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The spatial variability of land cover in cities results in a heterogeneous urban microclimate,
which is often not represented with regulatory meteorological sensor networks.
Crowdsourced sensor networks have the potential to address this shortcoming with
real-time and fine-grained temperature measurements across cities. We use
crowdsourced data from over 500 citizen weather stations during summer in Sydney,
Australia, combined with 100-m land use and Local Climate Zone (LCZ) maps to explore
intra-urban variabilities in air temperature. Sydney presents unique drivers for spatio-
temporal variability, with its climate influenced by the ocean, mountainous topography, and
diverse urban land use. Here, we explore the interplay of geography with urban form and
fabric on spatial variability in urban temperatures. The crowdsourced data consists of 2.3
million data points that were quality controlled and compared with reference data from five
synoptic weather stations. Crowdsourced stations measured higher night-time
temperatures, higher maximum temperatures on warm days, and cooler maximum
temperatures on cool days compared to the reference stations. These differences are
likely due to siting, with crowdsourced weather stations closer to anthropogenic heat
emissions, urban materials with high thermal inertia, and in areas of reduced sky view
factor. Distance from the coast was found to be the dominant factor impacting the spatial
variability in urban temperatures, with diurnal temperature range greater for sensors
located inland. Further differences in urban temperature could be explained by spatial
variability in urban land-use and land-cover. Temperature varied both within and between
LCZs across the city. Crowdsourced nocturnal temperatures were particularly sensitive to
surrounding land cover, with lower temperatures in regions with higher vegetation cover,
and higher temperatures in regions with more impervious surfaces. Crowdsourced
weather stations provide highly relevant data for health monitoring and urban planning,
however, there are several challenges to overcome to interpret this data including a lack of
metadata and an uneven distribution of stations with a possible socio-economic bias. The
sheer number of crowdsourced weather stations available can provide a high-resolution
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understanding of the variability of urban heat that is not possible to obtain via traditional
networks.

Keywords: crowdsourcing, air temperature, urban microclimate, coastal cities, land use data, Sydney (Australia),
local climate zones

INTRODUCTION

With more than half of the world’s population living in urban
areas, future development and planning rely on a complete
understanding of the relationship between built environment
characteristics and local climate. Air temperature, one of the
key parameters of urban microclimate, is significantly influenced
by the radiative and thermal properties of built materials, as well
as anthropogenic heat released due to human activities (Masson
et al., 2020). This temperature increase is further exacerbated by
global climate change, leading to negative impacts on urban
energy loads, local emissions, and citizen health and wellbeing
(Masson et al., 2020).

The elevated temperature in cities exhibits a high spatial
variability due to differences in urban form and fabric.
Similarly, urban microclimate is temporally variable and is
affected by meso- and synoptic-scale processes, as well as
extreme and high-impact weather events. Such variabilities
motivate fine-grained and continuous monitoring of
microclimate across a range of urban characteristics,
particularly to understand the role of urban design and
planning. Furthermore, expansive and real-time monitoring of
urban climate is critical during extreme weather events such as
heatwaves, which have been increasing in intensity, frequency,
and duration (Perkins et al., 2012). Thus, datasets with fine spatial
and temporal resolutions are required to understand a city’s local
climate, assess the effectiveness of heat mitigation strategies, and
most effective plans for future development. However, scientific
meteorological stations used for climate monitoring are
traditionally installed for the purpose of assessing synoptic-
scale weather conditions and as such, the siting aims to
minimise the impact of urbanisation. In response, urban
monitoring stations have been established to better understand
microclimate characteristics in different cities (Rotach et al., 2005;
Schroeder et al., 2005; Poutiainen et al., 2006; Basara et al., 2011;
Christen et al., 2013; Warren et al., 2016). These weather stations,
although pivotal for gaining a fundamental understanding of
urban climate, are expensive to set up and maintain by experts,
leading to sparse coverage and insufficient detail to fully analyse
the intra-urban variability in climate (Muller et al., 2013).

Over the last decade, the emergence of internet-enabled,
wireless, and lay person-friendly solutions have enabled a
range of environmental sensor networks that can address the
need for real-time and fine-grained temperature measurements,
covering a wide range of spatial and temporal distributions in
cities (Pantelic et al., 2021). The “Internet of things” (IoT) has
enabled crowdsourcing and ubiquitous sensing of urban data,
where data is gathered from and by the public using citizen-
science solutions as opposed to centrally-managed measurement
campaigns. Several studies have used crowdsourced data collected

through consumer-grade weather monitors, or citizen weather
stations, to assess the urban thermal climate of large cities such as
London (Chapman et al., 2017; Benjamin 2019), Berlin (Fenner
et al., 2017), Oslo (Venter et al., 2020) and Moscow (Varentsov
et al., 2020). Crowdsourced data from over 50,000 citizen weather
stations across Europe has also been compared to satellite data for
measurement of urban heat island (UHI) indicating that satellite
data overestimated UHI measurements by six times compared to
crowdsourced data, which is more relevant for public health
(Venter et al., 2021). These studies indicate that crowdsourced
data achieves a higher spatial resolution than otherwise possible
with regulatory monitoring networks, while highlighting the
importance of data filtering and quality control to overcome
accuracy concerns of low-cost sensing. Thorough quality control
is required to remove any data that may be unrepresentative of
local external conditions or caused by human interferences.
Accordingly, several quality control procedures have been
proposed, such as Meier et al. (2017) that removes outliers
based on a comparison to reference data and Napoly et al.
(2018) which removes readings based on the possible errors in
data collection.

