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US Environmental Protection Agency, Office of Research and Development, Atlantic Coastal Environmental Sciences Division
(ACESD), Narragansett, Rl, United States

As the average global air temperature increases, lake surface temperatures are also
increasing globally. The influence of this increased temperature is known to impact lake
ecosystems across local to broad scales. Warming lake temperature is linked to
disruptions in trophic linkages, changes in thermal stratification, and cyanobacteria
bloom dynamics. Thus, comprehending broad trends in lake temperature is important
to understanding the changing ecology of lakes and the potential human health impacts of
these changes. To help address this, we developed a simple yet robust random forest
model of lake photic zone temperature using the 2007 and 2012 United States
Environmental Protection Agency’s National Lakes Assessment data for the
conterminous United States. The final model has a root mean square error of 1.48°C
and an adjusted R? of 0.88; the final model included 2,282 total samples. The sampling
date, that day’s average ambient air temperature and longitude are the most important
variables impacting the final model’s accuracy. The final model also included 30-days
average temperature, elevation, latitude, lake area, and lake shoreline length. Given the
importance of temperature to a lake ecosystem, this model can be a valuable tool for
researchers and lake resource managers. Daily predicted lake photic zone temperature for
all lakes in the conterminous US can now be estimated based on basic ambient
temperature and location information.

Keywords: random forest, US EPA National Lakes Assessment, limnology, water temperature, warming lakes,
photic zone temperature

INTRODUCTION

During a time of unprecedented environmental and climatic variability, lakes can serve as sentinels
and integrators in a changing world (Schindler 2009; Williamson et al., 2009). As the average global
air temperature increases (0.15-0.20°C per decade between 1975 and 2009) (Hansen et al., 2010),
surface temperatures of lakes are also increasing globally (0.34°C per decade from 1985 to 2009)
(O'Reilly et al., 2015).

The influence of this increased temperature touches all biotic and abiotic components of lentic
ecosystems. For example, warming lakes are linked to a disruption in trophic linkages between
phytoplankton and zooplankton (Winder and Schindler 2004). Specifically, Winder and Schindler
(2004) report a spring diatom bloom occurring 20 days earlier and a long-term decline in Daphnia
populations in Lake Washington. Warming has also been shown to result in changes in thermal
stratification across different lake types (O'Reilly et al., 2003; Verburg et al., 2003; Cohen et al., 2016;
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Michelutti et al., 2016; Hampton et al., 2018). In particular, lakes
that typically stratify can exhibit a stratification strengthening as
well as a reduction in the depth of the thermocline or previously
polymictic lakes can begin to stratify as a result of warming lake
temperatures. Temperature, in addition to nutrients, is a key
driver of cyanobacteria bloom dynamics (Paerl and Paul 2012).
During periods of higher temperature, cyanobacteria species
dominate the phytoplankton community (Peperzak 2003;
O’neil et al., 2012; Liirling et al., 2013). As lake temperature
increases (typically above 25°C), cyanobacteria have a competitive
advantage over phytoplankton and can proliferate quickly (Paerl
and Huisman 2008). Moreover, experimentally enhanced water
temperatures yielded significantly increased growth rates of toxic
Microcystis, but not the non-toxic strains (Davis et al., 2009).
Thus, our ability to understand and predict toxic cyanobacteria
blooms will be deeply dependent on our ability to forecast lake
temperature.

Ultimately, temperature changes will greatly impact every
aspect of lake ecology and lake resource management.
Specifically, and the focus of our work, the temperature
changes in the near-surface area (photic zone) where the
majority of photosynthesis occurs will have exponential
impacts on lake ecosystems. Because of the ecological
significance, it is not surprising that modelling lake photic
zone temperature has been broadly investigated. Models
typically vary in number of lakes studied, complexity of
modelling approach, and study interval. Modelling efforts
include attempts to model a single lake over relatively small
(e.g., hourly) time intervals (Peeters et al., 2002; Saeed et al., 20165
Zhong et al., 2016). Additionally, there are numerous studies that
model temperature for a small number of lakes (14-17 lakes)
while attempting to limit the number of predictor variables
(Matuszek and Shuter 1996; Livingstone and Lotter 1998;
Kettle et al., 2004; Toffolon et al., 2014; Piccolroaz 2016). In
these efforts, air temperature and lake size are often the only
selected predictor variables. Others have aimed at modelling and
measuring lake temperature across large spatial extents for large
number of lakes (291-388 lakes) (O'Reilly et al., 2015; Minns
et al,, 2017; Wan et al.,, 2017). These past attempts use a wide
variety of approaches and have been rather successful at
modelling lake photic zone temperature. One limitation,
however, is the majority of these lakes are large and few
studies document or model smaller lakes (although see the
following for examples of larger spatial extent studies that
focus on small lakes: Fang and Stehan 1999, Kettle et al., 2004,
Read et al., 2014, and Winslow et al., 2015). Considering that the
number and importance of small lakes (<1km?) has been
historically underestimated (Downing et al., 2006; Winslow
et al, 2014), it is important to explicitly include smaller
waterbodies into temperature related research.

