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A Bayesian-model-averaging Copula (i.e., BMAC) approach was proposed for correlation
analysis of monthly rainfall and runoff in Xiangxi River watershed, China. The BMAC
approach was formulated by incorporating existing Bayesian model averaging (i.e., BMA)
method and Archimedean Copula techniques (e.g., Gumbel-Hougaard, Clayton and Frank
Copulas) within a general bivariate hydrologic correlation analysis framework. In this paper,
the BMA method was applied to determine the marginal distribution functions of variables,
and the Copula method was used to analyze the correlation. Results showed that: 1) the
BMA method could improve the representation of the marginal distribution of hydrological
variables with smaller corresponding errors; 2) the predictive joint distributions of monthly
rainfall and runoff wasmuch better calibrated by the Gumbel Copula according to criteria of
the root mean square error (i.e., RMSE), Akaike Information Criterion (i.e., AIC) values,
Anderson-Darling test (i.e., AD test), and Cramer-von Mises test (i.e., CM test); and 3) the
bivariate joint probability and return periods of rainfall and runoff based on the optimal
Copula function was characterized and the monthly rainfall and runoff presented a strong
positive correlation based on Kendall and Spearman’s rank correlation coefficients.
Therefore, the BMAC approach performed reasonably well and can be further used to
simulate runoff values according to the historical and predicted rainfall data. Highlights: 1) A
Bayesian-model-averaging Copula method is proposed for correlation analysis; 2) the
monthly rainfall and runoff in Xiangxi River watershed has a positive correlation. 3) Gumbel
Copula is the best in modelling the joint distributions in the Xiangxi River watershed.

Keywords: archimedean copula, Bayesian model averaging, rainfall and runoff, Xiangxi river watershed, climate
change

1 INTRODUCTION

Investigating the hydrological variables relations is of vital significance for flood control and water
resource management (Fan et al., 2018). Univariate hydrological frequency analysis procedures are
important tools for analyzing the change rules between rainfall and runoff (Andres-Domenech et al.,
2015; Shin et al., 2015; Zhou et al., 2020). However, it cannot reflect the variation of variables effectively
because it overlooks the joint effects of variables. In addition, variables of real-world hydrological
systems are complicated with many factors, such as correlations and multidimensional characteristics
in hydrological processes (Zhang et al., 2006; Zhang et al., 2007; Remesan et al., 2009; Reusser et al.,
2010; Takbiri and Ebtehaj, 2017; Sun and Zhou, 2020). Consequently, statistical theories of joint
probability analysis were undertaken for developing more effective methods in this field.
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As a sufficient probabilistic analysis method for correlated
multivariate events, Copula function has been widely applied to
hydrological simulations (Aghakouchak et al., 2010; Chebana
et al., 2012; Ma et al., 2013; Serinaldi, 2013; Madadgar and
Moradkhani, 2014; Qiang et al., 2014; Li and Zheng, 2016;
Nasr and Chebana, 2019.; Yang et al., 2019). One of the
advantages is that the calculations of marginal distributions
and correlation analysis in Copula function are relatively
independent, which is the successful key to make the joint
analysis of multivariate methods more popular (Favre et al.,
2004; Shiau et al., 2007; Chebana and Ouarda, 2009; Sraj et al.,
2015; Sugimoto et al., 2016; Lei et al., 2018). On the other hand,
the inherent uncertainty has been proved by practices existing in
any single frequency distribution model structure (See and
Abrahart, 2001; Wu et al., 2022), which directly affects the
reliability of hydrological prediction (Zhou et al., 2018).
Therefore, a multi-model method is proposed to deal with the
inherent uncertainty for improving the accuracy of hydrological
modeling and forecasting. Currently, the multi-model
combination methods include: the weighted average method,
linear regression, and neural networks (DeChant and
Moradkhani, 2014; Xu et al., 2017; Zhou et al., 2021). These
methods are mainly based on different deterministic theories to
form a more accurate synthesis simulation results, but rarely
consider the uncertainty of the model structure. Therefore, a
better method to reflect the uncertainty of the multi-model
method is particularly important.