In addition to spatial microclimate data, clear metadata on
urban characteristics is key to identifying the drivers of intra-
urban variability. Using crowdsourced data, the location of each
citizen weather station is known but, quite often, there is no
specific information regarding the characteristics of the local
environment (such as urban density, built materials, vegetation
cover). One way to address this is to combine crowdsourced data
with Local climate zone (LCZ) classifications that provide a
landscape classification system for urban surface structure and
cover, consistent across global cities (Stewart and Oke 2012). This
classification in combination with crowdsourced temperature
data can provide a thorough understanding of how local
climate is impacted by different urban land-use and land
surface characteristics. A study in Berlin assessed the intra-
and inter-LCZ variability in urban temperature during the day
and overnight (Fenner et al., 2017) and observed that within each
LCZ, the temperature variance during the day was generally
smaller than at night, and higher in summer than in winter.
Inter-LCZ variability showed significant differences between not
only urban and rural sites, but also between most common LCZs
found within the city. Additionally, crowdsourced data used to
assess the urban heat island (UHI) and identify intra-urban
temperature variability in London observed cool anomalies
near greenspaces (Chapman et al., 2017). This cool anomaly
near urban parks was also reported in Moscow, while the areas
still exhibited warmer temperatures than rural areas (Varentsov
et al., 2020). These findings indicate that in addition to LCZ
classifications, there is a need for a higher-resolution dataset on
urban form and fabric (such as detailed vegetation cover and
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street canopy characteristics) that can assist with interpreting the
inter- and intra-LCZ variability in urban temperature.

The current study is motivated by these emerging
crowdsensing efforts addressing the need for high-resolution
data monitoring in cities, while exploring overlaying datasets and
urban classifications (such as LCZs and building-level urban
data) that can identify key drivers for intra-urban temperature
variability. Additionally, we focus on Sydney, Australia, which
extends previous analyses to a coastal city with unique mesoscale
processes and synoptic scale circulations that dominate urban
ventilation throughout the city (Hirsch et al., 2021). When
analysing the urban heat island (UHI) in Sydney, Santamouris
et al. (2017) found that a strong UHI effect was observed to the
west of the central business district, beyond the reach of sea
breezes from the east. The reference station used to quantify the
UHI at other stations was adjacent to the central business district
and Sydney Harbour, and close to the coast. Therein lies one of
the difficulties in quantifying an urban heat island for Sydney.
The complex nature of the city, with its substantial geographical
differences between coastal and inland suburbs, and the lack of
non-urbanised sites reflective of these differences, make it
difficult to calculate an accurate UHI intensity across the city.
Further, a calculated UHI intensity may not always provide data
that is of relevance for urban heat mitigation (Martilli et al.,
2020). Therefore, in the current study, we leverage the
crowdsourced monitoring stations to focus on how urban
heat varies in Sydney both geographically-taking into account
distance from the coast and topography- and in different local
climate zones.

A variety of other studies have assessed Sydney’s climate. A
link has been identified between synoptic conditions, in particular
those associated with heat waves, and air pollution, leading to
increased adverse health impacts at higher temperatures (Dean
and Green 2018; Vaneckova et al., 2008; Jiang et al., 2017). The
relationship between land surface temperature and green
infrastructure has also been investigated and the temperature
differences between green infrastructure classes were found to be
more evident during summer and daytime, although the effect of
impervious surfaces was found to dominate over the cooling
effect of vegetation and water (Bartesaghi-Koc et al., 2019).
Sydney temperatures are generally increasing over time
(Livada et al., 2019), and an analysis of heat waves and urban
overheating found that the urban overheating magnitude
increased with the distance from the coast despite a reduced
population density and increase in nonurban surfaces further
inland (Khan et al., 2021).

These studies demonstrate the high spatial variability in urban
temperature across the Greater Sydney region that is brought
about through a combination of urban design and local climate
factors, and in turn, the importance of urban climate monitoring.
In this paper, we use crowdsourced data to obtain temperature
observations of higher spatial resolution in Sydney. We then
investigate the impact of both geography, via distance from coast
and elevation, and urban fabric and form, via LCZs and other
urban characteristics (such as eave height and surface cover), on
temperature. By using high-resolution temperature observations
combined with urban datasets, we aim to understand the

interplay of geography and land use on urban heat in a
complex coastal city, and further assess the validity of
crowdsourced measurements as a method for analyses of
urban heat.

Details of the collection and quality control of the
crowdsourced data, urban data sets used, and analyses
undertaken are explained in Data and Methods. Results and
Discussion compares the crowdsourced data to the reference data
from scientific meteorological stations, analyses the impact of
geography, land use and land cover on the data, and explores the
benefits and challenges of using such data in urban climate
studies. Future directions for the use of crowdsourced urban
temperature are discussed in The Applicability of Crowdsourced
Data and High-Resolution Land Use Data.

DATA AND METHODS

Study Area and Time Period
This study focuses on the city of Sydney, Australia, which has a
population of approximately 4.8 million. Sydney sits mostly
within a basin between mountains and the coast, resulting in a
complex interaction between mesoscale land and sea breezes. The
metropolitan area is more densely populated in the east near the
coast, with Greater Sydney extending almost 100 kmwest into the
Blue Mountains. Beyond the mountains further west of Sydney
lies grassland and arid shrubland. According to the modified
Köppen classification system developed by the Bureau of
Meteorology (BoM) based on a standard 30-years climatology,
Sydney’s climate classification is temperate with a warm summer
and no dry season. The study area includes most of the Greater
Sydney region (Figure 1).

The sea breeze has a significant impact on cooling the coastal
regions of the metropolitan area, while being deficient in reaching
the western regions particularly at the base of the mountains,
leading to extremely high temperatures. The western regions of
Sydney are those most impacted by increasing urban
development and therefore it is critical that detailed and high-
resolution observations are available to assess the impact of urban
heat in order to plan subsequent measures to ensure liveability in
the future.

The time period assessed in this study is the 2020–2021
summer, from December to February. During this period,
Sydney experienced slightly above average rainfall due to La
Niña, and temperatures much cooler than recent summers.
The daytime temperatures across Greater Sydney were 1–2°C
below the average of recent decades. However, this time period
also included several heatwaves with the highest temperature
recording of 41.6°C recorded at Sydney Airport on Jan 26, 2021
(Bureau of Meteorology 2021).

