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Air pollution forecasting, particularly of PM2.5 levels, can be used not only to deliver effective
warning information to the public but also to provide support for decisions regarding the
control and treatment of air pollution problems. However, there are still some challenging
issues in air pollution forecasting that urgently need to be solved, such as how to handle
and model outliers, improve forecasting stability, and correct forecasting results. In this
context, this study proposes an outlier-robust forecasting system to attempt to tackle the
abovementioned issues and bridge the gap in the current research. Specifically, the
system developed consists of two parts that deal with point and interval forecasting,
respectively. For point forecasting, a data preprocessing module is proposed based on
outlier handling and data decomposition to mitigate the negative influences of outliers and
noise, which can also help the model capture the main characteristics of the original time
series. Meanwhile, an outlier-robust forecasting module is designed for better modeling of
the preprocessed data. For the model to further improve its accuracy, a nonlinear
correction module based on an error ensemble strategy is developed that can provide
more accurate forecasting results. Finally, the interval forecasting part of the system is
based on a newly proposed artificial intelligence–based distribution evaluation and the
results of the point forecasting part to present the range of future changes. Experimental
results and analysis utilizing daily PM2.5 concentration from two provincial capital cities in
China are discussed to verify the superiority and effectiveness of the system developed,
which can be considered an effective technique for point and interval forecasting of daily
PM2.5 concentration.
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INTRODUCTION

Urbanization, industrialization, and energy consumption have caused the issue of air pollution to
become increasingly serious. The air pollution issue is considered a major concern (Andrade et al.,
2015) and regarded as the single largest health risk (Wendel, 2014). It can have adverse effects on
human beings and bring great economic losses as well as problems for society, affecting areas such as
public health (Li et al., 2017), corporate cash holdings (Li et al., 2021), and the tourism industry (Hao
et al., 2021). In this context, to solve air pollution issues and accelerate ecological progress, air
pollution forecasting, particularly of PM2.5 (particulate matter with an aerodynamic diameter of
2.5 μm or less) levels, has been acknowledged as a promising technique for air pollution control and
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treatment (Liu et al., 2019a). However, the performance of air
pollution forecasting suffers from many factors, and how to
develop a model that can improve forecasting effectiveness is
not only a challenging research topic but also a matter of growing
concern. As a result, developing a more effective model for
modeling PM2.5 concentration has become an imperative task
that cannot be postponed (Yang et al., 2019a).

Over the past few decades, many studies have been
conducted to propose an effective air pollution forecasting
model. In general, the current air pollution forecasting models
mainly belong to three categories, namely, the chemical
transport method (CTM), the traditional statistical method,
and the artificial intelligence method. In the first category,
Timmermans et al. (2017) employed a kind of CTM method to
analyze PM2.5 in China. Zhang et al. (2019) used the
community multiscale air quality (CMAQ) method to
analyze PM2.5 pollution events in Qingdao, China.
Similarly, Fan et al. (2015) employed third-generation air
quality modeling system Models-3/CMAQ to analyze air
pollution episodes in one region of China. However, the
forecasting performance of CTM methods is easily
influenced by the scale and quality of the emissions data
(Feng et al., 2015). Furthermore, Stern et al. (2008)
suggested that due to incomplete descriptions of physical
and chemical processes and limited knowledge of pollution
sources, CTMmodels may produce poor forecasting results. In
the traditional statistical method category, the widely
employed statistical model mainly consists of an
autoregressive integrated moving average (ARIMA) and
regression method. Vlachogianni et al. (2011) employed a
regression model for forecasting nitrogen oxides (NOx) and
PM10 (particulate matter with an aerodynamic diameter of
10 μm or less). Zafra et al. (2017) developed an ARIMA model
using hourly PM10 concentration data. However, the
traditional statistical model is unable to extract the complex
and nonlinear features of pollutant concentration data, which
may result in undesirable results (Wang et al., 2020a).
Fortunately, with the rapid development of advanced
technologies, new methods, including artificial neural
networks (ANN), support vector regression (SVR), extreme
learning machines (ELM), and other artificial intelligence
methods, have been proposed and are being widely
employed in different forecasting fields, including air
pollution forecasting. These novel methods are
acknowledged as promising solutions to air pollution
forecasting issues (Yang et al., 2019b).

However, all individual models, including artificial intelligence
models, have their advantages and disadvantages. For instance, they
may ignore the importance of data preprocessing and optimization
and thus be unsuited to meet the requirements of decision-making
and management. As a result, to overcome the deficiency of
individual artificial intelligence methods and improve air
pollution forecasting effectiveness, researchers have started to pay
increasing attention to the development of hybrid models by
hybridizing multifarious methods from individual forecasting
models, mainly including data decomposition techniques
(empirical mode decomposition (EMD) (Zhu et al., 2017),

ensemble EMD (EEMD) (Bai et al., 2019), complementary
EEMD (CEEMD) (Yang and Wang, 2017), fast EEMD (FEEMD)
(Luo et al., 2018), complete EEMD with adaptive noise
(CEEMDAN) (Hao and Tian, 2019), improved CEEMDAN
(ICEEMDAN) (Sharma et al., 2020), variational mode
decomposition (VMD) (Wu and Lin, 2019a), wavelet transform
(WT) (Cheng et al., 2019), discreteWT (DWT) (Siwek andOsowski,
2012), stationary WT (SWT) (Bai et al., 2016), maximum overlap
DWT (MODWT) (Prakash et al., 2011), wavelet packet
decomposition (WPD) (Liu et al., 2019b), and empirical WT
(EWT) (Liu and Chen, 2020), and so on) and artificial
intelligence optimization (whale optimization algorithm (WOA)
(Xu et al., 2017), bat algorithm (BA) (Wu and Lin, 2019b),
modified grey wolf optimization (MGWO) (Xing et al., 2019),
cuckoo search (CS) (Sun and Sun, 2017), multi-objective Harris
hawks optimization (MOHHO) (Du et al., 2020), and so on). For
example, Jiang et al. (2019) designed a hybrid system based on
ICEEMDAN, imperialist competitive algorithm (ICA), and
backpropagation neural network (BPNN) for pollutant
forecasting. Similarly, Du et al. (2020) devised a hybrid model
using ELM, MOHHO, and ICEEMDAN for air quality
forecasting. The abovementioned hybrid forecasting studies prove
the superiority of hybrid modeling, which has emerged as the most
promising research direction in the air pollution forecasting field.