The Bayesian model averaging (BMA) method has been
widely used to construct a simulation process with better
description of variables’ probabilities in areas of management,
medicine, meteorology, etc. (Tsai, 2010; Fang et al., 2018; Zhang
and Yang, 2018). It can efficiently handle the marginal probability
distribution function (Zhang and Yang, 2012) and produce more
accurate model synthesis results for the uncertain model
structure. In this case, the obtained marginal distribution
functions can be directly used as inputs of the Copula
function. However, the adjunct process has not been used to
study the correlation between rainfall and runoff, and thus its
applicability remains to be further verified.

When considering the structure of the marginal distribution in
the present hydrological field, a single model is usually used to
calculate the hydrological frequency curve of each variable (Xu
et al., 2021). General models of distribution of unique
hydrological probabilities include primarily Gamma
distribution, generalized extreme value distribution, lognormal
distribution, etc. (Lu et al., 2021). According to the principle of
the BMA method, it is found that we can construct a more
suitable expression form for specific hydrological variables
through this method and use this distribution form as a
marginal distribution to calculate the Copula joint
distribution function (Lin et al., 2021; Rahimi et al., 2021).
Compare with the non-parametric method. Non-parametric
methods are generally robust but ineffective. The precision of
the parameter estimates is high. Ramsey proposed a method for
modelling the core and imported histograms into the model.
This method not only improves the accuracy of the estimate,
but also increases the design speed (Ramsey, 2012). The

nonparametric method gives more attention to sample
distribution as it does not take the form of distribution.
However, when the quantity of data is different, the
parameter method is more stable because of the a priori
assumption that it responds to a specific distribution. When
the amount of data is small, using the parameter method and
considering its underestimated risk can obtain better results
(Zeng, 2014). Therefore, in this paper, we compare the
marginal distribution among the parameter, nonparametric,
and BMA methods to choose the best method of this study.

The objective of this article is to develop a BMA Copula
(BMAC) approach for correlation analysis with rainfall-runoff in
the Xiangxi River, the largest tributary of the Yangtze River in the
Hubei part of the Three Gorges Reservoir area. In this system, the
marginal distributions of monthly rainfall and runoff are
simulated by the BMA method with better description in
probability of each variable. Then correlation analysis between
rainfall and runoff is constructed by the Gumbel Copula method.
This paper aims to: 1) determine the variables’ marginal
distribution functions; 2) estimate the two-dimensional Copula
function parameters and calculate the Kendall and Spearman’s
rank correlation coefficients to ascertain the optimal Copula
function; and 3) characterize the bivariate joint probability and
return periods of rainfall and runoff based on the optimal Copula
function.

2 METHODOLOGY

2.1 Bayesian Model Averaging Theory
2.1.1 Bayesian Model Averaging
BMA is a statistical analysis method and can be used to infer a
probabilistic prediction. It is a statistical analytical method that
considers the uncertainty of the model itself. In this paper, the
BMA method is applied to simulate the streamflow. Suppose that
y is the forecasted variable, F � (f1, f2,/fk) is the all
considered model predictions, and M � (y1, y2,/yt) is a
given empirical probability distribution, where yt is the
experience distribution probability at t time. Considering the
inherent uncertainty of a model, the posterior distribution of y
under a given empirical probability distribution condition can be
presented as:

p(y|F,M) �∑k
k�1

p(fk|M)pk(y∣∣∣∣fk,M) (1)

where p(fk|M) represents the posterior probability of a single
distribution model fk, pk(y|fk,M) means the posterior
distribution of y under a given model prediction fk and data
set M.

Let ωk represent p(fk|M) with ∑K
k�1

ωk � 1. The posterior mean

value and variance of the BMA prediction can be expressed as
(Raftery et al., 2003; Duan et al., 2006):

E(y|M) �∑K
k�1

p(fk|M)E[pk(y∣∣∣∣fk,M)] �∑K
k�1

ωkfk (2)
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Var(y|M) �∑K
k�1

ωk
⎛⎝fk −∑K

i�1
ωifi

⎞⎠2

+∑K
k�1

ωkσ
2
k (3)

where σ2k represents the variable variance when the empirical
frequency and model prediction are M and fk, respectively. The
BMA mean value prediction can be calculated by the weighted
average probability distributions for different optimal simulation.