To fully represent urban structure and land use across Sydney,
we used two datasets. A map of local climate zones (LCZ), at
100 m resolution obtained by World Urban Database and Access
Portal Tools [WUDAPT] (Ching et al., 2018; Bechtel et al., 2015)
is used to provide a standardised landscape classification system
to consistently compare different regions in urban areas across
Sydney (Figure 1). There are thirteen LCZs in Sydney with three
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dominating categories: dense trees, sparsely built, and open low-
rise (Figure 3A).

Since LCZ maps are determined through supervised machine
learning applied to satellite imagery (Demuzere et al., 2021), there
is no direct spatial or building height data informing their
creation. Therefore, characteristics for these locally derived
LCZ areas can differ from “typical” values presented in
Stewart and Oke 2012. To provide additional information on
the urban landscape not given by LCZ, an independent dataset of
landcover and building characteristics (Geoscape) was used to
categorise impervious fraction and vegetation as well as ground
elevation and building height at a 100 m resolution (PSMA
Australia, 2020). Figure 2 shows the processed Geoscape data
at a 500 m resolution for Sydney while Table 1 summarizes the
characteristic values for locally derived LCZs. Eave height refers
to the height from the ground to where the wall and roof intersect.
Sydney eave height is for the most part below 20 m, with small
CBD areas having mean eave heights up to 50 m. Sydney
elevation varies between 0 and 500 m (Figure 2B). Surface
cover fraction data was available as bare earth, roads and
paths, grass, trees, other vegetation, built area, buildings, and
water. To simplify analysis, here an aggregate vegetation category
has been used, defined by the sum of the grass, trees and other
vegetation fractions (Figure 2C). Similarly, an impervious
category has been defined by the sum of the roads and paths,
built areas and buildings fractions (Figure 2D).

Measurements: Crowd-Sourced
Atmospheric Data
Crowdsourced air temperature and humidity data were collected
from 551 Netatmo “Smart Home Weather Stations” across

Sydney. The Netatmo stations consist of an indoor and
outdoor module. The outdoor module collects real-time
weather data including temperature, humidity, and barometric
pressure which, should the user agree, is displayed on the
Netatmo Weathermap web portal. Historical data is not
available; data for this study has been collected via quarter-
hourly scraping of the Weathermap over the 2020–2021
summer (Dec 2020–Feb 2021), leading to over two million air
temperature readings collected.

The outdoor temperature and humidity sensors have accuracy
of ±0.3°C (over a range of −40°C–65°C) and 3%, respectively. The
temperature accuracy has been validated and confirmed by Meier
et al. (2017) using a climate chamber over the temperature range
0°C–30°C. However, the placement conditions of the outdoor
module can have a significant impact on the temperature readings
(Quality Control) (Varentsov et al., 2020).

Ideally, sensors would be distributed across built LCZs
corresponding to the distribution found in the city. However,
more than half of the locations at which data is collected represent
the open and compact low-rise zones, with only a small number
representing dense trees and sparsely built zones (Figure 3B).

Quality Control
While stations placed correctly in shaded areas have reasonable
accuracy, those kept in direct sunlight or even indoors or other
inappropriate locations can report a range of inaccurate readings
(Varentsov et al., 2020). The quality of each reading has therefore
been checked and the data filtered according to the four main
steps (M1 to M4) defined in the framework by Napoly et al.
(2018).

The first main step, M1, removes stations with identical
latitude and longitude as this indicates incorrect set up of the

FIGURE 1 | Local Climate Zone (LCZ) map of Sydney, Australia. The land fraction of each LCZ is given in the legend as a percentage. The central business district
(CBD) is noted.
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station. Based on unique ID numbers for each station, no
stations in Sydney had repeated coordinates. Rather, in some
cases a request had been made to the server before the next
readings had been recorded and updated on the Weathermap,
leading to duplicate recordings. As such, identical readings
from each station with the same timestamp have been
removed.

Step M2 of this framework finds and removes outliers based
on each hourly distribution. The main purpose of this step is to
remove significantly high readings likely from stations in direct
sunlight. The data was separated into hours, and a “Z-score” for
each reading was defined as:

Z � T −median(T)
Qn(T) (1)

where T is air temperature (°C) and Qn is a robust estimator for
variance given by the 0.25 quantile of the distances {|xi – xj|; i < j}
(Rousseeuw and Croux 1993). Following Napoly et al. (2018),
readings with a Z-score outside the range −2.32 to 1.64 were
removed, leaving 92.45% of data remaining.

In step M3, at each station if step M2 removed more than 20%
of readings during 1 month, then the entire month is removed.
This reduced the data to 85.58%.

The final step M4 targets indoor stations by comparing the
Pearson correlation between each station and the median of all
stations in each month. If the correlation was less than 0.9, all
readings from the station were removed for said month. This left
a remaining 81.74% of data for analysis after step M4, similar to
values reported in Napoly et al., 2018 (82.21 and 81.45%).

Between steps three and four the data was reorganised into 30-
min intervals (using mean values wherever a station had multiple
readings in a half-hour period), which simplified finding the
Pearson correlation and mean temperatures, and all later
processing. This was completed after steps M1 to M3 so that
specific outliers could be removed prior to averaging. Quality
control reduced the number of stations from 551 to 492.

Site Decomposition and Data Aggregation
Warm and cool days were defined based on daily maximum of
mean half-hourly temperatures of all stations. The median of daily
maximum of 25.7°C then set the threshold, evenly dividing days

FIGURE 2 | (A) Mean eave height (m) and (B) ground elevation (m), and (C) vegetation and (D) impervious fractions across Sydney.
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between warm and cool days. The timeseries of warm and cool
days can be seen in Figure 4. Compared with 30-years climate
averages for Sydney, 2020–2021 was a slightly cooler summer with

above average rainfall. Additionally, data from BoM
meteorological stations indicate that cool days mostly occurred
under rainy or overcast conditions (Bureau ofMeteorology, 2021).

