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The field of soil biological remediation was initially focused on the use of microorganisms.
For organic contaminants, biostimulation and bioaugmentation were the strategies of
choice. For heavy metals, bioremediation was centered on the feasibility of using
microorganisms to reduce metal toxicity. Partly due to the impossibility to degrade
metals, phytoremediation emerged proposing the use of plants to extract them
(phytoextraction) or reduce their bioavailability (phytostabilization). Later, microbial-
assisted phytoremediation addressed the inoculation of plant growth-promoting
microorganisms to improve phytoremediation efficiency. Similarly, plant-assisted
bioremediation examined the stimulatory effect of plant growth on the microbial
degradation of soil contaminants. The combination of plants and microorganisms is
nowadays often recommended for mixed contaminated soils. Finally,
phytomanagement emerged as a phytotechnology focused on the use of plants and
associated microorganisms to decrease contaminant linkages, maximize ecosystem
services, and provide economic revenues. Although biological remediation methods
have been in use for decades, the truth is that they have not yet yielded the expected
results. Here, we claim that much more research is needed to make the most of the many
ways that microorganisms have evolutionary developed to access the contaminants and
to better understand the soil microbial networks responsible, to a great extent, for soil
functioning.
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INTRODUCTION

Soil contamination is an environmental problem that entails a serious threat to human and
ecosystem health. After decades of research and development on soil remediation, the
frustrating reality is that we still cannot effectively (in terms of both contaminant removal and
soil health recovery) and economically remediate many, if not most, contaminated soils. As a
consequence, many contaminated soils are still simply excavated and then transported to a licensed
landfill (the so-called “dig and dump” method). Traditional physicochemical methods of soil
remediation are often economically-unfeasible and usually have an adverse impact on the
integrity of the soil ecosystem (Ali et al., 2013). Biological methods are generally less disruptive
but, instead, they are frequently less efficient and effective in terms of contaminant removal, as well as
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much less reproducible (they are typically too case-specific)
(Lacalle et al., 2020). To complicate matters further, many
contaminated soils are characterized by the simultaneous
presence of organic and inorganic contaminants (the so-called
mixed contaminated soils), making their remediation more
difficult than it is already (Lacalle et al., 2018).

In the last years and decades, it has been widely emphasized
that the ultimate goal of soil remediation methods must be not
only to decrease the total and/or bioavailable concentration of the
contaminants but to restore soil health (Epelde et al., 2014),
i.e., “The ability of the soil to sustain the productivity, diversity,
and environmental services of terrestrial ecosystems” (FAO,
2020). The crucial concept behind this statement is that, as it
is often the case with many physicochemical methods, it is not
acceptable to reduce the concentration of soil contaminants at the
expense of negatively affecting, sometimes irreversibly, the
integrity of the soil ecosystem (Gómez-Sagasti et al., 2016).
For this reason, as well as for their being more cost-effective
and less labor-intensive, biological methods of soil remediation
are commonly recommended despite their well-known
limitations: cleanup and remediation take more time
(compared to physicochemical methods of soil remediation);
lack of reproducibility; and other limitations derived from
contaminant distribution, soil nutritional status, humidity, pH,
temperature, presence of electron acceptors, etc. (Hussain et al.,
2018).

BIOREMEDIATION

Initially, the field of soil biological remediation was focused on the
use of microorganisms (mainly, bacteria and fungi) to clean up
soils contaminated with organic contaminants, particularly,
petroleum hydrocarbons (Wartell et al., 2021). Together with
natural attenuation (i.e., bioremediation naturally performed by
the native microorganisms), biostimulation and bioaugmentation
have traditionally been the strategies of choice for the
bioremediation of soils contaminated with petroleum
hydrocarbons, mineral oils, polycyclic aromatic hydrocarbons,
polychlorinated biphenyls, and pesticides (Megharaj et al., 2011).