The two parts denoted by∑K
k�1

ωk(fk − ∑K
k�1

ωifi)2 and∑K
k�1

ωkσ2k in Eq. 3

mean the error between models and error of the model itself
individually. Compared to deterministic multi-model
combinations, BMA possesses more reliability in reflecting the
uncertainty of distribution models.

2.1.2 Expectation Maximization Algorithm
To effectively calculate the weight and variance of BMA, the
expectation-maximization (EM) method is introduced in this
paper. EM is an iterative calculation method and has been widely
used (Bilmes, 1998) to calculate the maximum likelihood
estimation, and the obtained results show good effect
especially in dealing with a great number of missing data. In
detail, the EM algorithm can be illustrated as follows.

Considering the stability and convenience of calculation, the
EM algorithm uses log-likelihood function (Duan et al., 2006).

Assume the prediction error in time and space is independent, the
log-likelihood function can be formulated as follows (Duan et al.,
2006):

ℓ(ω1,/,ωk, σ
2) �∑T

t�1
log⎛⎝∑K

k�1
ωkgk(yt

∣∣∣∣fk,t)⎞⎠ (4)

Assume Zk,t is an unobserved variable, if at time t, fk is the
best prediction model, then Zk,t � 1; otherwise, Zk,t � 0. At any
time t, only one of {Z1,t,/, Zk,t} is equal to 1 and the others are
equal to zero. The key of applying the EM method is to switch
steps between the expectation and maximization. It starts under
an initial guess, such as assuming a value of θ(0) for parameter θ.
In the expectation (E) step, Zk,t is estimated by the given current
guess value of θ. In the maximization (M) step, θ is estimated by
the given current values ofZk,t. These two steps are repeated until
a predetermined accuracy meets the requirement. The detailed
EM computation process is as follows.
Step 1. Initialization:

Set j � 0,ω(j)k � 1
k
, σ

2(j)
k � 1

k
∑T
t�1

⎛⎜⎜⎜⎝∑K
k�1
(yt − fk,t)2⎞⎟⎟⎟⎠

T
(5)

where T is the number of data, and j is the number of iterations.
Step 2. Calculate the initial likelihood:

ℓ(θ(j)) � log⎛⎝∑K
k�1

ωk · pk(y∣∣∣∣fk,M)⎞⎠
� log⎛⎝∑K

k�1
ωk ·∑T

t�1
g(yt

∣∣∣∣fk,t, σ
(j)
k )⎞⎠ (6)

Step 3. Implementation of the E-step operation:

Setj � j + 1, Z(j)k,t �
g(yt

∣∣∣∣fk,t, σ
(j−1)
k )

∑K
k�1

g(yt

∣∣∣∣fk,t, σ
(j−1)
k ) k � 1, 2,/, K,

t � 1, 2,/, T (7)

Step 4. Perform the M-step operation:
Calculate the weights of the single prediction model:

ω(j)k � 1
T
∑T
t�1
Z(j)k,t (8)

Update the single forecast model variance:

σ2(j) �
∑T
t�1
Z(j)k,t · (yt − fk,t)2

∑T
t�1
Z(j)k,t

(9)

Update the value of the likelihood function ℓ(θ(j)).
Step 5. Check convergence:

If ℓ(θ(j)) − ℓ(θ(j−1)) is less than or equal to 10−4, then stop the
operation; else return to the third step.

FIGURE 1 | The framework of BMAC.
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Readers can refer to McLachlan and Krishnan (McLachlan
and Krishnan, 1997) for more detailed information of the EM
algorithm.

2.1.3 Kernel Density Estimation
In statistics, the kernel density estimation (KDE) is a non-
parametric way to estimate the probability density function of
a random variable. KDE is a fundamental data smoothing
problem where inferences about the population are made,
based on a finite data sample (Li et al., 2022). Among the
many non-parametric methods currently used, the KDE
method proposed by Guo et al. (1996) is the most widely
used, and the effect is the most ideal.