TABLE 1 | The characteristic values for locally derived LCZs for grids containing Netatmo stations, formatted for comparison with values presented in Stewart and Oke, 2012
(S&O: where impervious surface fraction does not include building fraction). Here the 25th–75th percentile ranges are shown, with mean values bracketed.

Building surface
fraction (%)

S&O impervious
surface fraction

(%)

Pervious surface
fraction (%)

Eave height
(m)

LCZ1 Compact high-rise 17–54 (36) 8–15 (12) 30–72 (52) 7–10 (9)
LCZ2 Compact midrise 44–51 (45) 19–29 (27) 23–32 (28) 7–20 (17)
LCZ3 Compact low-rise 34–45 (38) 21–34 (28) 24–41 (33) 4–7 (6)
LCZ4 Open high-rise 30–40 (35) 26–40 (32) 29–43 (33) 20–22 (20)
LCZ5 Open midrise na na na na
LCZ6 Open Low-rise 21–35 (27) 16–27 (22) 39–61 (51) 4–5 (5)
LCZ7 Lightweight low-rise 42–57 (46) 33–38 (34) 6–22 (19) 3–3 (3)
LCZ8 Large low-rise 35–44 (38) 27–40 (38) 18–29 (24) 6–12 (10)
LCZ9 Sparsely built 5–25 (16) 5–29 (17) 45–87 (66) 3–5 (4)
LCZ10 Heavy industry 44–48 (44) 25–40 (33) 12–32 (23) 8–12 (10)

FIGURE 3 | (A) Distribution of LCZs across Sydney, Australia, and (B) distribution of Netatmo stations across Sydney LCZs. The number of stations per LCZ is
given at the top of each column.
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To understand the crowdsourced data in the context of urban
climate monitoring and how it may be interpreted, a comparison
has been made with weather station data from the BoM. To help
explore the impacts of both geography and urbanisation on urban
heat the metropolitan area has been divided into three regions
(inland, central, and coastal) running approximately parallel to
the coast (Figure 7, detailed in Geographical Influences on Urban
Temperature). The warm and cool aggregate day representations
of these regions are shown in Figure 8.

RESULTS AND DISCUSSION

In this section, we use crowdsourced data to detail the impacts of
urban form and fabric (indicated by LCZs as well as surface cover
and building height data) as well as local geography on intra-
urban temperature variability in Sydney.

Difference Between Crowdsourced Data
and Reference Stations
Crowdsourced temperature data across Sydney, Australia, is first
compared with reference weather stations established by BoM.
There are approximately 600 BoM weather stations across
Australia, sited according to the World Meteorological
Organization guidelines to measure synoptic scale conditions
rather than the local or micro scales (Bureau of Meteorology
1997). The key differences in siting are that BoM weather stations
are installed within approved shelters at a height of 1.1 m above
ground level, within a 30 by 30 m buffer of low natural vegetation
(e.g., grass), and taller obstructions outside the buffer being at a
distance of up to 10 times their height. These requirements make
the placement difficult in highly urbanised areas. Netatmo
sensors, however, are placed where people live (e.g., in
backyards or on balconies).

The location of BoM sites compared to Netatmo stations is
shown in Figure 5. A total of 10 BoM weather observation
stations were identified within the study area (Greater Sydney
Region) marked as black triangles in Figure 5 and their readings

were compared with Netatmo stations identified within the 3 km
radius. A threshold of at least three Netatmo stations was
implemented for this comparison, which reduced the number
of BoM stations to five (named in Figure 5). The comparison is
further divided into aggregate warm and cool days detailed in Site
Decomposition and Data Aggregation.

A comparison of Netatmo measurements with neighbouring
reference stations (not shown) showed a high correlation between
crowdsourced and reference station observations (Pearson
regression correlation ranging between 0.75–0.99), with no
clear pattern of change observed between day- and night-time
or cool/warm days. Therefore, we focus our analyses on
comparing the diurnal evolution of air temperature recorded
by both monitoring networks (Figure 6).

When compared with reference measurements during the day,
the citizen weather stations consistently observed higher daytime
temperatures on warm days and cooler daytime temperatures on
cool days. For both warm and cool days and across all stations,
Netatmo readings were higher at night. The consistency of results
across locations, and persistent elevated temperatures at night
(i.e., without direct sunlight confounders) indicate a robust
difference in typical microclimate conditions between BoM
and Netatmo sites.

Elevated urban temperatures can be caused by a range of
factors, including greater absorption and retention of solar and
thermal radiation by urban materials and geometries, lower levels
of evapotranspiration, and greater release of heat from
anthropogenic sources (Stewart and Oke, 2012). Additionally,
the high heat capacity and increased surface area of urban
structures can reduce the amplitude of diurnal temperature
variation (Wang et al., 2018). Netatmo measurements have
both elevated temperatures (particularly during warm days)
and reduced amplitude diurnal patterns (particularly on cooler
days) compared with BoM measurements.

Other studies have observed similar patterns. For example, in
London a similar comparison found that the reference stations
measured slightly lower mean daily maxima and minima on
warm days, and a slightly increased or similar diurnal
temperature range as compared to Netatmo stations

FIGURE 4 | . Timeseries of mean half-hourly air temperature (solid black line) and standard deviation error (shaded range around mean) during summer (Dec
2020–Feb 2021). Days with maximum temperature above median daily maximum are highlighted in red, while days with maximum belowmedian daily maximum in blue.
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(Benjamin 2019). In Berlin, reference stations observed increased
daytime and decreased overnight temperatures as compared to
crowdsourced data (Fenner et al., 2017), indicating a relationship
more similar to that seen on cool days in the current study.

The sites located at Campbelltown, a sparsely built suburban
location approximately 50 km west of the CBD, showed the
largest warm day overnight difference of 3.6°C at 3am,
whereas Sydney Olympic Park and Sydney Airport, both

FIGURE 5 | Spatial distribution of reference weather stations established by the Bureau of Meteorology: BoM (black triangles, labelled only if used in analysis)
compared with Netatmo sensors across the Greater Sydney region. The number of stations in each category is indicated in brackets in the legend.