Biostimulation deals with the modification of the
environmental conditions (e.g., soil nutrients, moisture, pH,
oxygen, temperature) to stimulate contaminant biodegradation
(Wu et al., 2019). Biostimulation treatments often fail when
contaminants are persistent or recalcitrant (e.g., POPs or
persistent organic pollutants), but they have shown their
effectiveness for easily degradable organic contaminants.
However, in many cases, after an initial phase of rapid
contaminant degradation, the rate of contaminant removal
decreases until reaching a plateau (Barrutia et al., 2011), which
frequently corresponds to a contaminant concentration still
above the regulatory limit.

Bioaugmentation is based on the inoculation of degrading
microbial strains which have been selected under laboratory
conditions because of their capacity to rapidly degrade the
target contaminants. The degrading strains can be inoculated
singly or in combination as microbial consortia (Poi et al., 2017;

Hassan et al., 2020). In some cases, fungi (mycoremediation) and
bacteria are simultaneously inoculated (Zaborowska et al., 2019)
with potential synergistic effects. Both strategies (biostimulation
and bioaugmentation) have been largely used with varying
degrees of success but, in particular, the use of
bioaugmentation has produced many more failures than
successes, due to, among other reasons, the lack of survival
and/or proper growth of the inoculated microbial strains,
owing to their lack of ecological competence in the recipient
soil (Lacalle et al., 2020).

Due to their immutable nature, metal(oid)s cannot be
degraded and, then, the field of metal bioremediation was at
first centered on the possibility of using microbes to detoxify
them by valence transformation [e.g., reduction of Cr(VI) to
Cr(III); reduction of selenite or selenate to elemental selenium]
(Garbisu et al., 1996; Garbisu et al., 1998), precipitation (Lovley,
1993), or biotransformation resulting in enhanced adsorption on
mineral surfaces (Banerjee et al., 2018). But, apart from some
metal(oid)s that can be volatilized as a result of biological activity,
the rest, inevitably, still remain in the soil. Besides, the reduced
metal mobility and bioavailability achieved by the
abovementioned microbial transformation-precipitation
processes can be reverted with time, due to unforeseen
changes in environmental conditions.

PHYTOREMEDIATION

Partly due to the impossibility to degrade metal(oid)s, the field of
phytoremediation emerged proposing the use of metal tolerant
plants to extract these metallic contaminants from soil
(phytoextraction) or, alternatively, to reduce their mobility,
bioavailability and, hence, toxicity (phytostabilization). Many
plant species have shown their remarkable capacity to
accumulate metals in their shoots, such as, for instance,
Noccaea caerulescens (formerly known as Thlaspi caerulescens)
(Epelde et al., 2008) and Sedum plumbizincicola for Zn and Cd
(Deng et al., 2016), and Alyssum bertolonii for Ni (Robinson et al.,
1997). Regrettably, phytoextraction has serious drawbacks, most
importantly, the great deal of time required to effectively
phytoextract the metals from the soil (Zhao et al., 2003), but
also the incapability of most hyper(accumulators) to accumulate
more than one metal (Burges et al., 2018). Similarly, since
phytostabilization, by definition, does not reduce total metal
concentrations in soil, there is always the possibility that the
immobilized metals are later mobilized due to changes in soil
conditions (Alkorta et al., 2010; Lacalle et al., 2020). Importantly,
most environmental legislations are based on total metal
concentrations, not on bioavailable metal concentrations,
leading to the impracticability of this phytotechnology from a
legal point of view. This fact invalidates all those
phytoremediation options aimed at removing the bioavailable
contaminant fraction (“bioavailable contaminant stripping”), a
target which considerably reduces the length of time required for
soil remediation while addressing contaminant linkages (Moreira
et al., 2021). In some countries, regulators are starting to consider
bioavailability in risk assessment frameworks, but its
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implementation remains complicated because scientific
developments on bioavailability are not easily translated into
ready-to-use approaches for regulators (Ortega-Calvo et al.,
2015).