The estimation formula of the univariate kernel probability
density function:

f̂x(x) �
1
nh
∑n
i�1
k(x − xi

h
) (10)

where n is the length of observed data xi;K(·) is the kernel density
function; and h is the window width, it determines the variance of
the kernel function.

2.2 Copula Function Theory
Copula theory was proposed by Sklar (1959), which has many
types of Copula functions, such as normality of Copula, t-Copula
functions, and Archimedean Copula function family (Nelsen,
1999). Among them, Archimedean Copula function family,
including Gumbel-Hougaard Copula function, Clayton Copula
function, and Frank Copula functions, has characteristics of
simplified structure, diversification, and practicability, which
lead to relatively simple processes in constructing corrections

among variables (Xie et al., 2020). Consequently, the
Archimedean Copula function family could be an important
method for hydrologic frequency analysis.

2.2.1. Archimedean Copula Function
Let ui be the variable margin, θ be the parameter of the Copula
function, the cumulative probability distribution of the three
Archimedean Copula functions mentioned above can be
expressed as follows:

(1) Gumbel-Hougaard Copula function

C(u1, u2/, ut) �

exp
⎧⎪⎨⎪⎩ − [(−ln(u1))θ + (−ln(u2))θ +/ + (−ln(ut))θ]1θ⎫⎪⎬⎪⎭; θ ∈ [1,∞)

(11)

Expression of generator: ϕ(t) � [−ln(t)]θ (12)

(2) Clayton Copula function

C(u1, u2,/, ut) � {u−θ
1 + u−θ

2 +/ + u−θ
t − (t − 1)}1θ; θ ∈ (0,∞)∞

(13)

Expression of generator: ϕ(t) � t−θ − 1 (14)

(3) Frank Copula function

C(u1, u2,/ut) �
− 1
θ
ln{1 + [exp(−θu1) − 1][exp(−θu2) − 1]/[exp(−θut) − 1][exp(−θ) − 1]t−1 }; θ ∈ R

(15)

FIGURE 2 | The Studied are (Fan et al., 2016).

Frontiers in Environmental Science | www.frontiersin.org January 2022 | Volume 9 | Article 7444624

Wen et al. Rainfall and Runoff

https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


Expression of generator: φ � −ln exp(−θt) − 1
exp(θ) − 1

(16)

2.2.2 Correlation Measure of Copula
Correlation measure of random variables is used to describe
the mutual dependence between random variables. There are
many test metrics, in this study Kendall’s rank correlation
coefficient τ and Spearman’s rank correlation coefficient ρ

are used to evaluate the correlation of the streamflow
variables. In detail, the corresponding Kendall’s rank
correlation coefficient τ and Spearman’s rank correlation
coefficient ρs for Copula function C(u, v) can be expressed as
follows:

τ � 4∫1

0
∫1

0
C(u, v)dC(u, v) − 1 (17)

FIGURE 3 | The boxspots of monthly rainfall and runoff in the Xiangxi River watershed. Median id the midlevel line of the data, Upper and Lower are the maximum
and minimum values, Q1 and Q3 are the lower and upper quantities.
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ρs � 12∫1

0
∫1

0
uvdC(u, v) − 3 � 12∫1

0
∫1

0
C(u, v)dudv − 3 (18)

2.2.3 Estimation of Copula Function Parameter
To estimate the parameter of Copula function, the
exact maximum likelihood (EML) method is used
(Dupuis, 2007). If the joint distribution function of
t-dimensional continuous random variables x1, x2,/xt

can be expressed as C(u1, u2,/ut), its maximum
likelihood estimate can be calculated as follows (Dupuis,
2007):
Step 1. Establish the relevant likelihood function

The joint density function is expressed as:

c[(u1, u2,/ut); (θ1, θ2,/, θt), α]

� ztC[(u1, u2,/ut); (θ1, θ2,/, θt), α]
zu1zu2/zut

(19)

Likelihood function is expressed as:

FIGURE 4 | The Histogram of mothly rainfall and runoff in the Xiangxi River watershed.