FIGURE 6 | Comparison of measurements obtained from reference weather stations (BoM) (grey) and nearby Netatmo recordings (blue) and standard deviation
error (shaded range around means) of the temporal distribution for aggregate warm and cool days. The number of Netatmo stations within 3 km of the BoM station is
given in brackets in the legend.
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located close to water bodies, showed the smallest differences at
3am of ∼0.5°C. A large overnight difference is also observed at
Campbelltown on cool days.

At Campbelltown, large consistent differences between BoM
and Netatmo stations may be due to the impact of local siting
(i.e., direct interaction with nearby built form) and of more
regional interactions (i.e., lack of sea breeze in Western
Sydney leading to less local mixing, compounding
microclimate differences). The other stations are located in
open low-rise and large low-rise zones, and closer to the
ocean. These areas are more densely built than Campbelltown,
which means the BoM stations are likely more affected by larger-
scale urban warming effects from more densely built areas, and
more vigorous mixing of air by sea breezes, reducing differences
with Netatmo stations.

During the day on warm days, Sydney Airport showed the
largest difference in maximum temperature, where crowdsourced
air temperature at 2pm was approximately 2.5°C higher than
reference measurements. The specific attributes of this site are
likely the cause of this increased discrepancy. The reference
station is located very near the airport grounds and the coast,
thus is exposed to increased ventilation and higher sky view factor
due to the openness, affecting convective and radiative heat
transfer. The Netatmo stations, however, are located within
the suburb around the airport, where cooling mechanisms
associated with wind and radiation are weaker.

On cool days, a wider diurnal range is recorded by the
reference sensors compared to the citizen weather stations.
Our investigation of the BoM dataset indicates that cool days
during this period occurred on overcast sky conditions or
received light-moderate rainfall. With lower shortwave
radiation during the day, the convection and conduction from
surrounding surfaces dominate heat transfer balance, and
consequently air temperature, in the urban canopy.
Accordingly, it is likely that the lack of built materials with
high thermal inertia near the BoM stations has led to a wider
range in temperatures.

Similar to warm days, Campbelltown had the largest overnight
discrepancy of 3.2°C between 4:30 to 5:30 am. During the day,
Observatory Hill, located in the Sydney central business district
and adjacent to Sydney Harbour, had the largest discrepancy of
1.9°C at 2:30pm.

This comparison has identified differences between stations
due to their location, including the LCZ and the distance from the
coast. It is clear that the local climate near the coast is strongly
influenced by the sea breeze and as such, stations near and far
from the coast cannot be directly compared. Assessing stations
within regions of increasing distance from the coast allows each
region to be analysed individually, as well as comparison between
regions.

Geographical Influences on Urban
Temperature
For analysing intra-urban temperature variability in a coastal city,
it is critical to account for the intertwined nature of urban
topography and the distance from the coast combined with

urban design characteristics (such as urban density and
sprawl). The distance from the ocean has a strong impact on
temperature in Sydney (Hirsch et al., 2021) as also observed in
other coastal metropolises like Los Angeles (Vahmani and Ban-
Weiss 2016). Accordingly, we divide the crowdsourced datasets
based on regions (inland, central, and coastal shown in Figure 7)
before assessing the impact of urban design and land cover on
temperature variabilities (Land Use and Land Cover Influence on
Urban Temperature). The regions are divided using an
approximately uniform width, slightly shifted to maintain a
sufficiently large number of Netatmo stations per region
(particularly inland).

As anticipated, temperature distribution (particularly on a
warm day), is highly influenced by the geographic region
(Figure 8), which is in turn affected by the distance from the
coast as well as elevation due to proximity to mountain ranges in
the south and west. We observe that the inland region
experienced the largest diurnal range with an average of
11.7°C and 4.6°C on warm (Figure 8A) and cool days
(Figure 8C), respectively, compared to 7.8°C and 3.3°C in the
coastal region.

Accordingly, in order to focus on intra-urban variabilities
brought about by urban design characteristics, the impact of
elevation was removed using the lapse rate, defined as

T′ � T + 0.0065(z −mean(z)) (2)

where z is the elevation of each station in metres (Napoly et al.,
2018). Temperatures were adjusted to an equivalent temperature
at a constant elevation of 63.3 m (the mean elevation of the
stations). The impact of this elevation adjustment is more evident
on cool days than warm, showing a clearer increase in diurnal
range with distance from the coast (Figure 8).

With higher elevations generally found further from the coast,
elevation and coastal impacts are correlated. After adjusting for
the elevation, the remaining differences between regions are
primarily land cover differences and distance from the coast.
To ascertain how the impact of land use and cover differs across
the city, maximum and minimum temperatures have been
compared between classes of the urban design characteristics,
and between regions in the following analyses (Figures 9–12).
Dividing the area into regions aims to separate out the impact of
the coast, however interpretation of data from the coastal region
still remains a challenge due to the varying impact of the ocean in
this region. The moderating influence of the ocean and the
cooling effect of the sea breeze may be more impactful nearer
to the coast. Whereas for the central and inland regions the
influence of the distance from the coast is fairly consistent which
allows for individual comparison of other urban design
characteristics.

Land Use and Land Cover Influence on
Urban Temperature
To investigate the impact of urban design and land cover on
intra-urban variability of air temperature, we compare
crowdsourced measurements with LCZ and Geoscape data for
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Sydney (Study Area and Time Period). For this analysis, the
station mean maximum and minimum temperatures in warm
and cool days have been assessed. Between regions, these values
have the largest differences (Figure 8) and thus will give an
indication of the significance of the impact of each urban design
characteristic. The maximum temperature of the mean warm day
has been calculated by finding the maximum temperature for
each warm day for each station, and then taking the mean over
days. Similarly, the maximum and minimum of mean cool or
warm days were found. Accordingly, the datapoints in Figures
9–12 represent the distribution of maximum/minimum
temperature across different stations.