In an attempt to overcome the limitations of
phytoremediation (a phytotechnology which can certainly be
also used for the remediation of soils contaminated with
organic compounds and, interestingly, mixed contaminated
soils), phytomanagement emerged as an alternative strategy
focused on the use of plants and associated microorganisms to
decrease contaminant linkages and maximize the provision of
ecosystem services, while providing economic revenues by
producing non-food crops for biomass-processing technologies
(Cundy et al., 2016). The phytomanagement vision (“search for
other benefits during plant-based remediation”) has signified a
critical advance for the practical application of plant-based
remediation technologies. However, the plant-based recovery
of contaminated sites must not lose focus on its initial target,
i.e. the reduction of contaminant concentrations and, hence, risk
for human and environmental health. After all, remediation is
usually performed once the corresponding authority has decided
that an unacceptable risk exists and, for such risk to occur, three
elements must be present: a source of contamination, a receptor,
and a pathway along which the contaminant can reach the
receptor (the so-called “contaminant linkage” or “source-
pathway-receptor link”). Remediation strategies aim to break,
or at least reduce as much as possible, the contaminant linkage by
eliminating the contaminant, blocking the pathway of exposure,
or protecting the receptor. This fully accepted paradigm works
much better when humans are the only receptors under
consideration. The possibility of blocking the pathways or
protecting the receptors is much more remote when dealing
with the myriad of biological species that can be exposed to
the potentially adverse effects of soil contaminants. Therefore, the
most desirable outcome of any remediation process is to eliminate
the contaminant(s) provided this goal is achieved in an
environmentally-friendly way.

SYMBIOSIS APPROACHES

As described above, the bioremediation field was initially focused
on the microbial degradation of contaminants, while
phytoremediation deals with the use of plants to remediate
contaminated soils. However, in the last years, symbiosis
approaches have gained momentum in the biological
remediation field. Thus, microbial-assisted phytoremediation
addresses the inoculation of plant growth-promoting
microorganisms (rhizosphere bacteria, endophytes,
mycorrhiza) to improve the effectiveness of phytoremediation
initiatives (Burges et al., 2016). Likewise, plant-assisted
bioremediation (also termed rhizodegradation or
phytostimulation) exploits the potential of plant establishment
and growth to accelerate the microbial degradation of organic
contaminants in the rhizosphere (Lacalle et al., 2018). These
symbiosis approaches have emerged from the realization that
plants are covered in microorganisms (i.e., the rhizosphere,

phyllosphere and endosphere microbiomes) which are essential
for plant growth, health and performance (in return, plants
provide microorganisms with food and a habitat subjected to
less competition and fewer stresses) (Chialva et al., 2022). In other
words, the biological remediation field is currently interested in
the many possibilities that the “holobiont approach” offers (the
term holobiont refers to a host and its associated communities of
microorganisms, which can co-evolve in response to evolutionary
pressures and environmental conditions) (Simon et al., 2019).