FIGURE 5 | The Scatter plot and Kendall plot of monthly rainfall and
runoff. The top one is Scatter plot and the bottom one is Kendall plot.

TABLE 1 | The fitting parameters of probability distributions.

Probability distribution Parameter Rainfall Runoff

Gam a 32.76 2.91
b 1557.46 31363.50

Gev k −0.34 0.18
σ 8899.63 3.65
μ 48177.10 63161.80

Log μ 10.82 11.24
σ 0.178 0.62

Weight

BMA Gam 0.9999996 0.00001
Gev 3.90E-07 0.49844
Log 6.79E-14 0.50155
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L[(θ1, θ2,/, θt), α] �∏n
i�1

c[(ui1, ui2,/, uit); (θ1, θ2,/, θt), α]

(20)

Correspondingly, the log-likelihood function can be expressed as:

ln L[(θ1, θ2,/, θt), α] �∑n
i�1
ln

c[(ui1, ui2,/, uit); (θ1, θ2,/, θt), α] (21)

Step 2. Solve the likelihood function

(θ̂1, θ̂2,/, θ̂t), α̂ � argmax ln L[(θ1, θ2,/, θt), α] (22)

where: (θ1, θ2,/θt) are the unknown parameters of the
distribution function for each margin; α is the associated
unknown parameter in the Copula function.

2.3 Goodness-Of-Fit Statistical Tests
In order to perform the goodness-of-fit statistic tests for both
univariate distribution and Copula functions the root mean square
error (RMSE) andAkaike InformationCriterion (AIC) are adopted to
assess the validation of the BMAC method. RMSE can quantitatively
analyze the results when the graph fitting effect is similar. To evaluate
the performance and select the best fitted Copulas, the goodness-of-fit
statistics test is conducted based on AIC (Akaike, 1974) and Cramér
von Mises statistics (Genest et al., 2009).

MSE � 1
N − k

∑N
i�1
(Fem(xi1, xi2,/, xit) − C(ui1, ui2,/, uit))2

(23)

RMSE � """""
MSE

√
(24)

where Fem(xi1, xi2,/, xit) is the value of empirical joint
distribution; C(ui1, ui2,/uit) is the value of the predicted joint
distribution; MSE is the mean square error;N is the length of the
observed data; k is the number of unknown parameters in the
model.

AIC � N ln(MSE) + 2k (25)

The Kolmogorov-Smirnov test (K-S test) is chosen because it
is a useful nonparametric hypothesis test, which is primarily used
to test if a set of samples comes from some probability
distribution (Miller, 1956).

D � max
1≤i≤n

∣∣∣∣Fest(x≤ x(i)) − Fobs(x≤x(i))∣∣∣∣ (26)

where Fest(x≤ x(i)) is the value of theoretical probability
distribution; Fobs(x≤x(i)) is the value of the empirical
probability distribution; n is the length of the data.

The Anderson-Darling test (AD test) also has been chosen
because of its excellent properties against a variety of alternatives,
the test statistic is as follows (D’Agostino, 1986):

A2
n � −n − 1

n
∑n
i�1
(2i − 1) · [ln[Fs(H(i))] + ln(1 − Fs(H(n−i+1)))]

(27)

FIGURE 6 | Comparison of the generated and empirical marginal CDFs
for mothly rainfall (A) and runoff (B).

TABLE 2 | The D, RMSE and AIC analysis for marginal distributions.

Probability
distribution

D RMSE AIC

Rainfall Runoff Rainfall Runoff Rainfall Runoff

Gam 0.061 0.097 0.024 0.056 −1624.15 −1242.93
Gev 0.083 0.065 0.038 0.0319 −1404.66 −1481.28
Log 0.097 0.079 0.059 0.0349 −1222.06 −1445.28
KDE 0.088 0.106 0.026 0.0313 −1570.65 −1490.51
BMA 0.060 0.061 0.023 0.0245 −1621.13 −1596.99
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where:H(1) ≤H(2) ≤/≤H(n) are values in ascending order; Fs is
the distribution function of χ2(2).

