
https://doi.org/10.1016/j.catena.2012.05.002
https://doi.org/10.17221/3544-pse
https://doi.org/10.1016/j.geoderma.2020.114794
https://doi.org/10.1126/sciadv.abb9668
https://doi.org/10.22060/ajce.2018.14988.5512
https://doi.org/10.1016/S0016-7061(03)00223-4
https://doi.org/10.2136/vzj2012.0141
https://doi.org/10.5194/soil-6-269-2020
https://doi.org/10.1111/j.1365-2389.1972.tb01653.x
https://doi.org/10.1051/agro/2009057
https://doi.org/10.3390/s20010132
https://doi.org/10.5194/soil-4-1-2018
https://doi.org/10.5194/soil-6-35-2020
https://doi.org/10.5194/soil-6-35-2020
https://doi.org/10.5194/soil-5-79-2019
https://doi.org/10.3220/DATA20200203151139
https://doi.org/10.1016/j.geodrs.2016.11.003
https://doi.org/10.1016/j.geoderma.2014.05.004
https://doi.org/10.1111/j.1365-2389.1966.tb01454.x
https://doi.org/10.1016/j.geoderma.2018.03.009
https://doi.org/10.3390/RS12091369
https://doi.org/10.18637/jss.v053.i04
https://doi.org/10.32614/RJ-2017-008
https://doi.org/10.1191/0309133303pp366ra
https://doi.org/10.1191/0309133303pp366ra
https://doi.org/10.1016/j.geoderma.2019.05.016
https://www.destatis.de/EN/Themes/Economic-Sectors-Enterprises/Agriculture-Forestry-Fisheries/Land-Use/_node.html;jsessionid=D40446229B48722918EED994173D1868.internet8732
https://www.destatis.de/EN/Themes/Economic-Sectors-Enterprises/Agriculture-Forestry-Fisheries/Land-Use/_node.html;jsessionid=D40446229B48722918EED994173D1868.internet8732
https://www.destatis.de/EN/Themes/Economic-Sectors-Enterprises/Agriculture-Forestry-Fisheries/Land-Use/_node.html;jsessionid=D40446229B48722918EED994173D1868.internet8732
https://www.destatis.de/EN/Themes/Economic-Sectors-Enterprises/Agriculture-Forestry-Fisheries/Land-Use/_node.html;jsessionid=D40446229B48722918EED994173D1868.internet8732
https://land.copernicus.eu/global/sites/cgls.vito.be/files/products/GIOGL1_ATBD_NDVI-VCI-VPI_I2.11.pdf
https://land.copernicus.eu/global/sites/cgls.vito.be/files/products/GIOGL1_ATBD_NDVI-VCI-VPI_I2.11.pdf
https://land.copernicus.eu/global/sites/cgls.vito.be/files/products/CGLOPS1_ATBD_DMP300m-V1_I1.12.pdf
https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


global/sites/cgls.vito.be/files/products/CGLOPS1_ATBD_DMP300m-V1_I1.
12.pdf (Accessed June 1, 2020).

Taghizadeh-Mehrjardi, R., Schmidt, K., Amirian-Chakan, A., Rentschler, T.,
Zeraatpisheh, M., Sarmadian, F., et al. (2020). Improving the Spatial
Prediction of Soil Organic Carbon Content in Two Contrasting Climatic
Regions by Stacking Machine Learning Models and Rescanning Covariate
Space. Remote Sens. 12, 1095. doi:10.3390/rs12071095

Terribile, F., Coppola, A., Langella, G., Martina, M., and Basile, A. (2011). Potential and
Limitations of Using Soil Mapping Information to Understand Landscape
Hydrology. Hydrol. Earth Syst. Sci. 15, 3895–3933. doi:10.5194/hess-15-3895-2011

Tifafi, M., Guenet, B., and Hatté, C. (2018). Large Differences in Global and Regional
Total Soil Carbon Stock Estimates Based on SoilGrids, HWSD, and NCSCD:
Intercomparison and EvaluationBased on Field Data FromUSA, England,Wales,
and France. Glob. Biogeochem. Cycles 32, 42–56. doi:10.1002/2017GB005678

Tóth, G., Jones, A., andMontanarella, L. (2013). The LUCAS Topsoil Database and
Derived Information on the Regional Variability of Cropland Topsoil
Properties in the European Union. Environ. Monit. Assess. 185, 7409–7425.
doi:10.1007/s10661-013-3109-3

van Hateren, T. C., Chini, M., Matgen, P., and Teuling, A. J. (2020). Ambiguous
Agricultural Drought: Characterising Soil Moisture and Vegetation Droughts in
Europe From Earth Observation. Hydrol. Earth Syst. Sci. Discuss. [Epub ahead
of print]. doi:10.5194/hess-2020-583

Vaudour, E., Gomez, C., Lagacherie, P., Loiseau, T., Baghdadi, N., Urbina-Salazar,
D., et al. (2021). Temporal Mosaicking Approaches of Sentinel-2 Images for
Extending Topsoil Organic Carbon Content Mapping in Croplands. Int. J. Appl.
Earth Obs. Geoinf. 96, 102277. doi:10.1016/j.jag.2020.102277

Veronesi, F., Corstanje, R., and Mayr, T. (2012). Mapping Soil Compaction in 3D
With Depth Functions. Soil Tillage Res. 124, 111–118. doi:10.1016/j.still.2012.
05.009

Vogel, H.-J., Bartke, S., Daedlow, K., Helming, K., Kögel-Knabner, I., Lang, B., et al.
(2018). A Systemic Approach for Modeling Soil Functions. Soil 4, 83–92. doi:10.
5194/soil-4-83-2018

Vogel, H.-J., Eberhardt, E., Franko, U., Lang, B., Ließ, M., Weller, U., et al. (2019).
Quantitative Evaluation of Soil Functions: Potential and State. Front. Environ.
Sci. 7. 164. doi:10.3389/fenvs.2019.00164

Vogt, J., and Foisneau, S. (2007). CCM River and Catchment Database — Version
2.0 Analysis Tools. EUR 22649 EN JRC36122.