In microbial-assisted phytoremediation, microorganisms can
alleviate metal induced phytotoxicity, via their own metal
resistance system, and improve plant growth under metal
exposure, either directly, by enhancing the efficiency of
nutrient acquisition by plants and producing phytohormones
(“fertilizer effect”), or indirectly by reducing the negative impact
of phytopathogens (“pesticide effect”) (Sharma, 2021).
Interestingly, within the agricultural arena, some authors
(Baez-Rogelio et al., 2017) emphasized the possibility of
inoculating microorganisms able to simultaneously carry out
both plant growth promotion and the bioremediation of
contaminated soils derived from intensive farming. For the
selection of plant growth-promoting bacteria, which will later
be inoculated as single strain formulations or consortia of
different strains (in order to emulate more natural
rhizomicrobiome systems) (Rosier et al., 2021), several plant
growth-promoting traits are normally tested: 1-
aminocyclopropane-1-carboxylate deaminase activity, nitrogen
fixation, phosphorus solubilization, potassium solubilization,
indolacetic acid production, siderophore production,
production of hydrolytic enzymes (e.g., α-amylase, cellulase,
chitinase, pectinase, protease), antibiotic production, hydrogen
cyanide production, ammonia production, fungal antagonistic
activity, etc. (Glick, 2012; Dinesh et al., 2015; Burges et al., 2017;
Hyder et al., 2020). It must be emphasized that all these lab-tested
traits only represent potentiality but not reality, since the
inoculated microbial strains must also show ecological
competence and functional performance in the specific soil-
plant system under consideration (actually, in many cases,
they do not survive or grow properly, or do not produce the
required phenotype, once they have been inoculated) (Nelson,
2004; Backer et al., 2018). But the painful truth is that, after
decades of bioaugmentation research, we still do not know how to
properly determine a priori the ecological competence of the
microbial strains intended for inoculation. Many efforts have
been directed towards identifying “ecological competence traits”
(e.g., size, motility, growth rate, capacity to use carbon sources,
biofilm formation, salinity tolerance, pH range, etc.) but,
undoubtedly, much more knowledge is still needed to correctly
and reliably identify the specific traits than can increase (better,
ensure) the fitness of the inoculated strains in a given soil-plant
system. Most importantly, for an effective microbial-assisted
phytoremediation, we must think beyond the binary
interactions between the inoculated microorganisms and the
host plants, and thoroughly assess the relationships among the
microbial inoculants themselves, as well as between them and the
native soil and plant microbiomes. In this line of thought, some
authors (Calvo et al., 2014; Vorholt et al., 2017; Paredes et al.,
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2018; Ray et al., 2020) pointed out that we must design
“intelligent” consortia that rely on cross-talk, cross-feeding
and/or substrate channeling among the different
microorganisms, as well as between them and the plants.
Thus, in the inoculum formulations, we can combine the
microbial strains with relevant signaling molecules, such as
nodulation factors (Jaiswal et al., 2021) or molecules involved
in quorum sensing or biofilm formation, to facilitate biological
communications (Mabood et al., 2014; De Souza et al., 2015;
Rosier et al., 2018). Indeed, plant growth-promoting bacteria can
respond to plant exudates through the modulation of the
expression of different genes, such as those encoding
exopolysaccharide biosynthesis and biofilm formation
(Meneses et al., 2011; Beauregard et al., 2013). Cell-cell
communication via quorum sensing also regulates bacterial
root colonization (Danhorn and Fuqua, 2007). Similarly,
stress-induced bacterial genes have been linked to plant-
bacterial interactions. In this respect, Alquéres et al. (2013)
found that the bacterial enzymes superoxide dismutase and
glutathione reductase were essential for the endophytic
colonization of rice roots by Gluconacetobacter diazotrophicus
PAL5. Regarding these molecular interactions, it must be taken
into consideration that the nutrient rich rhizosphere is a highly
competitive niche, where bacteria must develop a variety of traits
(e.g., motility, attachment, growth rate, stress resistance,
secondary metabolite production, quorum sensing) for
ecological competence purposes (De Souza et al., 2015).

Finally, plant-assisted bioremediation, based on the potential
stimulatory effect of plant growth on the activity of rhizosphere
microorganisms (e.g., via the exudation of easily degradable
carbon sources and oxygen transport), presents some of the
same limitations associated to all plant-based remediation

technologies: root depth, area covered by the roots
(contaminants can be in the bulk soil), time required for plant
growth, etc. (Moreira et al., 2021). In order to overcome these
limitations, the use of transgenic plants in phytoremediation has
often been proposed (Doty, 2008; Ozyigit et al., 2021).

RESEARCH NEEDS

For biological remediation to successfully take place in a given
soil, three key factors must be present: suitable environmental
conditions (e.g., soil nutrients, pH, temperature, moisture);
(micro)organisms capable of remediating the contaminants at
a reasonable rate; and the contaminants must be bioavailable
(Figure 1). A lot of research has been done on biostimulation, to
provide the right environment for remediation, and
bioaugmentation, specifically in the search for contaminant-
degrading and plant growth-promoting strains (nevertheless,
much research is needed regarding the identification of
ecological competence traits). Paradoxically, one of the most
discussed notions within the remediation field, i.e.
contaminant bioavailability, is still one of the main constraints
for the success of biological remediation (Kim et al., 2015; Ortega-
Calvo et al., 2015; Ren et al., 2018). Much research has been done
on the application of chemical substances, such as surfactants and
biosurfactants (Mishra et al., 2021), to enhance contaminant
bioavailability and, hence, the biodegradation of POPs.
Similarly, chelating agents have been used to increase metal
bioavailability (Alkorta et al., 2004; Santos et al., 2006). But
bioavailability is a two-edged sword: bioavailability is indeed
required for biodegradation and remediation but, at the same
time, the bioavailable fraction of the contaminants is the one that