Specific calculation steps are as follows:
Step 1. Calculate the marginal distribution functions FX and FY

by the univariate empirical formula.
Step 2. Calculate H(X,Y), obey χ2(2) distribution.

H(X,Y) � [Φ−1(FX)]2 + [Φ−1(C(FY|FX))]2 (28)

where: Φ−1 is the inverse function of the standard normal
distribution.
Step 3. Calculate statistic value A2

n.
Step 4. Estimate Copula parameter θ based on the marginal
distribution function.
Step 5. Simulate and generate Copula random samples with
Rosenblatt’s transformation test method, find new Copula
function parameter θ̂.
Step 6. Calculate a new Hp(Xp, Yp), and then calculate statistic
value Â

2
n.

Step 7. Repeat steps 3 to 6 m times, obtain a sequence of Â
2
n, put

the sequence in ascending order, and calculate the critical and
statistical value of each sub-site.
Step 8. Compare the relationship between the statistic Â

2
n and

critical statistics. If the statistical value is lower than the critical
one, the distribution of the results can be accepted; otherwise,
reject the distribution results.

2.4 Bayesian-Model-Averaging Copula
(BMAC) Method
In this study, the BMAC method would be proposed by
combining the BMA and Copula methods into a general
framework. In detail, the BMA method is used to
determine the marginal distributions of monthly rainfall
and runoff, and the Archimedean Copula method can be
used to construct the joint distribution of monthly rainfall
of runoff. Correspondingly, the BMAC method involves four
steps: 1) determining the marginal distributions of monthly
rainfall and runoff based on the principle of BMA and
generating the values of weight through the EM method, 2)
establishing the joint distributions by the Archimedean
Copula (e.g., Gumbel-Hougaard Copula, Clayton Copula,
and Frank Copula) method, 3) estimating the values of the
Copula parameter θ through the maximum likelihood
method, and 4) performing the goodness-of-fit statistic
tests by RMSE, AIC, and AD test. The framework of the
BMAC is shown in Figure 1.

3 CASE STUDY

3.1 Overview of the Studied Area
The Xiangxi River basin is located between 30.96 ∼ 31.67° N and
110.47 ∼ 111.13°E in the Hubei part of China, being the largest
tributary of the Yangtze River in the Three Gorges Reservoir area
(see Figure 2). It originates in the Shennongjia Nature Reserve, with
the mainstream length of 94 km and a catchment area of 3,099 km2

(Han et al., 2014). This region experiences a northern subtropics
climate, and the main rainfall season is fromMay to September with
the annual precipitation of 1,100mm (Xu et al., 2009). In addition,
the hydrological station mostly covering this river is called the
Xiangshan Hydrological Station (110.45°E, 31.13°N).

In order to provide decision support for flood control and
water resource management of the Xiangxi River basin, the
hydrological frequency analysis of this region would be studied
based on daily rainfall and runoff data (1991–2008) from
Xingshan Hydrological Station in this study (see Figure 3).
Figure 3 demonstrates that rainfall and runoff in 1996 were
relatively high, while rainfall and runoff in 1997 were relatively
low. The annual distribution of runoff is primarily concentrated.
The annual distribution of rainfall is rather dispersed. Annual
rainfall and runoff during 1996 and 2007 were particularly sparse.
Rainfall and runoff are strongly correlated. Figure 4
demonstrates that the distribution of monthly rainfall and
runoff are similar. The scatter plot demonstrates that the
R-square value is 0.698 and the AUK value of the Kendall plot
is 0.667. Both of them show a positive correlation (Figure 5).

3.2 Results Analysis
3.2.1 Comparison of Marginal Distributions
In the procedure of hydrological frequency analysis, the monthly
rainfall and runoff probability distributions in the Xiangxi River
basin are first estimated by the Gamma, the generalized extreme
value, and the lognormal distributions, respectively. And then,
the BMA-based marginal distributions are obtained according to
the three estimated distributions. Table 1 shows the fitting
parameters of probability distributions.