Although many hybrid models have been proposed for air
pollution forecasting, there are still some challenging issues that
urgently need to be solved. Specifically, as far as we are aware,
most previous studies have employed data decomposition to
improve forecasting performance while ignoring the significance of
handling and modeling outliers in air pollution data, which may lead
to the hybrid model being unable to further enhance the forecasting
performance. Moreover, artificial intelligence optimization algorithms
are used to search for the optimal parameters of methods in a hybrid
model, but the forecasting ability can only be improved to a certain
degree. Significantly, however, these studies ignore the time-
consuming issues caused by incorporating artificial intelligence
optimization algorithms, which may be unable to completely
overcome the model’s limitations, i.e., the instability of the final
results. Furthermore, most previous studies have emphasized the
contribution of advanced data decomposition and optimization
algorithms while ignoring the significance of mining the
characteristics of the original air pollution time series and
correcting forecasting results to further improve the model’s
forecasting performance, despite the growing importance of air
pollution forecasting performance. Moreover, another issue with air
pollution forecasting, especially daily air pollution forecasting, is that it
is mainly focused on point forecasting and thus can only provide
deterministic information that is insufficient for real application and
cannot provide uncertainty information. As far as we know, interval
forecasting can make up for the defects of point forecasting, but this
method has been ignored by the relevant researchers despite it being a
novel research area that is especially deserving of attention.

In this study, to develop an effective model that overcomes the
abovementioned limitations of most previous studies, a novel
outlier-robust point and interval forecasting system is proposed
for forecasting daily PM2.5 concentration, which is composed of
two parts. The point forecasting part proposes a novel forecasting
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model based on a data preprocessing module, an outlier-robust
forecasting module, and a nonlinear correction module to
obtain future deterministic information, whereas the interval
forecasting part is designed based on the newly proposed
artificial intelligence–based distribution evaluation and point
forecasting results to obtain future uncertainty information.
Specifically, first, a data preprocessing module is proposed,
which takes into consideration the significance of outlier
handling and data decomposition, that can be employed to
mitigate the negative effects of outlier and noise information
so that the model developed can capture the main features and
achieve better performance. Second, an outlier-robust forecasting
module is designed, based on outlier-robust ELM (ORELM), to
forecast preprocessed data. Next, a nonlinear correction module
based on an error ensemble strategy is developed to mine
information in the forecasting results and further improve the
model’s forecasting performance. Finally, an artificial
intelligence–based distribution evaluation method is designed
in the interval forecasting part, which can be combined with
the point forecasting results to provide a range of future changes.
Case studies utilizing daily PM2.5 concentrations from two cities
in China are designed to validate the developed system.

The main novelty and contribution of this study to current
research can be summarized as follows:

(1) The forecasting focus of the system developed is not only on
point forecasting but also on interval forecasting. Previous
daily PM2.5 concentration forecasting studies mainly
focused on point forecasting, which can provide
deterministic information and is insufficient for real
application, while ignoring the research about interval
forecasting, which can provide uncertainty information.
Therefore, an outlier-robust forecasting system that
consists of point and interval forecasting is successfully
proposed in this study, which can make up for the
defects of point forecasting and is validated well in two
cities in China.

(2) An improved data preprocessing module is designed to solve
the outlier data and noise information issues
simultaneously. Most previous studies only employed data
decomposition for data preprocessing while ignoring the
significance of outlier handling and modeling and failed to
further enhance the forecasting performance. As a result, this
study develops an improved data preprocessing module based on
outlier handling and data decomposition that can effectively
overcome the limitations caused by outlier and noise information.

(3) Point forecasting performance is further enhanced by
proposing an outlier-robust forecasting module and a
nonlinear correction module. In the daily PM2.5

concentration forecasting field, outlier modeling and
forecasting result correction are of great importance but have
been ignored by the relevant researchers. Thus, on the one hand,
the outlier-robust forecasting module is designed to further
solve the outlier modeling issue; on the other hand, a nonlinear
correction module is developed based on an error ensemble
strategy to mine information in the forecasting results and
further enhance the model’s forecasting performance.

(4) Convincing experiments are designed to verify the
effectiveness and superiority of the system developed. For
system evaluation, five evaluation metrics are
employed in the evaluation of point forecasting,
whereas two typical metrics are used in the evaluation
of interval forecasting. For model comparison, four
experiments are designed to prove the effectiveness
and superiority of outlier handling and modeling, data
decomposition, nonlinear correction module, and the
system developed in daily PM2.5 concentration
forecasting.

The methods are presented in the Methodology section, next
the construction of the outlier-robust point and interval
forecasting system are discussed, then the Experimental
Analysis section presents the experiments, and the final section
draws the conclusions of this study.

METHODOLOGY

This section introduces the detailed methods used in the system
developed, which includes a data preprocessing module, an
outlier-robust forecasting module, a nonlinear correction
module, artificial intelligence–based distribution evaluation,
and interval forecasting theory.

Data Preprocessing Module
The data preprocessing module is proposed on the basis of outlier
handling and data decomposition, which can overcome the
limitations caused by outlier and noise information.

Outlier Handling
Outliers in the original time series data will have a negative
influence on the development of a model, which may bring poor
results. Therefore, in this study, an outlier handling algorithm, the
Hampel filter (HF), is introduced into the data preprocessing
module. HF, developed by Hampel (1974), is robust against
outliers (Liu et al., 2004). A brief explanation of HF can be
defined as follows (Wu et al., 2021).

Given a sequence x1, x2, . . ., xn,WK
i is a set of numbers within a

moving window and mi is the median value from the moving
window, which are defined as follows:

WK
i � (xi−K, ..., xi, ..., xi+K), (1)

mi � median(xi−K, ..., xi, ..., xi+K), (2)

where K is the sliding window’s half-width.
The new data obtained after using HF to handle the original

sequence can be defined as

yi � {xi, |xi −mi|≤ tSi
mi, |xi −mi|> tSi , (3)

where t denotes a positive integer and Si denotes the median
absolute deviation (MAD), which can be given by

Si � 1.4826 ×median(|xi−K −mi|, ..., |xi+K −mi|). (4)
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Data Decomposition
Data decomposition, which has been acknowledged as a
promising data preprocessing technique, has been widely
used in forecasting fields to solve complex nonstationary,
nonlinear time series forecasting issues. Numerous studies
have shown that the data decomposition algorithm has a
significant influence on forecasting performance. Thus, a
suitable decomposition method should be selected to
identify and extract the inner characteristics of the original
time series. In previous studies, such as Lin et al. (2017) and
Yang et al. (2019a), VMD, proposed by Dragomiretskiy and
Zosso (2014), has been shown to be superior to other
algorithms, including EMD, EEMD, and CEEMD.
Therefore, VMD is introduced into the data preprocessing
module to mitigate the negative noise information influence.
The main procedure of VMD is as follows.
Step 1: setting parameters of VMD, while each mode ŷ1

k, center
pulsation ŵ1

k, and Lagrangian multipliers λ are initialized.
Step 2: yk and w are updated by

ŷn+1
k � f̂(w) −∑

i≠ k

ŷi(w) + λ̂(w)
2

1 + 2α(w − wk)2, (5)

wn+1
k � ∫∞0 w

∣∣∣∣ŷn+1
k (w)∣∣∣∣2dw

∫∞
0

∣∣∣∣ŷn+1
k (w)∣∣∣∣2dw , (6)

where n is the iterations number, f(t) and yk are the original time
series and the kth component, whereas f̂(w), ŷi(w), λ̂(w), and
ŷn+1
k (w) denote the Fourier transforms of f(t), yi(t), λ(t), and

yn+1
k (t), respectively.