Figure 9 shows the boxplot distribution of air temperature in
each region categorised by LCZ. In this analysis, we focus on
urbanised LCZs which also include the highest number of
Netatmo stations (Figure 3B): open and compact low-rise,
lightweight and large low-rise, compact midrise, and open and
compact high-rise. Only LCZs with at least three stations in a
region were assessed. As shown in Figure 1, fewer urban LCZs are
represented in the inland and central regions compared to coastal
areas. In general, compact LCZs recorded a smaller diurnal range
than open LCZs, with lower maxima and higher minima, except
for the compact high-rise LCZ. Increasing minima and

decreasing maxima were observed with increasing height,
again excluding the compact high-rise LCZ. In general, we
expect to see smaller temperature diurnal ranges in more
densely built areas because of increased thermal inertia (Wang
et al., 2018).

Considering the low-rise LCZs, open low-rise recorded higher
maxima and lower minima than compact low-rise. In the open
LCZ, a higher sky view factor (SVF) leads to higher solar radiation
penetration, increasing the maximum temperature. Overnight,
on the other hand, more ventilation and higher SVF in the open
LCZ result in a lower minimum (Oke, 1981; Skarbit et al., 2017).

On the contrary, the high-rise LCZs observed a wider diurnal
range in the compact zone compared to the open zone. The high-
rise LCZs are only present near the coast, and recorded the lowest
maxima. However, when comparing the minima, open high-rise
recorded the highest minima while compact high-rise recorded
the lowest minima across all urbanised LCZs. Since the main
difference between these LCZs is the density, the impact on
temperature is likely due to the interaction between
convective, conductive, and radiative heat fluxes affected by
density. In the compact zone, higher density results in
increased shading due to the deeper canyons (Johansson, 2006;
Masson et al., 2020), whereas in the open zone, a higher SVF

FIGURE 7 | Locations of Netatmo stations across Sydney, Australia. The site has been divided into three regions: inland, central, and coastal. The number of
stations per region is indicated in brackets in the legend.
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allows more solar radiation to be absorbed during the day.
However, it is expected that during the night, radiative cooling
and sensible heat flux increase with decreasing density (Nazarian
and Klessil, 2015), resulting in lower surface and air temperatures,
which is not observed with crowdsourced data. As for maxima,
compact subzones recorded the worst overheating episodes rather
than open subzones. In this case, the shadowing effect in canyons
is countervailed by reduced wind speeds and ventilation as well as
by additional heating mechanisms that typify dense clusters of tall

buildings, such as multiple solar inter-reflections bouncing
between overlooking facades (Battista et al., 2021). The
compound effect may be the cause of the increased maximum
temperatures.

Across all land use and land cover comparisons, there was
reduced variability in the cool day maxima as compared to the
warm day maxima. This indicates that local conditions and
micro/mesoscale phenomena have a reduced influence on the
maximum temperatures over cool periods, governed by

FIGURE 8 | Mean aggregate warm and cool day temperature comparison of raw temperatures and temperatures adjusted to a constant elevation of 63.3 m in
different regions in Sydney. Raw temperatures are shown for (A) warm days and (C) cool days. Elevation adjusted temperatures are shown for (B) warm days and (D)
cool days. Shaded areas (centred around corresponding lines) indicate the spatial standard deviation. The number of stations per region is indicated in brackets in the
legend.
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larger-scale dynamics. This is likely due to the increased cloud
cover on cool days which reduced both the incoming solar
radiation and the transparency in the atmospheric window,
which enables radiative cooling. As such, the effect of optical
properties (e.g., albedo, emissivity) and thermal inertia of
materials is mitigated and moderated across LCZs, thus
reducing the range intemperatures otherwise observed.

Another important result of this analysis is the range of
temperatures observed within a single LCZ, namely the intra-
LCZ range shown by each box. For warm days, a wider range of
temperatures within each LCZ is observed for the maximum
temperatures than the minimum temperatures, whereas for cool
days a similar range is observed between maximum and
minimum temperatures. These observations are contrary to
those seen in Berlin and Szeged, where intra-LCZ daytime
temperatures in general varied less than overnight, and LCZs

with a larger number of stations had the widest temperature
ranges (Fenner et al., 2017; Skarbit et al., 2017). This variability
was attributed to microscale differences in exposure, surface
cover, and anthropogenic heat sources near the measurement
sites, as well as due to the grouping of LCZ classifications
regardless of location, neglecting meso-scale effects. In this
study however, some meso-scale effects have been included by
the division of regions.

Despite covering a relatively small area with few stations, the
open high-rise LCZ had the widest interquartile range for warm
day maximum temperatures of approximately 3.3°C. For
minimum temperatures however, this LCZ had one of the
smallest temperature ranges of 0.7°C. This may be due to
variable shading in the canyon during the day causing highly
varying recordings, while overnight heat release from materials
affects all stations and moderates temperatures.

FIGURE 9 | Urbanised LCZ comparison of station mean maximum and minimum temperatures on warm and cool days. Mean maximum temperatures are
represented for (A) warm days and (B) cool days, and mean minimum temperatures are represented for (C) warm days and (D) cool days. Data has been divided into
regions (along the x-axis) and LCZ classifications (via colour coding shown in legend). The number of stations per LCZ classification in each region (n) is given along the
x-axis in (C).
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The open and compact low-rise LCZs have fairly consistent
temperature ranges across the regions. The coastal and inland
maximum temperatures in the open low-rise zones have the
largest difference in temperature ranges with a range of 1.5°C
inland and 2.4°C near the coast. This indicates that within these
LCZs there is some variability in local climate, however this
variability is consistent across the regions and thus is likely not
due to the influence of the coast.

The intra-LCZ ranges indicate that there are other urban
factors at play which influence the local temperature

distribution. Further comparison with more specific urban
design characteristics has been made in order to identify their
individual impacts.