Based on the weights and distribution parameters presented
above, the BMA-based marginal distributions of monthly rainfall
and runoff can be obtained. The Gamma distribution may
account for a major proportion (99.99%) to produce the
BMA-based marginal distribution of monthly rainfall; while
the generalized extreme value distribution and lognormal
distribution may account for almost the same proportion to
produce the BMA-based marginal distribution of monthly runoff.

TABLE 3 | Parameters estimation and correlation analysis of copula function.

Correlation Ellipse copula Archimedes copula

Gaussian copula T Copula Clayton copula Gumbel copula Frank copula

Upper 0.5283153 0.5293994 0.6655733 0.6695867 #
Lower 0.417623 0.4191937 0.6100611 0.7516461 #
Kendall 0.578918 0.5807679 0.4240182 0.5931158 0.5864246
Spearman 0.7738921 0.7694191 0.5938393 0.7799526 0.7887916

Frontiers in Environmental Science | www.frontiersin.org January 2022 | Volume 9 | Article 7444628

Wen et al. Rainfall and Runoff

https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


The comparison of empirical and generated marginal
cumulative distribution functions (CDFs) for monthly rainfall
and runoff is shown in Figure 6. It indicates that the BMA-based
marginal distribution may appropriately represent the univariate
rainfall and runoff probability distributions. In order to clearly
clarify, the D, RMSE, and AIC values for the marginal
distributions obtained by the four methods are also calculated
and presented in Table 2. In addition, to compare with the non-
parametric methods, the KDE method is also calculated in the
same way. Results D show that only the GEV and BMA methods
pass the K-S test (the upper boundary of D is 0.092 while alpha is
0.05) in both rainfall and runoff. The obtained results indicate the
corresponding errors of the BMA method are relatively smaller
suggesting the accuracy of the marginal distributions generated
by the BMA method is very excellent.

3.2.2 Comparison of Joint Distributions
After determining marginal distributions, the joint probability
distributions of monthly rainfall and runoff in the Xiangxi River
can be estimated by a Copula function. The estimation
parameters for each Copula function are calculated based on
the maximum likelihood estimation theory. In addition,
according to the obtained parameters, the correlation
coefficients can be calculated. Results are given in Table 3. It
can be seen that the Kendall’s rank correlation coefficient ranges
from 0.42 to 0.59 and the Spearman’s rank correlation coefficient
ranges from 0.56 to 0.78. Therefore, it can be concluded that the
monthly rainfall and runoff of the Xiangxi River have a relatively
strong positive correlation.

According to Table 3, Gumbel-Hougaard-Copula-based joint
distribution and Frank-Copula-based joint distribution are
superior to the Clayton one based on the Kendall correlation
and the Spearman correlation. Moreover, it shows that the
estimation of the upper tail correlation coefficient should
select the Gumbel Copula, the number is 0.6696. The
estimation of the lower tail correlation coefficient should select

FIGURE 7 | Comparison of the theotrical and empircal joint CDFs for
rainfall and runoff in Xiangxi River. (A) Gumbell-Hougard-Copula-based joint
distribution. (B) Frank-Copula-based joint distribution, respectively. FIGURE 8 | The joint CDFs of rainfall and runoff.
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the Gumbel Copula, the number is 0.7516. Obviously, there are
both upper tail correlation and lower tail correlation in the
Xiangxi River. This conforms to research by Yang et al.
(2016). Goodness-of-fit tests of empirical joint CDFs and
theoretical joint CDFs are calculated for further analysis (as
shown in Figure 7).

Comparing the results shown in Figure 7, it can be known that
the joint distribution by Frank-Copula is close to the one by
Gumbel-Hougaard-Copula in quantifying the relevant
characteristics of monthly rainfall and runoff of the Xiangxi
River. The RMSE of the Gumbel-Hougaard-Copula is less
than the Clayton copula. The Frank-Copula function has no
tail correlation and cannot capture the tail correlation between
variables according to Xue (2018). Gumbel Copula performs
better in the upper correlation while Clayton Copula performs
better in the lower correlation (Jondeau, 2016). Therefore, the

Gumbel Copula function would be chosen to construct the joint
distribution of monthly rainfall-runoff pairs. The corresponding
results are plotted and shown in Figure 8. Figure 9 shows the
combined probability density and return period of rainfall and
runoff using the Gumbel Copula. It indicates that the extreme
value of annual precipitation or annual runoff, the joint
probability density is relatively small. When the annual runoff
is constant, the greater the annual precipitation, the longer the
time of return period is. In addition, the largest rainfall of
observed data is 1,341.7 mm, the runoff of that year is
556.36 m3/s. The return period is about 10 years, which is
reasonable.