FIGURE 1 | Visual representation of the paper.
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causes the most environmental impact. That is why the
application of chemical mobilizing agents is often not
recommended since, in many cases, it results in water
contamination and a more negative impact on the soil biota
(Alkorta et al., 2004), failing to fulfil the paradigm that the goal of
any remediation process must be not only to decrease
contaminant concentrations but to restore soil health.

It is therefore crucial to design innovative strategies aimed at
enhancing the contact between the contaminants and the
remediating organisms, but without adding potentially
damaging mobilizing agents. In this respect, microbial
chemotaxis has been observed to improve contaminant
bioavailability (Krell et al., 2013) and, consequently, the
application of chemotactic microorganisms can enhance
contaminant biodegradation (Pandey et al., 2009).
Nonetheless, bacterial motility in porous media, such as the
soil matrix, can be limited due to adhesion to particles and
high cell deposition rates. To minimize this problem, the role
of chemical effectors on bacterial tactic responses must be
carefully examined. In this respect, some authors (Jiménez-
Sánchez et al., 2018) have reported the positive impact of
dissolved organic matter, root exudates, and humic acids in
triggering bacterial transport to distant contaminant sources.
In addition, soil microbial networks (e.g., fungal mycelia) can
facilitate contaminant mobilization and distribution (Furuno
et al., 2012; Fester et al., 2014; Ray et al., 2018). Also, mycelia-
promoted bacterial dispersal (through the so-called fungal
highways) can enhance contaminant degradation (Otto et al.,
2016), acting as biological effectors. Interestingly, bacteria can
alter their cell wall composition and surface change in response
to compounds with low bioavailability (Ren et al., 2018).Moreover,
microorganisms can secrete electron shuttles which can transfer
electrons between the cell surface and POPs, thus facilitating redox
biotransformation (Yang et al., 2012), as well as produce
extracellular enzymes that can degrade remotely located
contaminants. Finally, the formation of biofilms on
contaminant-sources can facilitate the direct contact of bacteria
with the contaminants. However, although the term soil biofilm is
often used, the reality is that biofilms are seldom observed in soils
(Baveye, 2021). Actually, what one finds in the soil matrix are small,
isolated groups of cells sheathed in partially degraded organic
matter, extracellular polymeric substances, and fine textured
mineral particles (Baveye, 2021).

A lot of research is needed to better understand all these
morphological, behavioral and physiological microbial
adaptations (Ren et al., 2018) to then enhance contaminant

bioavailability without harming the environment. Furthermore,
as rightly pointed out by Ren et al. (2018), since soil amendments
(e.g., compost, biochar, nanomaterials) are more and more used
in remediation initiatives, we need to better understand how these
amendments can affect contaminant bioavailability directly or
indirectly through their effects on the abovementioned microbial
adaptations.

Lastly, it is important to remember that soil biodiversity,
especially microbial diversity, is the biological infrastructure
than supports the soil biological networks that, in turn, are
responsible for soil functioning (including contaminant
degradation) and resilience against disturbances (including
contamination). The understanding of soil biological networks
(complex adaptive systems that constitute one of the most
complex and fascinating works of biological architecture) is
one of the biggest challenges of ecological research and, in
particular, soil science. The combination of advanced genomic
approaches (Chandran et al., 2020) and ecological network
analysis offers unmatched opportunities to map complex
plant-microbe interactions and, specifically, to address how
such interactions are altered by environmental changes and
disturbances (Bennett et al., 2019; Sharma, 2021). As pointed
out by Borchert et al. (2021), remediation research efforts should
shift from searching for desired traits of monocultures to those of
highly integrated multispecies microbial communities.
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