Step 3: λ can be updated by

λ̂
n+1(w)← λ̂

n(w) + π⎡⎣f̂(w) −∑
k

ûn+1
k (w)⎤⎦. (7)

Step 4: if ∑k

����ŷn+1
k − ŷn

k

����22/����ŷn
k

����22 < e, the VMD algorithm is
stopped, and a series of band-limited modes is returned;
otherwise, return to Step 2 to repeat the iteration.

Outlier-Robust Forecasting Module
The basic forecasting model is the important foundation of a
hybrid model, which can make a significant difference in
forecasting results. If outliers are present within the dataset,
the performance of the model developed will be significantly
affected. Considering the significance of outlier modeling and
outlier robustness, the ORELM model is acknowledged as a
potential contributor for modeling data with outliers.
Therefore, the ORELM model is introduced into daily PM2.5

concentration forecasting to design an outlier-robust forecasting
module. The original version of the ORELM model is ELM,
developed by Huang et al. (2004), which has many merits, such as
its simple structure, better performance, fast computation speed,
and the fact that it does not need a large number of samples.
Furthermore, previous studies have revealed that ELM methods
are superior to some typical ANN methods in solving forecasting
issues (Yang et al., 2019a), and it has become one of the most
promising approaches.

Given a training dataset withM samples, i.e., (xt, yt), t � 1,/,M,
the ELM model for input data xt and output data yt can be
presented as

ŷ �∑L
i�1
βigi(xi) �∑L

i�1
βiG(wi · xt + bi, ), (8)

where L denotes the number of hidden layer nodes,wi and bi denote
the input weight and hidden bias, G is the excitation function, βi
represents the connected weight between the ith hidden layer node
and the output layer, and ŷ represents the forecasting results.

By defining the hidden layer output matrix, i.e., H,

H � ⎡⎢⎢⎢⎢⎢⎣ h(x1)
«

h(x1)
⎤⎥⎥⎥⎥⎥⎦ � ⎡⎢⎢⎢⎢⎢⎣G(w1 · x1 + b1) / G(wL · x1 + bL)

« / «
G(w1 · xM + b1)/ G(wL · xM + bL)

⎤⎥⎥⎥⎥⎥⎦
M×L

.

(9)

The ELM model presented in Eq. 8 can be rewritten as

Hβ � Y, (10)

where β � [β1/βL]
T, Y � [y1/yM]T.

The optimal solution of β can be obtained by solving
min
β

� ����Hβ − Y
����2; the corresponding formula is

β̂ � H†Y, (11)

where H†represents the Moore–Penrose generalized inverse
matrix of H; the corresponding formula is

H† � [HTH]−1HT. (12)

As mentioned above, to enhance the ELM model’s robustness
when modeling data with outliers, the ORELM model is
developed by Zhang and Luo (2015). The core idea is
redefining the minimum problem as

⎧⎪⎪⎨⎪⎪⎩
min(β) ‖e‖1 +

1
k

����β����22
s.t.e � Y −Hβ

, (13)

where e represents training error and k is the regularization
parameter.

To solve the newly defined problem, the augmented Lagrange
multiplier (ALM) algorithm is adopted, and the corresponding
iteration process is defined as

⎧⎪⎪⎪⎨⎪⎪⎪⎩
βt+1 � argmin

β
Lμ(et, β, λt)

et+1 � argmin
e

Lμ(e, βt+1, λt)
λt+1 � λt + μ(Y −Hβt+1 − et+1)

, (14)

where λ represents the Lagrange multiplier vector, μ is the penalty
parameter, and βt+1 and et+1 are defined as

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
βt+1 � (HTH + 2

kμI
)−1

HT(Y − et + λt
μ
)

et+1 � shrink(Y −Hβt+1 +
λt
μ
,
1
μ
)

. (15)
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Nonlinear Correction Module
For a forecasting model, forecasting error is inevitable, but the
short-term trend in the variation of the forecasting error can be
anticipated by establishing a nonlinear model (Vukicevic, 1991).
To further improve the performance of the system developed, a
nonlinear correction module based on an error ensemble strategy
is developed to mine information in the forecasting results, which
is composed of three steps.
Step 1: generating the error sequence

Defining the actual value of the t th datum as A(t) and
forecasting the value of the t th datum as F(t), the forecasting
error value of the t th datum can be obtained by

E(t) � F(t) − A(t). (16)

Step 2: developing the error forecasting model
Defining the error value of the t−d th datum as E(t−d),

according to the detailed error sequence, the forecasting model
can be developed and denoted as f. The error forecasting value of
the t th datum, named EF(t), can be obtained by

EF(t) � f[E(t − 1), E(t − 2), ..., E(t − d)]. (17)

Step 3: correcting the forecasting results
To obtain a final result on the basis of the original forecasting

results and corresponding error forecasting results, an error ensemble
strategy based on ORELM is proposed, which fully exploits the
advantages of ORELM and is equipped with outlier robustness. By
developing an outlier-robust ensemble model, denoted as En.f, the
final forecasting results of the t th datum, i.e., FF(t), are

FF(t) � En.f[EF(t), F(t)]. (18)

Artificial Intelligence–Based Distribution
Evaluation
Distribution evaluation plays a vital role in many fields, such as
wind energy evaluation, time series analysis, and interval
forecasting. In recent years, in order to further mine data
characteristics, researchers have focused on applying different
distribution functions to fit the experimental data and obtain a
suitable distribution; then, the interval forecasting results can be
obtained according to the interval forecasting theory and point
forecasting results. However, to the best of our knowledge, the
related research is well validated in many fields, but so far, few
studies have involved research on or application to daily PM2.5

concentration forecasting. In this context, four typical distributions,
i.e., Weibull, Gamma, Rayleigh, and Lognormal, are introduced in
this study to fit the daily PM2.5 concentration data. In general, the
goodness of fit (0 ≤ R2 ≤ 1) was employed to measure the fitting
performance of one distribution. Traditionally, the maximum
likelihood estimation (MLE) method is used to estimate the
distribution function’s parameters. However, the MLE method
may not obtain the optimal distribution parameters. To the
best of our knowledge, the larger the R2 value, the more
optimal the distribution. As a result, the optimal
distribution determination problem can be converted into
solving the maximum value problem. Inspired by Wang

et al. (2020b), Schwarz et al. (2020), and Ließ et al. (2021),
artificial intelligence optimization can be considered a
promising technique for searching for the optimal
distribution parameters. Based on this idea and considering
the limitations of the traditional method, the artificial
intelligence–based distribution evaluation is proposed to
obtain the optimal distribution in this study. In order to
obtain the optimal distribution, specifically, an advanced
optimization algorithm named grey wolf optimizer (GWO)
is adopted to search for the optimal parameters of specific
distribution by maximizing the values of R2. In this study, the
minus R2 is defined as the objective function of GWO-based
distribution evaluation. Finally, the distribution with the best
R2 value among all distributions is selected as the optimal
distribution of PM2.5, which can be combined with interval
forecasting theory to achieve interval forecasting.