In this study, the AD test and the CM test also have been
selected to investigate the suitability of the BMAC-based joint
distributions in describing the dependencies for different rainfall-
runoff pairs. The results are displayed in Table 4, and statisticsA2

n
are less than threshold valuesA2(p)

n,0.1(α � 0.1) andA2(p)
n (α � 0.05),

where α is the significant level. Thus, the null hypothesis H0

would be accepted. In total, it can be concluded that BMAC has a
distinct superiority in modelling variable pairs.

3.2.3 Comparison of BMAC and MEGHC
In order to further clarify the efficiency of the BMAC method, a
Maximum Entropy-Gumbel-Hougaard Copula (MEGHC)
method proposed by Kong et al. (2015) has been applied for
comparison. Accordingly, two joint distributions can be
generated by the two methods, and the bias value between the
two methods also can be obtained (shown in Figure 10). From
Figure 10, the results are quite close to each other, and the great
deviation value (i.e., absolute error) is 0.03, which illustrates that
both of the two methods can be used to generate the joint
distribution of the rainfall and runoff because of the best
fitting effect. It also can be found that, under the condition of
the CDF interval being 0–0.4, results obtained by the BMAC
method are superior to the MEGHC method; while the CDF
interval being 0.9–1, the MEGHC method may converge much
faster. To some extent, the MEGHC method can better capture
the characteristics of the upper tail dependence, which plays a
great role in flood and drainage control and watershed design

FIGURE 9 | Joint probability density and return periods of rainfall and runoff.

TABLE 4 | Goodness-of-fit of BMAC.

Fit test Test statistics α-the critical value of sub-sites

0.20 0.15 0.10 0.05 0.01

AD 0.97 1.47 1.69 1.97 2.30 3.55
CM 0.12 0.23 0.269 0.30 0.41 0.68

FIGURE 10 | Comparison of BMAC and MEGHC.
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work (Kong et al., 2015). However, in the situation of
representing the uncertainty of the model structure, it is hard
to find a suitable distribution to capture the characteristic of the
hydrologic variable. Comparatively, the BMAC method can
obtain a synthetic simulation result especially in exactly
reflecting the variables’ correlations.

4 CONCLUSION

In this study, a BMAC method has been proposed for assessing
correlations of bivariate variables in hydrological processes.
Through incorporating BMA and Copula functions within a
general framework, BMAC can determine the marginal
distribution functions of variables, and meanwhile analyze the
correlation. To demonstrate the applicability, the developed
BMAC method also has been adopted to investigate the
hydrological frequency analysis of the Xiangxi River basin.
The specific conclusions can be summarized as follows:

(1) Compared with the empirical and nonparametric marginal
CDFs, the Bayesian model averaging method can improve
the representation of the marginal distribution of
hydrological variables and comprehensively capture the
shape of empirical CDF with smaller corresponding errors.

(2) The goodness-of-fit statistical tests, consisting of RMSE, K-S,
and AD test, indicate that the BMAC method is suitable for
describing the statistical probabilities and the dependencies
in the historical data of the Xiangxi River, China.

(3) There is a relatively strong positive correlation existing
between the monthly rainfall and runoff. The Gumbel
Copula would be best for modelling the joint distributions
of monthly rainfall and runoff.

(4) Compared with theMEGHCmethod proposed by Kong et al.
(2015), the BMAC method can obtain more accurate

synthesis results when the model structure is evaluated as
uncertain.

(5) The accuracy of the BMAC method in modelling the joint
distribution of hydrological variables would be influenced by
the performance of the marginal distribution of the variables
and the algorithmused for estimating the unknown parameters
in Copula functions. Consequently, further studies are required
to analyze the uncertainty of the calculation process.
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