As noted in Study Area and Time Period, LCZ maps are
determined through supervised machine learning applied to
satellite imagery (Demuzere et al., 2021) and their
characteristics can differ from “typical” values presented in
Stewart and Oke 2012 (locally derived values presented in
Table 1). We therefore complement the above results using an
independent spatial dataset which includes direct spatial and

FIGURE 10 | Eave height comparison of mean maximum and minimum temperatures on warm and cool days. Mean maximum temperatures are represented for
(A)warm days and (B) cool days, and mean minimum temperatures are represented for (C)warm days and (D) cool days. Data has been divided into regions (along the
x-axis) and eave height classifications (via colour coding shown in legend). The number of stations per LCZ classification in each region (n) is given along the x-axis in (C).
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building height information for Sydney (PSMA Australia,
2020).

The LCZ building height classifications are low-rise (2–10 m),
midrise (10–25 m) and high-rise (25 m+). Across Sydney,
stations are mostly categorised by LCZ low-rise, with very few
in midrise and high-rise areas which does not allow for clear
comparison between height categories. As such, when using the
independent dataset, the classification thresholds of low-, mid-
and high-rise have been adjusted to better suit the Sydney urban

landscape. Mean eave height has been broken down into the
following three categories: low-rise (0–6 m), mid-rise (6–12 m),
and high-rise (12 m+). Low-rise defines housing of 1–2 storeys,
and high-rise defines buildings of four storeys or higher in which
an elevator is required.

Figure 10 shows the boxplot comparison of crowdsourced
temperature in different eave height classes per region. The high-
rise category (12 m+) was not present inland, and midrise
(6–12 m) was only represented by one station in this region.

FIGURE 11 | Vegetation fraction comparison of mean maximum and minimum temperatures at each station on warm and cool days. Mean maximum
temperatures are represented for (A) warm days and (B) cool days, and mean minimum temperatures are represented for (C) warm days and (D) cool days. Data
has been divided into regions (along the x-axis) and vegetation classifications (via colour coding shown in legend). The number of stations per LCZ classification in
each region (n) is given along the x-axis in (C).
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In both the central and coastal regions, the number of stations
representing high-rise areas was significantly lower than those
representing low- and mid-rise.

The eave height comparison is consistent with the LCZ height
comparisons, and shows these trends more clearly. In general, the
diurnal range decreased with increasing eave height. The
minimum temperatures increased with increasing eave height,
with ranges in median temperature of 1.4°C and 1.1°C in the
central region, and 1.1°C and 0.6°C in the coastal region, on warm

and cool days, respectively. Conversely, the warm day maximum
decreased with increasing eave height, with a range in median
temperature of 2.0°C in the central region and 1.6°C near
the coast.

Here, we extend the analyses to evaluate the impact of surface
cover determined by impervious and vegetated surface covers.
The fraction of land covered by vegetation and impervious
surfaces (Study Area and Time Period) is found using 100 m
gridded data to represent neighbourhood scales. Vegetation and

FIGURE 12 | Impervious fraction comparison of mean maximum and minimum temperatures on warm and cool days. Mean maximum temperatures are
represented for (A) warm days and (B) cool days, and mean minimum temperatures are represented for (C) warm days and (D) cool days. Data has been divided into
regions (along the x-axis) and impervious classifications (via colour coding shown in legend). The number of stations per impervious class in each region is given along the
x-axis in (C).
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impervious classes were compared per region (Figures 11, 12).
These classes were defined by the ranges 0–0.4, 0.4–0.7 and 0.7−1
of the aggregate vegetation and impervious fractions. All
vegetation and impervious classes were represented in all
regions. Note that the impervious fraction is not simply the
opposite of the vegetation fraction; there are other surface
cover fractions which are not included in either of these
categories. These include water bodies and swimming pools.

No clear trend was observed in the maximum temperatures,
although in the central region areas with increased impervious
fraction and reduced vegetation fraction recorded higher
temperatures for both warm and cool day maxima. In general,
minimum temperatures are higher in areas of high impervious
fraction, on both warm and cool days. This is likely due to
increased heat absorption and thermal inertia of impervious
materials and increased surface temperatures (Masson et al.,
2020). Thermal inertia has been observed to have a stronger
influence on UHI than anthropogenic heat and population,
causing increased overnight temperatures as observed here on
both warm and cool days (Varquez and Kanda 2018).

This is expected to lead to reducedminimum temperatures in areas
of high vegetation fraction, consistent with observations by Sharifi and
Lehmann (2014) and Varquez and Kanda (2018), however this is not
as clearly observed. There is a slight disruption in this trend in the
coastal and central regions on warm days, and the central region on
cool days. This may be due to the high impervious fraction in this
region; the presence of impervious surfaces can significantly reduce the
cooling effect of vegetation whichmay be causing the anomaly (Myint
et al., 2010; Bartesaghi-Koc et al., 2019). However, the high variability
near the coast and the reduced representation of the highly vegetated
areas may have introduced a bias.

Across all urban design characteristic comparisons, a clear trend is
observed between regions. Maximum temperatures increase with
distance from the coast, and minimum temperatures decrease with
distance from the coast, indicating an increased diurnal range inland
compared to the coastal region, as observed in Figure 8. This is clear
regardless of which urban design characteristic is being assessed,
which indicates that the distance from the coast has the largest impact
on air temperature across the city. The distance from the coast is the

key factor affecting the impact of the sea breeze, however there is also
interplay of topography and land use. Los Angeles has a similar
geography to Sydney with both coastal and mountainous boundaries
and similar effects have been observed in terms of UHI dynamics,
including a dominating role played by sea breeze, vegetation having a
positive effect on overnight UHI and urban fraction having a negative
effect on UHI (Vahmani and Ban-Weiss 2016).