Interval Forecasting Theory
Given the significance level α, actual value At, and lower and
upper limits (L, U), the probability can be given by

P(L≤At ≤U) � 1 − 2α. (19)

For a random variable time series, Eq. 19 can be rewritten as

P(L≤At ≤U) � P(L≤At ≤U|E(At) � â) × P(E(At) � â).
(20)

Supposing that the forecasting value has a similar distribution
function, the estimated variance can be determined, and then the
following conditional probability formula can be obtained as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

P(L≤At ≤U|E(At) � â) � ∫â
L

f(z|Θ)dz + ∫U
â

f(z|Θ)dz

∫ zf(z|Θ)dz � â

∫ (z − E(z))2f(z|Θ)dz � S2. (21)

The lower and upper limits can be obtained by

⎧⎪⎪⎪⎨⎪⎪⎪⎩(L̂, Û)|L̂≤At ≤ Û,∫
Û

â

f(z|Θ)dz + ∫â
L̂

f(z|Θ)dz � 1 − 2α

⎫⎪⎪⎪⎬⎪⎪⎪⎭. (22)

CONSTRUCTION OF THE
OUTLIER-ROBUST FORECASTING
SYSTEM
The outlier-robust point and interval forecasting system is
constructed in this section; the details of the system design
and system evaluation are as follows.

System Design
The system design is composed of the point forecasting part and
the interval forecasting part, which can provide deterministic
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information and uncertainty information in the future,
respectively.

Point Forecasting
The point forecasting part is developed based on three modules,
i.e., a data preprocessing module, an outlier-robust forecasting
module, and a nonlinear correction module, and consists of three
phases as follows.

◆ Phase I: data preprocessing. Considering the negative influence
of outlier data and noise information in original daily PM2.5

concentration data, a data preprocessing module is designed
based on outlier handling and data decomposition that can
effectively solve the outlier data and noise information issues
simultaneously. Specifically, on the one hand, the HF algorithm
is employed to detect and correct the outliers in the original
data, which can eliminate the outliers’ negative influence on the
model’s development from the perspective of improving data
quality. On the other hand, the advanced data decomposition
method named VMD is performed to decompose the processed
data into a number of modes, which can eliminate the noise’s
negative effect on themodel’s performance from the perspective
of signal denoising and helps the model effectively capture the
main features of the daily PM2.5 concentration data.

◆ Phase II: forecasting preprocessed data. In this phase, some
modes obtained in Phase I are forecasted, and then, the
forecasting results can be obtained. As a result, it is
necessary to select a suitable model for preprocessed data
forecasting. Most previous studies tended to develop an
optimized ANN model for mode forecasting while ignoring
the instability parameter setting problem of artificial intelligence
optimization algorithms, which not only cannot guarantee the
forecasting model’s stability but also bring time-consuming
issues. In this context, the ORELM model, with its simple
structure, high forecasting performance, and fast calculation
speed, better forecasting ability than some typical ANNmodels,
and better outlier robustness than the original ELM model, is
selected to design the outlier-robust forecasting module to
obtain the future value of each mode, and finally, by
summing the forecasting results of each mode, the results of
daily ahead PM2.5 concentration forecasting can be achieved.

◆ Phase III: forecasting results correction. Most previous
studies have focused on using data decomposition and
optimization to enhance forecasting ability while ignoring the
significance of forecasting results correction. Therefore, in this
phase, a nonlinear correctionmodule based on an error ensemble
strategy is designed to mine information in the forecasting results
and thereby enhance the model’s performance, which is
composed of three steps, i.e., generating an error sequence,
developing an error forecasting model, and correcting the
forecasting results. Following these three steps, the results of
the point forecasting can be obtained; these results can provide
deterministic information in the future.

Interval Forecasting
The interval forecasting part is developed based on the previous
point forecasting results, artificial intelligence–based distribution

evaluation, and interval forecasting theory and consists of two
phases as follows.

◆ Phase I: distribution evaluation. Distribution evaluation is the
crucial basis of the interval forecasting part, whereas the
traditional MLE method may not fit the optimal distribution
for a specific PM2.5 concentration dataset. In order to solve this
issue, an artificial intelligence–based distribution evaluation is
proposed to obtain the optimal distribution. Specifically, the
advanced optimization algorithm named GWO is selected to
search the parameters of four typical distributions, i.e., Weibull,
Gamma, Rayleigh, and Lognormal. Finally, the distribution
function with the best R2 is considered the optimal distribution.

◆ Phase II: obtaining interval forecasting results. According to
the point forecasting results, the interval forecasting results are
estimated using the optimal distribution determined in Phase I
and interval forecasting theory, which can provide uncertainty
information in the future.

System Evaluation
This section is designed to provide system evaluation metrics,
including point forecasting evaluation and interval forecasting
evaluation.

Point Forecasting Evaluation
To evaluate the forecasting performance of the system developed
for daily PM2.5 concentration point forecasting, the three typical
metrics listed in Table 1 are selected in this study.

In addition to evaluating the forecasting accuracy using these
three typical evaluation metrics, to measure the similarity of the
forecasting value curve and actual value curve, grey relational
analysis (GRA) (Wang et al., 2015) is introduced into point
forecasting evaluation, which provides a new metric named grey
relational degree (GRD) for further analysis. Moreover, forecasting
stability is another important metric in practical application. Thus,
a metric named variance ratio (VR) (Yang and Wang, 2017) is
introduced into the point forecasting evaluation, which can
measure the forecasting stability of different models by
considering the variance between the actual and the forecast values.

Interval Forecasting Evaluation
To evaluate the interval forecasting performance, two widely used
metrics named forecasting interval coverage probability (FICP)
and forecasting interval normalized average width (FINAW) are
introduced into the interval forecasting evaluation. Specifically,
the FICP indicator is selected to measure the probability that the

TABLE 1 | Three typical metrics.