In spite of the need to understand near-surface temperature
for all lakes across a large spatial extent, there have been several
challenges that have slowed our progress. Modelling lake
temperature requires a large amount of data, and therefore
study lakes are often selected opportunistically, which may
introduce a spatial bias. Frequently, the study lakes have a
high regional resource value (e.g., Laurentian Great Lakes) and

Lake Photic Zone Temperature

commonly have an extensive monitoring history due to the vested
interest of the public. When modelling efforts do attempt to cross
large spatial extents, these efforts often rely on satellite data.
While these models predict over large areas, they are restricted by
the size of the lake captured by satellite (typically 3 km” for 1 km
Moderate Resolution Imaging Spectroradiometer (MODIS)
pixels).

Our modelling effort takes advantage of the relatively recent
availability of broad scale field data for lakes and uses the
United States Environmental Protection Agency’s (US EPA’s)
National Lakes Assessment (NLA). The NLA is a stratified
random sample of all lakes in the conterminous United States
repeated every 5 years beginning in 2007. Even though this is a
large effort involving numerous agencies, the sampling methods
are standardized and have a comprehensive quality assurance
plan. The uniqueness of this data set allows us to build a robust
lake photic zone temperature model for all US lakes. By using
lakes across the US (i.e., at a large spatial extent), we included
lakes with different morphologies and in different climates with
diverse geologies and surrounding landscapes. Additionally,
small lakes were well represented with more than 50% of the
lakes in the 2012 survey less than 0.5km’ Our modelling
approach, random forest, is well adapted to fully utilize these
data. Random forest is a relatively novel machine learning
algorithm with convergences based on the parameter strength
and not deterred by the noise (Biau 2012).

The main goals of this work are to 1) develop a simple yet
robust lake photic zone temperature model and 2) develop a
model that is applicable to all lakes in the conterminous US that
captures key drivers of near-surface lake temperature.
Additionally, it is our practice to conduct our work as openly
as is feasible. Towards that end we provide access to all code and
data used to develop these models with the active repository
available at https://github.com/usepa/lake_photic_zone.

METHODS

Data

We relied on the in situ temperature data provided in the US
EPA’s National Lakes Assessment (US Environmental
Protection Agency 2009, 2016). The NLA is a generalized
random tessellation stratified sample of lakes (greater than
1 ha) across the US (US EPA 2011). The lakes are sampled
between 01 May and 30 September, and a few individual lakes
(~10%) are resampled during that sample period (Hart and
Bell 2015). NLA sampling took place in 2007, 2012, and 2017.
This research effort used the 2007 and 2012 sample years. The
2017 data are currently undergoing quality control before
being released to the public. For both sample years, we have
included lakes across the conterminous US excluding the
Laurentian Great Lakes (Figure 1). For each sampled lake,
we used the mean temperature for all sampled depths of less
than 2m. While the photic zone encompasses the water
column depth within which photosynthesis is primarily
occurring due to the penetration of light (Wetzel 2001), we
generalized to 2m in order to model across a large spatial
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FIGURE 1 | Map of 2007 and 2012 US EPA National Lakes Assessment.
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extent. Adapting photic zone depth by lake and through time
are beyond the data available to us.

We included numerous predictor variables that are
hypothesized to impact lake photic zone. As a proxy for
directly measured ambient air temperature, we used the
PRISM AN81 d data set (PRISM Climate Group, Oregon State
University, http://prism.oregonstate.edu, created Nov 07, 2018).
This data set provides interpolated daily temperature estimates
(mean, maximum, and minimum) for 4km grids in the
conterminous US from 1981 to the present (see: http://www.
prism.oregonstate.edu/documents/PRISM_ datasets.pdf). PRISM
takes advantage of measured climate variables to interpolate point
data to spatially defined grids using regression techniques and
expert knowledge (Daly et al., 2008). For our study, we used the
prism R package to download the mean daily temperatures for the
PRISM grid cells corresponding to the centroids of all NLA lakes
included in this study.