THE APPLICABILITY OF CROWDSOURCED
DATA AND HIGH-RESOLUTION LAND USE
DATA
The crowdsourced data used in this study has provided a novel
understanding of the complexity of Sydney’s urban climate,
presenting a unique opportunity for infilling the measurements
gaps across the city. However, crowdsourced data also presents
certain shortcomings that require careful attention in data analysis.

Table 2 lists a combination of conditions in crowdsourced
data collection that can be considered as a source of error, or
indeed a “feature” where thermal environment is assessed in the
immediate environment of city dwellers, focusing on exposure
where people reside and occupy. The high spatial resolution is the
key driver for the use of crowdsourcing, but often comes at the
cost of uneven distribution of stations in cities, leading to spatial
and socio-economic bias in the data. To avoid this, crowdsourced
campaigns may be complemented with centralized efforts to place
additional stations in areas of low representation, or a threshold
of sensors may be required in each region to remove statistical
outliers. Furthermore, collecting data in the proximity of where
people live and occupy is key to understanding thermal exposure,
which is more helpful for estimating health impacts and planning
for future infrastructure. However, this also influences data
collection due to the proximity of other heat-emitting
materials such as nearby walls or buildings. Each of these
difficulties must be addressed when assessing the data quality
and interpreting the data as discussed in Quality Control.

The low cost of the sensors, which leads to higher number of
measurement sites as well as citizen engagements, can further result

TABLE 2 | Advantages and disadvantages of crowdsourced data.

Advantages Disadvantages

Crowdsourced datasets often achieve a higher spatial resolution across a city Distribution of stations is skewed towards more densely populated regions.
Additionally, it is likely that more sensors are located in affluent areas, contributing to
urban climate injustice in analyses and interpretation

Citizen weather stations are located in and around where people occupy, live, and
work, providing relevant data for assessing thermal exposure in the immediate
environment of residents

Siting of stations is uncontrolled. Stations are often placed close to buildings, walls or
other heat-emitting materials causing a bias in the readings

Driven by the low cost, crowdsourced sensor networks are established through
decentralised effort and are maintained by the public

Decentralized effort and reduced maintenance also often translate to the lack of
metadata regarding the sensor location and quality assurance. Additionally, the low
cost of sensors suggests lower accuracy and more likeliness for sensor drift

Citizen weather stations enables more citizen involvement and enablement Citizen engagement presents challenges with regards to data ownership, privacy, and
access. In the case of Netatmo sensors, for instance, data access is limited to the live
web portal and therefore prior planning is needed for data collection. Historical data
not publicly available
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in a lack of quality assurance, calibration, or testing, and since
sensors are set up by the public, there is a lack of metadata. An
understanding of how these stations may be sited is required to
interpret the data. Additionally, more controlled-environment and
long-term experiments can be planned, such that we fully quantify
the uncertainties associated with low-cost weather stations.

Another key part of interpreting the crowdsourced data is
understanding the local environment at each site. Various datasets
describing urban characteristics can be overlayed with crowdsourced
measurements, including the LCZ classifications that aim to represent
urban form and fabric in a universal way. LCZ maps give an
indication of the context of city in relation to other built
environments worldwide, however, are not sufficient for
identifying individual urban design characteristics that modify
urban microclimate. Each LCZ represents a range in height,
vegetation cover, sky view factor, and so forth, which provide
limited comparison with regards to microclimate variabilities when
evaluating one city with only a few dominant LCZ types. To address
this, emerging high-resolution urban datasets can be used to describe
surface cover and urban morphology. Overlaying such datasets with
LCZ maps and crowdsourced measures assist in providing a better
characterisation of each area more specific to a city and provide
further insight into the influences on the urban microclimate.

CONCLUSION

In this study, we used quality controlled crowdsourced data from
over 500 citizen weather stations to explore intra-urban
variabilities in air temperature during a Sydney summer,
totalling 2.3 million data points. Crowdsourcing has provided
a higher spatial resolution climate dataset for Sydney which has
allowed a clearer understanding of the local climate at a finer
scale. Overlaying datasets and urban classifications (such as LCZs
and building-level urban data) have been explored to identify the
key drivers of intra-urban variability.

The key findings from this paper are:

• Crowdsourced air temperature data and the combination of
land use and land cover data layers have provided novel
insight into the air temperature distribution across a
complex coastal city, by investigating the contribution of
both geographic and urbanised influences on intra-urban
variability in air temperature.

• The strongest impact on air temperature was distance from
the coast causing an increase in diurnal temperature range
at locations further inland.

• Intra-urban variability was observed both within LCZs and
between different LCZs.

• Increasing building density and height resulted in a reduced
diurnal temperature range, and increasing impervious
fraction resulted in increased temperatures.

A comparison of crowdsourced data with reference data indicated
that on warm days citizen weather stations continuously observed
increased temperatures throughout the day, whereas on cool days the
diurnal range of crowdsourced temperatures was smaller than that of

reference stations. The crowdsourced overnight temperatures were
higher for all stations across both warm and cool days. These
differences are likely due to the siting of citizen weather stations
closer tomaterials with high thermal inertia, solar radiation exposure,
and in areas with decreased ventilation.

The impact of the sea breeze and moderating influence of the
ocean has been identified by the difference in air temperature
between the inland, central and coastal regions. This coastal effect
dominated over all other impacts on local climate, and as such other
possible influences on air temperature were compared considering
distance from the coast. There was very little variability in the cool
day maxima across all urban characteristics due to the increased
cloud cover and precipitation on cool days. The significant impact of
distance from the coast has been assessed by splitting the city into
regions, however analysis of the coastal region still remains a
challenge due to the varying effect of the sea breeze across this
region. Further investigation into sea breeze flow is necessary to fully
understand the urban climate in this area.

Crowdsourced data typically come with some limitations which
require critical evaluation of the information collected. Despite the
higher spatial resolution, not all regions are represented equally; the
inner-city areas have a significantly higher number of stations than
the outer areas due to a combination of cost and population
density. To ensure the entire population is equally represented
when using data such as this, it may be necessary to supplement
with additional sensors in some areas.
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