Abbreviation Full name Equation

MAE Mean absolute error MAE � 1
N ∑N

i�1|Fi − Ai |
RMSE Root mean square error RMSE �

�������
1
N ×∑N

i�1
√

(Fi − Ai )2

MAPE Root mean square error
MAPE � 1

N ∑N
i�1
∣∣∣∣∣∣∣Ai−Fi

Ai

∣∣∣∣∣∣∣ × 100%

Fi and Ai denote the forecasting value and actual value, respectively, at time i, andN is the
length of the time series.
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actual observation value falls into the forecasting interval, which
can reflect the reliability of the interval forecasting results. The
larger the FICP value, the higher the interval forecasting accuracy.
Furthermore, to avoid the excessive pursuit of the reliability of
interval forecasting while ignoring the effective measure of
interval forecasting width for interval forecasting results,
FINAW is employed to express the width of interval
forecasting results. The FICP and FINAW can be calculated by

FICP � 1
N
∑N
i�1

ci × 100%, (23)

where ci � { 1, Ai ∈[Li,Ui]
0, Ai ∉[Li,Ui] and N is the length of the time series,

FINAW � 1
NR

∑N
i�1

(Ui − Li), (24)

where Ui and Li denote the forecasting interval’s upper and lower
limits, respectively, at time i, and R is the range of actual values.

EXPERIMENTAL ANALYSIS

The experiments and analysis are presented in this section, which
is mainly composed of data description, experiment design, and
four detailed experiments.

Data Description
To validate the ability of the outlier-robust system developed to
perform point forecasting and interval forecasting of daily PM2.5

pollution, Jinan and Zhengzhou are considered as the study
areas; two datasets collected from these two study areas are used
as illustrative empirical studies in this study. Jinan, the capital
city of Shandong Province, is located in the middle of China.
Zhengzhou, the capital city of Henan Province, is located in
the middle part of the Yellow River. Specifically, two daily PM2.5

concentration datasets, covering 1 yr from July 1, 2017, to
June 30, 2018, are employed in this study. In the experiment,
the data, from July 1, 2017, to May 31, 2018, are employed as
training data for the development of the proposed system,
whereas the data from June 1, 2018, to June 30, 2018, are
considered as testing data to test the forecasting performance
of the system developed.

Experiment Design
As mentioned above, in this study, an outlier-robust point and
interval forecasting system is developed, which is composed of a
data preprocessing module, an outlier-robust forecasting module,
a nonlinear correction module, artificial intelligence–based
distribution evaluation, and interval forecasting theory to
obtain future deterministic information and uncertainty
information about daily PM2.5 pollution. To verify the
forecasting superiority of the system developed, sufficient
empirical research should be carried out. In addition to
comparing the performance of the system developed with that
of the other types of forecasting models, the contribution of each
component proposed or employed in the system developed
should also be proved by designing appropriate comparative

studies. For this purpose, this study designs four experiments
to conduct a convincing evaluation of the system developed.
Specifically, in Experiment I, the effectiveness of outlier handling
and modeling in the system developed is verified from the
perspectives of data preprocessing and model selection. In
Experiment II, the effectiveness of data decomposition in the
system proposed is compared with other decomposition
algorithm–based models and a model without a decomposition
preprocess. In Experiment III, a nonlinear correction module is
developed to correct the forecasting results, which is designed to
compare the proposed system with the model without correcting
the process and the model with a simple error-addition strategy.
It should be noted that the experiments for each model in
Experiments I–III are carried out 100 times in this study, and
the average values of the forecasting results are considered the
final forecasting results for practical application and model
comparison, which can ensure that the system developed is
more reliable, accurate, and independent of random factors to
some extent. In Experiment IV, different distributions of daily
PM2.5 concentration are compared to obtain the optimal
distribution, and the interval forecasting results based on point
forecasting are obtained and evaluated by two typical metrics.

Experiment I: The Effectiveness of Outlier
Handling and Modeling
To evaluate the effectiveness of outlier handling and modeling,
eight models, i.e., ELM, regularized ELM (RELM), weighted
RELM (WRELM), ORELM, HF-ELM, HF-RELM, HF-
WRELM, and HF-ORELM, are proposed and tested. The
MAE, RMSE, MAPE, VR, and GRD values of these eight
models are shown in Table 2. Meanwhile, the results of the
different models in the two cities are depicted in Figures 1, 2,
which indicate that the ORELM model is superior to ELM,
RELM, and WRELM, whereas the HF-ORELM model is
superior to the seven other models. As shown in Table 2, two
types of comparison can be designed based on these eight models.
Comparison I compares the forecasting results of the ELM (HF-
ELM), RELM (HF-RELM), WRELM (HF-WRELM), and
ORELM (HF-ORELM) models. Meanwhile, Comparison II
compares the forecasting results of the ORELM and HF-
ORELM models (or ELM and HF-ELM, or RELM and HF-
RELM, or WRELM and HF-WRELM). In other words,
transverse comparison and longitudinal comparison can be
conducted according to the metric values in Table 2. The
detailed comparisons are as follows:

1) In Comparison I, by comparing the ORELM (HF-ORELM)
with ELM (HF-ELM), RELM (HF-RELM), andWRELM (HF-
WRELM), it can be observed that the ORELM model is
superior to the ELM, RELM, and WRELM models, whereas
the HF-ORELM model is superior to the HF-ELM, HF-
RELM, and HF-WRELM models. For example, for daily
PM2.5 concentration forecasting in Jinan, the ORELM
model has a lower MAPE value of 28.6266%, compared to
the MAPE values of 31.5740%, 31.8239%, and 30.9697% for
the ELM, RELM, and WRELM models, respectively.
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Furthermore, for daily PM2.5 concentration forecasting in
Zhengzhou, the HF-ORELM model achieves the best
MAPE value of 25.9379% compared to the MAPE values of
30.4850%, 30.5535%, and 28.8852% for the HF-ELM, HF-
RELM, andHF-WRELMmodels, respectively. The differences
in the model forecasting results compared illustrate that the
ORELM model is more powerful and robust than the other
models for daily PM2.5 concentration forecasting. Therefore,
we can reasonably conclude that the ORELMmodel will make
a great contribution to the final successful modeling; therefore,
it can be selected as the basic forecasting model for the outlier-
robust forecasting system.

2) In Comparison II, the forecasting results of models with
outlier handling and those of models without outlier
handling can be compared to evaluate the effectiveness
of outlier handling in the proposed data preprocessing
module. By comparing the forecasting results of the

ORELM and HF-ORELM model (or ELM and HF-ELM,
or RELM and HF-RELM, or WRELM and HF-WRELM), it
can be observed that the HF-based model is superior to the
models without outlier handling. For example, the MAPE
values of HF-ELM, HF-RELM, HF-WRELM, and HF-
ORELM for daily PM2.5 concentration forecasting in
Jinan are 30.1351%, 29.9125%, 29.0110%, and 26.1079%,
whereas the corresponding models without outlier handling
have larger MAPE values, i.e., ELM (31.5740%), RELM
(31.8239%), WRELM (30.9697%), and ORELM (28.6266%).
The differences between the forecasting results of the ORELM
and HF-ORELM models, ELM and HF-ELM, RELM and HF-
RELM, WRELM and HF-WRELM reveal that outlier handling
is of great importance for daily PM2.5 concentration forecasting,
which can be combined with data decomposition to design the
data preprocessing module to further improve forecasting
performance.