In addition to climate, there are other factors that are thought
to impact lake temperature (e.g., surrounding land use, lake
depth, size and configuration, and elevation) (See
Supplementary Table S1 in Supplemental Material for full list
of initial model variables). To test for the relative importance of
lake morphometry and surrounding landscape, we used the R
packages lakemorpho to calculate a suite of lake morphometry
metrics and elevatr to access digital elevation models for each lake
(Hollister and Stachelek 2017; Hollister and Tarak Shah 2017).
Non-point run-off from impervious surface into lakes supplies
potentially large volumes of warm water (Brabec et al., 2002).
Therefore, we used the National Land Cover Database (NLCD) as
a source for land cover data (Homer et al., 2004; Homer et al,,
2012) and calculated the percent impervious surface of a 3,000 m
buffer for each lake. Lakes with partial buffers falling outside the
US were excluded. The 3,000 m buffer was selected as an
intermediate scale that represents an area larger than the

immediate surroundings but does not encompass the entire
basin (Hollister et al., 2016). To test the relative influence of
both short and long-term temperature, we derived several
measures for a lake’s local air temperature. Mean air
temperatures for day of and the day before the sample date
were extracted directly from the PRISM data. To understand
longer term influences, we calculated average mean air
temperatures for periods 3, 7, and 30 days prior to the sample
date. The NLA samples throughout the growing season. Sample
date was included to capture the effect of warming that occurs
during the growing season. See Table 1 for summary of predictor
variables selected for the final model.

Random Forest Modelling

Random forest modelling was used to not only develop a
predictive model of photic zone temperature, but also used as
a means of variable selection and to calculate relative variable
importance. Random forest is a machine learning method that
builds a consensus prediction from the assemblage of multiple
tree models (here specifically 10,000 trees for the final model and
1,000 trees for the variable selection models). Each individual tree
model was constructed from a bootstrapped subset of the full data
set; each sample was drawn at random which results in
approximately 2/3 of the data set selected into the training set.
Also, a subset of all predictor variables was selected for each tree
(p/3 where p is the number of variables). All random forest
modelling was conducted in R v 4.0.3 (R Core Team 2020) with
the randomForest R package (Liaw and Wiener 2002). Model
performance was reported as mean square error and adjusted R,
See Breiman 2001 for more detailed methods.

Random forest does not require that users reduce the number
of predictor variables because the random forest algorithm
prevents overfitting and is not impacted by correlated
predictor variables (Cutler et al, 2007). It is unlikely that
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TABLE 1 | Summary table for selected variables.

Variable Min 25th
Date (Day of Year) 152 192
Elevation (Meters) —68.38 193.50
Latitude (Decimal Degrees) 26.07 37.42
Longitude (Decimal Degrees) -124.64 -105.14
Lake Shoreline Length (km) 0.40 2.00
Lake Area (km?) 0.01 0.15
Day of Air Temperature (°C) 3.29 18.17
Average Air Temperature 30 Day Prior ("C) 5.39 18.80

random forest models constructed with reduced numbers of
predictor variables perform any better than models
constructed with a full suite of available variables (Fox et al.,
2017). However, reducing the number of predictor variables eases
interpretation and can reduce potentially unneeded computation
time while, as demonstrated in the Results, not severely impacting
our prediction accuracy. Several of the climatic predictor
variables were computationally intensive to create for the
entire conterminous US. In order to use our final model for
future forecasting or historical backcasting, we strove to create a
robust predictive model while minimizing computational
demands. To determine the optimal number and set of
variables, we followed the variable selection method presented
in Hollister et al., 2016. This variable selection method requires
fitting a random forest model with the full set of variables and
then ranking the variables according to each variable’s increase in
mean square error (described below). Then, random forest
models are iteratively fit with the sequential addition of
variables based on the ranking. This allows us to see when
additional variables no longer improve the fit of the model.
Essentially creating a model with maximized accuracy with
minimal variables. We evaluated the resultant model in several
ways. First, we assessed the overall model performance with
traditional measures such as root mean square error (RMSE).
For random forest, this is a vector of mean square errors divided
by the total number of trees. Second, we examined error by
comparing the predicted versus observed temperature for all
lakes. This method uses the final model to predict photic zone
temperature for all lakes in the data set. In addition to these
measures of overall model performance, we used percent increase
of mean square error to assess variable importance. The percent
increase in mean square error is a comparison between the mean
square error for the model fit with the true values of a variable and
a model fit with randomly permuted vector of variable values.
Finally, partial dependence plots were used to visualize the partial
relationship between individual variables and the response
variable (Hastie et al., 2009).