Wadoux, A. M. J.-C., Padarian, J., and Minasny, B. (2019). Multi-Source Data
Integration for Soil Mapping Using Deep Learning. SOIL 5, 107–119. doi:10.
5194/soil-5-107-2019

Ward, J. H. (1963). Hierarchical Grouping to Optimize an Objective Function.
J. Am. Stat. Assoc. 58, 236–244. doi:10.1080/01621459.1963.10500845

Webber, H., Lischeid, G., Sommer, M., Finger, R., Nendel, C., Gaiser, T., et al.
(2020). No Perfect Storm for Crop Yield Failure in Germany. Environ. Res. Lett.
15, 104012. doi:10.1088/1748-9326/aba2a4

White, J. W., Hoogenboom, G., Kimball, B. A., and Wall, G. W. (2011).
Methodologies for Simulating Impacts of Climate Change on Crop
Production. Field Crops Res. 124, 357–368. doi:10.1016/j.fcr.2011.07.001

Wiesmeier, M., Urbanski, L., Hobley, E., Lang, B., von Lützow, M., Marin-Spiotta,
E., et al. (2019). Soil Organic Carbon Storage as a Key Function of Soils - A
Review of Drivers and Indicators at Various Scales. Geoderma 333, 149–162.
doi:10.1016/j.geoderma.2018.07.026

Zeraatpisheh, M., Bakhshandeh, E., Hosseini, M., and Alavi, S. M. (2020).
Assessing the Effects of Deforestation and Intensive Agriculture on the Soil
Quality Through Digital Soil Mapping. Geoderma 363, 114139. doi:10.1016/j.
geoderma.2019.114139

Zhang, M., Shi, W., and Xu, Z. (2020). Systematic Comparison of Five Machine-
Learning Models in Classification and Interpolation of Soil Particle Size
Fractions Using Different Transformed Data. Hydrol. Earth Syst. Sci. 24,
2505–2526. doi:10.5194/hess-24-2505-2020

Zink, M., Samaniego, L., Kumar, R., Thober, S., Mai, J., Schäfer, D., et al. (2016).
The German Drought Monitor. Environ. Res. Lett. 11, 074002. doi:10.1088/
1748-9326/11/7/074002

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2021 Ließ, Gebauer and Don. This is an open-access article distributed
under the terms of the Creative Commons Attribution License (CC BY). The use,
distribution or reproduction in other forums is permitted, provided the original
author(s) and the copyright owner(s) are credited and that the original publication
in this journal is cited, in accordance with accepted academic practice. No use,
distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Environmental Science | www.frontiersin.org June 2021 | Volume 9 | Article 69295924

Ließ et al. Multivariate 3D Soil Parameter Space

https://land.copernicus.eu/global/sites/cgls.vito.be/files/products/CGLOPS1_ATBD_DMP300m-V1_I1.12.pdf
https://land.copernicus.eu/global/sites/cgls.vito.be/files/products/CGLOPS1_ATBD_DMP300m-V1_I1.12.pdf
https://doi.org/10.3390/rs12071095
https://doi.org/10.5194/hess-15-3895-2011
https://doi.org/10.1002/2017GB005678
https://doi.org/10.1007/s10661-013-3109-3
https://doi.org/10.5194/hess-2020-583
https://doi.org/10.1016/j.jag.2020.102277
https://doi.org/10.1016/j.still.2012.05.009
https://doi.org/10.1016/j.still.2012.05.009
https://doi.org/10.5194/soil-4-83-2018
https://doi.org/10.5194/soil-4-83-2018
https://doi.org/10.3389/fenvs.2019.00164
https://doi.org/10.5194/soil-5-107-2019
https://doi.org/10.5194/soil-5-107-2019
https://doi.org/10.1080/01621459.1963.10500845
https://doi.org/10.1088/1748-9326/aba2a4
https://doi.org/10.1016/j.fcr.2011.07.001
https://doi.org/10.1016/j.geoderma.2018.07.026
https://doi.org/10.1016/j.geoderma.2019.114139
https://doi.org/10.1016/j.geoderma.2019.114139
https://doi.org/10.5194/hess-24-2505-2020
https://doi.org/10.1088/1748-9326/11/7/074002
https://doi.org/10.1088/1748-9326/11/7/074002
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles

	Machine Learning With GA Optimization to Model the Agricultural Soil-Landscape of Germany: An Approach Involving Soil Funct ...
	1 Introduction
	2 Material and Methods
	2.1 Landscape Setting
	2.2 Data
	2.2.1 Soil Profile Database
	2.2.2 Gridded Geo-Information

	2.3 Procedure to Derive Soil Functional Types
	2.4 Modeling
	2.4.1 Model Algorithm
	2.4.2 Optimization Approach
	2.4.3 Model Training and Evaluation
	2.4.4 Model Interpretation


	3 Results and Discussion
	3.1 Comparison Between Cluster Solutions
	3.2 Soil Functional Types With Multivariate Soil Parameter Distributions Along the Depth Profile
	3.3 Spatial Prediction, Model Interpretation, and Evaluation

	4 Conclusion
	Data Availability Statement
	Author Contributions
	Acknowledgments
	Supplementary Material
	References