TABLE 2 | Forecasting results of four individual models and HF-based models.

Model MAE
(μg/m3)

RMSE
(μg/m3)

MAPE
(%)

VR
(−)

GRD
(−)

Model MAE
(μg/m3)

RMSE
(μg/m3)

MAPE
(%)

VR
(−)

GRD
(−)

Site: Jinan
ELM 7.3582 10.0165 31.5740 0.3709 0.6769 HF-ELM 6.9967 9.4329 30.1351 0.3342 0.6712
RELM 7.4260 10.0446 31.8239 0.3649 0.6729 HF-RELM 6.9388 9.3872 29.9125 0.3385 0.6726
WRELM 7.2311 9.8402 30.9697 0.3761 0.6733 HF-WRELM 6.7626 9.2276 29.0110 0.3529 0.6693
ORELM 6.8231 9.2232 28.6266 0.3514 0.6560 HF-ORELM 6.4068 8.2988 26.1079 0.4033 0.6598

Model MAE
(μg/m3)

RMSE
(μg/m3)

MAPE
(%)

VR
(−)

GRD
(−)

Model MAE
(μg/m3)

RMSE
(μg/m3)

MAPE
(%)

VR
(−)

GRD
(−)

Site: Zhengzhou
ELM 8.8045 11.0005 33.2161 0.4607 0.6804 HF-ELM 8.2973 10.6228 30.4850 0.5829 0.6689
RELM 8.7766 10.9252 33.0157 0.4571 0.6778 HF-RELM 8.3243 10.6302 30.5535 0.5942 0.6672
WRELM 8.6697 10.7735 32.3432 0.5422 0.6836 HF-WRELM 7.9918 10.1581 28.8852 0.6194 0.6714
ORELM 8.0171 9.7210 28.4607 0.5481 0.6977 HF-ORELM 7.6229 9.6868 25.9379 0.7379 0.6804

(−) indicates no measurement unit.

FIGURE 1 | Forecasting results of different comparative studies in Jinan.
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Summary: by taking Zhengzhou as an example, the
improvement percentage values of MAPE between the
different models are employed to summarize the contribution
and effectiveness of outlier handling and modeling in this study.
The detailed results are 8.2222% (HF-ELM vs ELM), 7.4577%
(HF-RELM vs RELM), 10.6916% (HF-WRELM vs WRELM),
8.8642% (HF-ORELM vs ORELM), 14.3166% (ORELM vs ELM),
13.7965% (ORELM vs RELM), and 12.0041% (ORELM vs
WRELM). It can be concluded that the HF algorithm and
ORELM model are suitable for outlier handling and modeling,
which make a great contribution to the success of the system
developed in this study.

Experiment II: The Effectiveness of Data
Decomposition
To verify the contribution of data decomposition in the
proposed data preprocessing module and the superiority of
the forecasting results of the outlier-robust forecasting
module developed, four models, i.e., HF-ORELM, HF-EMD-
ORELM-S, HF-EEMD-ORELM-S, and HF-VMD-ORELM-S,
are developed and compared in Jinan and Zhengzhou. In
detail, the HF-EMD-ORELM-S, HF-EEMD-ORELM-S, and
HF-VMD-ORELM-S employ different data decomposition
algorithms to decompose the data after outlier handling into
some modes, and the simple addition way is used to add all
modes’ forecasting results to obtain the daily PM2.5

concentration forecasting results. The MAE, RMSE, MAPE,
VR, and GRD values of HF-ORELM, HF-EMD-ORELM-S,
HF-EEMD-ORELM-S, and HF-VMD-ORELM-S are shown
in Table 3. Moreover, the forecasting results of these four
models in the two cities are shown in Figure 3, which
indicates that the HF-VMD-ORELM-S model is superior to
the original HF-ORELM model and the EMD- or EEMD-based

HF-ORELMmodel. In this experiment, two comparisons can be
designed as follows:

1) Comparison I is proposed to validate the superiority of the data
decomposition algorithm in the system developed by comparing
the HF-VMD-ORELM-S with other decomposition
method–based forecasting models, i.e., HF-EMD-ORELM-S
and HF-EEMD-ORELM-S. It can be observed that the HF-
EMD-ORELM-S model obtains worse forecasting performance
compared with the EEMD- and VMD-based models, whereas
the VMD-based model achieves better forecasting performance
compared with the EMD- and EEMD-based models. For
example, for daily PM2.5 concentration forecasting in
Zhengzhou, the MAE, RMSE, MAPE, VR, and GRD values of
HF-VMD-ORELM-S are 1.1259, 1.5228, 3.8169%, 0.9523, and
0.9222, respectively, whereas the metric values of HF-EMD-
ORELM-S are 4.2089, 5.9923, 14.1646%, 0.9024, and 0.7705, and
the values of HF-EEMD-ORELM-S are 2.1140, 2.7875, 7.0637%,
0.8161, and 0.8652. It is obvious that there are significant
differences in the forecasting power of these three models,
which further demonstrates the significance of selecting a
suitable data decomposition algorithm for the data
preprocessing module and the system developed. Therefore, in
this study, the VMDalgorithm is combinedwith outlier handling
to design the data preprocessing module, which also makes great
contributions to the success of the system developed.

2) Comparison II is designed to verify the superiority of the
outlier-robust forecasting module developed in daily PM2.5

concentration forecasting. In Experiment I, the superiority of
HF-ORELM over ORELM has been proven, which means the
outlier handling is an indispensable part of the forecasting
system developed. Against this background, there is no need
to compare the proposed outlier-robust forecasting module’s
results with those of the individual ORELMmodel. As a result,

FIGURE 2 | Forecasting results of different comparative studies in Zhengzhou.
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in Comparison II, the outlier-robust forecasting module is
compared with the HF-ORELM model to prove the
contribution of the VMD algorithm. From Table 3, it can
be observed that the HF-VMD-ORELM-S model performs
better than the HF-ORELM model in terms of MAE, RMSE,
MAPE, VR, and GRD. For example, in comparison with the
HF-ORELM model, the proposed HF-VMD-ORELM-S
model presents an improvement from (6.4068, 8.2988,
26.1079%, 0.4033, and 0.6598) to (1.1259, 1.5228, 3.8169%,
0.9523, and 0.9222) in terms of MAE, RMSE, MAPE, VR, and
GRD in Jinan. The results prove that the forecasting ability of
the HF-VMD-ORELM-S model is superior to the benchmark
model, which can provide a better basis for the success of the
system developed.