RESULTS

Our final model was constructed with 1,185 data points from the
2007 NLA and 1,097 from the 2012 NLA across the conterminous
US (Figure 1).

Using the average lake temperature for the upper 2 m as the
response variable, we initially began the variable selection process

Lake Photic Zone Temperature

Median Mean 75th Max
212 212 234 271
338.24 626.20 695.86 3,639.91
41.34 40.71 44.76 48.96
-94.56 -94.89 -84.77 -67.20
4.36 24.07 10.55 2,315.20
0.48 8.18 1.75 1,674.90
22.06 21.62 25.52 34.95
21.62 21.49 24.59 35.50
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FIGURE 2 | Variable selection plot for all variables. Shows root mean
square error as a function of the number of variables. The variables, listed in
order of initial random forest ranking, are average ambient air temperature,
sample date, longitude, 30-days average temperature, elevation,

latitude, shoreline length, surface area, maximum lake depth, percent
impervious surface for 3,000 m buffer, maximum lake length, year, shoreline
development, mean lake width, volume, and maximum lake width.

Predicted photic zone temperature (°C)

10 15 20 25 30 35
Measured photic zone temperature (°C)

FIGURE 3 | Predicted versus measured photic zone temperature (n = 2,282).

with 16 predictor variables. The variables included were average
ambient air temperature for the sample date, sample date,
longitude, average ambient air temperature for 30 days
preceding the sample date, elevation, latitude, length of lake
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FIGURE 5 | Variable importance plot for selected variables. Shows
percent increase in mean square error. Higher values indicate a higher impact
on overall model accuracy.

shoreline, lake surface area, maximum lake depth, percent
impervious surface for 3,000 m buffer, maximum lake length,
year, shoreline development, mean lake width, volume, and
maximum lake width (variables are listed in order of initial
random forest ranking and, therefore, the order each variable
was iteratively included in random forest). The variable selection
process identified a reduced model with ~8 variables showing
minimal model error (Figure 2). The selected variables were
average ambient air temperature, sample date, longitude, 30-days
average air temperature, elevation, latitude, shoreline length, and
lake surface area (Table 1).

The final model built with the eight selected variables has a RMSE
of 1.48°C and adjusted R* of 0.88. The model performs well across a

wide range of temperatures (Figure 3); however, at the higher and
lower temperature (i.e., less than 15°C and greater than 32°C) the
model does not perform as well, but lakes with growing season
temperatures at these extremes were rare and represented only
3.86% of lakes sampled in the 2007 and 2012 NLA. Additionally,
there is not an obvious spatial clustering of lakes with higher error
(Figure 4). The spatial autocorrelation of model error overall is
uninteresting (Moran’s I = 0.028, p-value = 0.000015) (Legendre and
Fortin 1989). We also explored the correlation between each
predictor variable and error; there was found no relationship
[ranging from -0.076 (date) to 0.105 (average air temperature)].

The variables ranked in order of importance were date,
average temperature, longitude, 30-days average temperature,
elevation, latitude, surface area, and shoreline length
(Figure 5). The partial dependency plots illustrate how the
predicted photic zone temperature changes over the range of
values for all predictor variables (Figure 6).

DISCUSSION AND CONCLUSION

Here, we present a simple yet robust model of lake photic zone
temperature using the 2007 and 2012 NLA data for the
conterminous US. The final model has a RMSE of 1.48°C and an
adjusted R* of 0.88. Given the importance of temperature to a lake
ecosystem, especially to cyanobacteria bloom dynamics (Robarts and
Zohary 1987.; Paerl and Otten 2013), this model can be a valuable
tool for researchers and lake resource managers. Daily predicted lake
photic zone temperature for all lakes in the conterminous US can
now be estimated based on basic ambient temperature and location
information. Despite overall well-behaved performance, the final
model is less accurate at extreme temperatures (Figure 3). As might
be expected, the model underestimates temperature for relatively
high temperature lakes and overestimates colder lakes. Given that
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each tree of the random forest is built on a subset of all sample points
and the rarity the extreme temperature events, it is difficult to
improve the tails of the temperature distribution. It is expected that
the addition of new NLA data will improve both the overall model
performance and predictions for the more rare events. Yet Figure 4
illustrates there is no spatial clustering to these errors. While we

might be less certain with the predictions for extremely rare events,
we are confident in the model’s ability to reliably predict across all
regions of the conterminous US.

Sampling date, the sampling day’s average ambient air temperature,
and longitude are the most important variables impacting the final
model’s accuracy (Figure 5). The 30-days average temperature,
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elevation, and latitude comprise the second tier of important variables.
The final tier of variable importance is lake area and shoreline length -
the only morphometric variables included in the final model
Morphometry describes measures of lake form and size that have
vast influence on numerous lake functions (e.g, transport and
stratification) (Hakanson 2012). Given the importance of these
measures, it is striking that morphometric variables did not have a
larger impact on this model. A (Sharma et al, 2008) photic zone
temperature model of 2,348 Canadian lakes had similar results and
conclusions. This research found that near-surface temperatures were
accurately predicted by large-scale climate and geographic patterns,
and not lake-specific measures.

In addition to the morphometric variables, we calculated the
percent impervious surface for a 3,000 m lake buffer. This
measure was included based on the hypothesis that higher
amounts of development and impervious surface surrounding
a lake would lead to higher temperatures in lakes (Yang et al.,
2019). Yet this variable was not selected in the final model. Even
though the land-use variable was not selected, that does not mean
development and impervious surface are not important to the
local temperature. The urban-heat effect on lakes may have been
adequately captured in the average ambient air temperature or
alternatively lakes can potentially serve as urban-heat
temperature sinks (Steeneveld et al, 2014; Cosgrove and
Berkelhammer 2018). Land-use variables would be redundant
or irrelevant, and not significantly contribute to the model.

The final model included average ambient air temperature and
the average temperature of the prior 30 days, yet the 3-days and 7-
days prior to the sampling date averages were not selected. It is likely
that the three- and 7-days averages are not providing the model with
unique information because of the focus on photic zone
temperature. The upper 2m of the water column is more
responsive to short term temperature changes compared to the
whole lake, thus the three- and 7-days temperatures are likely
redundant with the sample date temperature. Yet the longer term
30-days average does have an impact on lake photic zone
temperature, more specifically, this measures the long-term
thermal heating happening at a site. The 30-days average
provides us with information about the temperature intensity
leading up to the sample date. Sample date, the most important
variable to model accuracy, also provides information regarding the
seasonal thermal heating of a water body (Wetzel 2001).

To predict lake surface water temperature, other studies have also
explored the optimal time interval over which to average ambient air
temperature. Jacobsen and Bachman (1974) determined that a
period between 10 and 26 days was optimal for their four lakes
over 16 years. Matuszek and Shuter (1996) optimal period varied
between 5 and 20 days for 14 lakes over 22 years. In a study to predict
lake temperature across United Kingdom (UK) lakes, Thrush and
Peeler (2013) determined that it was ideal to average temperature
over the period of 10 days. It is striking that our model selected a
somewhat longer average time period (30 days) than these earlier
studies. Given the large spatial extent used for our model input, a
longer time interval would be required to account for temperature
variability across the continental US.

Using only easily obtainable open-source input data to estimate
lake temperature was a primary focus in the creation of this model.

Lake Photic Zone Temperature

Several studies (e.g., Piccolroaz et al., 2018) have used similar metrics
(air temperature from downscaled General Circulation Model) with
good results (RMSE = 0.5°C) to estimate lake temperature but were
applied to a single, or a small number of lakes. Other studies have
used more complex models (e.g., General Lake Model (GLM)) to
yield good results (RMSE = 1.62°C for the epilimnion) at varying
scales (Bruce et al., 2018; Hipsey et al., 2019). However, these models
require more complex input variables which are not available for all
lakes. Using the NLA data and simple metrics allowed this model to
be applicable to any lake within the conterminous US using minimal
input data with a comparable RMSE.

Despite being one of the most common measurements collected
by limnologists, lake temperature data sets that cover long periods of
time uniformly measured for multiple lakes are not readily available.
Sharma et al. (2015) have compiled summer lake temperature data
for 291 lakes for the period 1985-2009. This may be the largest lake
temperature database to date. One of the reasons we chose to model
lake photic zone temperature was to develop a database of lake
temperatures for the conterminous US. The model we present is
shown to be accurate and will allow us to backcast lake temperatures
for all of the >300,000 lakes included in National Hydrography
Dataset plus for the time period covered by the PRISM climate
predictions (1981 to present). This data set will allow us to investigate
how photic zone temperatures vary both spatially and temporally
across the US. This database is being developed and, when complete,
will be made available as an open-source data set.
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