Summary: by taking Jinan as an example, the improvement
percentage values of MAPE between different models are

employed to summarize the contribution and effectiveness of
data decomposition in this study. The detailed results are
85.3803% (HF-VMD-ORELM-S vs HF-ORELM), 73.0532%
(HF-VMD-ORELM-S vs HF-EMD-ORELM-S), 45.9646% (HF-
VMD-ORELM-S vs HF-EEMD-ORELM-S), 45.7459% (HF-
EMD-ORELM-S vs HF-ORELM), and 72.9442% (HF-EEMD-
ORELM-S vs HF-ORELM). It can be concluded that the VMD
algorithm is superior to the EMD and EEMD algorithms and is a
promising technique for daily PM2.5 concentration
decomposition, which can also make a great contribution to
the success of the system developed.

Experiment III: The Effectiveness of the
Nonlinear Correction Module
As mentioned above, the third module, named the nonlinear
correction module, is proposed to correct the results of the

TABLE 3 | Forecasting results of HF-ORELM and HF-ORELM with different data decompositions.

Model MAE (μg/m3) RMSE (μg/m3) MAPE (%) VR (−) GRD (−)

Site: Jinan
HF-ORELM 6.4068 8.2988 26.1079 0.4033 0.6598
HF-EMD-ORELM-S 4.2089 5.9923 14.1646 0.9024 0.7705
HF-EEMD-ORELM-S 2.1140 2.7875 7.0637 0.8161 0.8652
HF-VMD-ORELM-S 1.1259 1.5228 3.8169 0.9523 0.9222

Model MAE (μg/m3) RMSE (μg/m3) MAPE (%) VR (−) GRD (−)

Site: Zhengzhou
HF-ORELM 7.6229 9.6868 25.9379 0.7379 0.6804
HF-EMD-ORELM-S 5.5281 6.4669 18.1868 0.9350 0.7335
HF-EEMD-ORELM-S 2.6744 3.6666 8.3559 0.7184 0.8596
HF-VMD-ORELM-S 1.4782 2.7491 5.0868 0.9365 0.9151

(−) indicates no measurement unit.

FIGURE 3 | Forecasting results of HF-ORELM with/without data decomposition.
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outlier-robust forecasting module to further improve the daily
PM2.5 concentration forecasting performance. To prove the
superiority and effectiveness of the proposed nonlinear
correction module and the system developed for point
forecasting, the performance of the point forecasting part
developed, i.e., HF-VMD-ORELM+EnError, is compared with
HF-VMD-ORELM-S and HF-VMD-ORELM+Error in this
section. In detail, the HF-VMD-ORELM-S model without a
correcting process is the best model in Experiment II, which
can provide the results of the devised forecasting module, whereas
the HF-VMD-ORELM+Error model is a model with a simple
error-addition strategy. The MAE, RMSE, MAPE, VR, and GRD
values of the system developed, HF-VMD-ORELM-S, and HF-
VMD-ORELM+Error are listed inTable 4; meanwhile, the results
of these three models are shown in Figure 4. Based on
Experiment III, the following conclusions can be obtained:

1) The HF-VMD-ORELM+Error model performs better than
HF-VMD-ORELM-S model in Jinan but performs worse than
HF-VMD-ORELM+Error in Zhengzhou, which indicates that
the simple error-addition strategy cannot guarantee the
effectiveness of error correction. Therefore, how to correct
the forecasting results is a challenging issue in forecasting
fields. In other words, the method of correcting forecasting
results plays a vital role in the success of the system developed.
In this context, a nonlinear correction module based on an
error ensemble strategy is presented to further improve the
model’s forecasting performance.

2) By comparing the HF-VMD-ORELM+EnError model and the
HF-VMD-ORELM+Error model, it can be found that the main
difference between these two models is the forecasting results
correcting method. As shown in Table 4, the forecasting results
obtained by the system developed are better than those
obtained by the HF-VMD-ORELM+Error model, with the
MAE, RMSE, MAPE, VR, and GRD values in Jinan and
Zhengzhou being (1.0744, 1.5525, 3.5736%, 0.9648, and
0.9228), and (1.3841, 2.7134, 4.8328%, 0.9439, and 0.9193),
respectively. Therefore, the HF-VMD-ORELM+EnError
model performs better than the HF-VMD-ORELM+Error
model, which proves the superiority of the nonlinear
correction module based on an error ensemble strategy.

3) The contribution of the proposed nonlinear correction module
and the superiority of the system developed can be measured by
comparing the point forecasting results of the system developed
with those of the HF-VMD-ORELM-S model. As shown in
Table 4, in comparison with the HF-VMD-ORELM-S model,
the proposed system presents an improvement from (1.4782,
2.7491, 5.0868%, 0.9365, and 0.9151) to (1.3841, 2.7134, 4.8328%,
0.9439, and 0.9193) in terms of MAE, RMSE, MAPE, VR, and
GRD in Zhengzhou. In previous experiments, the superiority of
the HF-VMD-ORELM-S model over other benchmark models
has been proven. Therefore, considering the system developed
performs better thanHF-VMD-ORELM-S, we can conclude that
the system designed in this study is superior to other models and
can be widely employed in daily PM2.5 concentration forecasting.

Summary: by taking the MAPE metric as an example, the
improvement percentage values between different models are
employed to summarize the contribution and effectiveness of

TABLE 4 | Metrics of the system developed and compared models.

Model MAE (μg/m3) RMSE (μg/m3) MAPE (%) VR (−) GRD (−)

Site: Jinan
HF-VMD-ORELM-S 1.1259 1.5228 3.8169 0.9523 0.9222
HF-VMD-ORELM+Error 1.1472 1.5203 3.9048 0.9529 0.9224
HF-VMD-ORELM+EnError 1.0744 1.5525 3.5736 0.9648 0.9228

Model MAE (μg/m3) RMSE (μg/m3) MAPE (%) VR (−) GRD (−)

Site: Zhengzhou
HF-VMD-ORELM-S 1.4782 2.7491 5.0868 0.9365 0.9151
HF-VMD-ORELM+Error 1.4252 2.6989 5.0681 0.9350 0.9192
HF-VMD-ORELM+EnError 1.3841 2.7134 4.8328 0.9439 0.9193

(−) indicates no measurement unit.

FIGURE 4 | Forecasting results of the system developed and compared
models in Jinan and Zhengzhou.
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the nonlinear correction module in this study. The detailed results
for Jinan are 6.3743% (HF-VMD-ORELM+EnError vs HF-VMD-
ORELM-S), 8.4819% (HF-VMD-ORELM+EnError vs HF-VMD-
ORELM+Error), and −2.3029% (HF-VMD-ORELM+Error vs HF-
VMD-ORELM-S), whereas the values for Zhengzhou are 4.9933%
(HF-VMD-ORELM+EnError vs HF-VMD-ORELM-S), 4.6428%
(HF-VMD-ORELM+EnError vs HF-VMD-ORELM+Error), and
0.3676% (HF-VMD-ORELM+Error vs HF-VMD-ORELM-S). It
can be concluded that the proposed nonlinear correctionmodule is
not only effective for improving the final forecasting results but
also is superior to the HF-VMD-ORELM+Error model.
Furthermore, the HF-VMD-ORELM+Error model may perform
worse than the HF-VMD-ORELM-S model. In other words, the
proposed nonlinear correction module is suitable for correcting
forecasting results, which can contribute to improving the
performance of the system developed.

Experiment IV: Interval Forecasting
In the system developed, the interval forecasting can be achieved by
the proposed interval forecasting part according to the results of
the point forecasting part, artificial intelligence–based distribution
evaluation, and interval forecasting theory. In order to perform the
interval forecasting, a distribution evaluation of daily PM2.5

concentration data is conducted. As mentioned above, the
traditional MLE method may not obtain the optimal
distribution function for a specific PM2.5 concentration dataset,
whereas artificial intelligence optimization is a powerful technique
for determining the optimal distribution. Therefore, in this study,
the advanced optimization algorithmnamed GWO is selected to fit
four typical distributions, i.e., Weibull, Gamma, Rayleigh, and
Lognormal. In order to prove the superiority of GWO, detailed
distribution is also determined byMLE, and the parameters and R2

values provided by MLE and GWO are presented in Table 5.
Furthermore, the comparison is also depicted in Figure 5.

On the basis of Table 5 and Figure 5, we find that the GWO-
based distribution evaluation can obtain the best R2 values for
each distribution function, which indicates that the GWO-based
distribution evaluation is superior to the MLE method and is
suitable for fitting the detailed distribution. As a result, the results
of the GWO-based distribution evaluation can be compared by
R2. As shown in Table 5, the R2 values of Weibull, Gamma,
Rayleigh, and Lognormal are (0.9879, 0.9936, 0.9873, and 0.9976)
and (0.9779, 0.9818, 0.9666, and 0.9879) in Jinan and Zhengzhou,
respectively. It can be observed that the Lognormal distribution

achieves the largest R2, which means that the Lognormal
distribution can effectively fit the daily PM2.5 concentration
data in Jinan and Zhengzhou. Thus, the optimal Lognormal
distribution obtained can be combined with the point
forecasting results and interval forecasting theory to achieve
the final interval forecasting.

The interval forecasting results under different significance
levels are depicted in Figure 6, and the corresponding evaluation
metric values are listed in Table 6. From Table 6, we can find that
the interval forecasting performances for Jinan and Zhengzhou
are different at the same significance level. For example, when α �
0.30, the FINAW and FICP values for Jinan and Zhengzhou are
(0.6268, 100.0000%) and (0.4695, 96.6667%), respectively. The
main reasons for this phenomenon are that the interval
forecasting performance largely depends on the point
forecasting performance. As the system developed has
achieved excellent point forecasting performance, it has also
achieved ideal interval forecasting results. Moreover, for the
same dataset, the FINAW and FICP values under five
significance levels are different. For instance, for the
Zhengzhou dataset, the FINAW and FICP values for α � 0.20
and α � 0.25 are (0.7711, 100.0000%) and (0.6097, 96.6667%),
respectively. Furthermore, the solid lines represent the actual
values, and the shaded areas represent the forecasting intervals in
Figure 6. Obviously, as most of the observations fall into the
shaded area, the interval forecasting ability of the system
established can be considered effective and good. According to
the abovementioned analysis and discussion, we can reasonably
conclude that the system developed can be a promising tool for
daily PM2.5 concentration interval forecasting.

CONCLUSION

Forecasting air pollution is not only a challenging research topic
but also a growing concern. To model and forecast the complex
PM2.5 concentration time series, in this study, a novel outlier-
robust point and interval forecasting system is developed, which
attempts to mitigate or solve some of the challenges in current
studies. In the system developed, the point forecasting part is
designed to provide future deterministic information on daily
PM2.5 concentration, whereas the interval forecasting part is
devised to present future uncertainty information. More
specifically, three modules, named the data preprocessing

TABLE 5 | Distribution parameters and R2 provided by MLE and GWO.

Site Method Weibull Gamma Rayleigh Lognormal

λ k R2 θ k R2 σ R2 μ σ R2

Jinan MLE 64.9598 1.7146 0.9708 17.6411 3.2567 0.9839 48.2826 0.9432 3.8896 0.5554 0.9956
GWO 59.1176 1.8952 0.9879 16.8538 3.1787 0.9936 41.7205 0.9873 3.8587 0.5689 0.9976

Site Method Weibull Gamma Rayleigh Lognormal

λ k R2 θ k R2 σ R2 μ σ R2

Zhengzhou MLE 71.8142 1.4689 0.9325 25.1562 2.5516 0.9494 57.8859 0.7784 3.9533 0.6057 0.9818
GWO 57.3570 1.5556 0.9779 23.2795 2.2547 0.9818 39.7569 0.9666 3.8587 0.5703 0.9879
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FIGURE 6 | Results of interval forecasting in Jinan and Zhengzhou.

FIGURE 5 | Distribution results provided by MLE and GWO.
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module, the outlier-robust forecasting module, and the nonlinear
correction module, are proposed in the point forecasting part.
The data preprocessing module, considering the negative
influence of outliers and noise on the development of the
model, is designed on the basis of outlier handling and data
decomposition for the purpose of solving the outlier data and
noise information issues simultaneously. Moreover, in order to
obtain a forecasting model with outlier robustness, the ORELM
model with superior performance is selected to design the outlier-
robust forecasting module to forecast each mode. Furthermore,
the nonlinear correction module is developed based on an error
ensemble strategy, which can mine information in the forecasting
results and further improve the model’s forecasting performance.
Afterward, the interval forecasting part is developed based on
artificial intelligence–based distribution evaluation and interval
forecasting theory, which can be incorporated with the point
forecasting results to obtain the range of future changes. The
experimental results illustrate that the system developed can not
only perform better than other compared models in point
forecasting but also provide uncertainty information in the
future. Moreover, outside the field of daily PM2.5 concentration

forecasting, the system developed can also be employed to solve
other challenging issues, including energy forecasting, economic
forecasting, and financial forecasting.

Although the system developed shows better performance in
daily PM2.5 concentration forecasting, there are still some limitations
that must be considered in future research. For example, other
features neglected in this study may make the forecasting more
reliable and practical and can further improve the forecasting
performance, which can be a promising subject for future studies.
Moreover, only 1-day-ahead forecasting is conducted by the system
developed; how to achieve multi-day-ahead forecasting is of great
importance and worth studying but is still a challenging task. As a
result, further studies about multi-day-ahead point and interval
forecasting for PM2.5 concentration can be considered an
important research direction in future studies.
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