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Continuous generation of radon gas by soil and rocks rich in components of the uranium
chain, along with prolonged inhalation of radon progeny in enclosed spaces, can lead to
severe respiratory diseases. Detection of radon-prone areas and acquisition of detailed
knowledge regarding relationships between indoor radon variations and geogenic factors
can facilitate the implementation of more appropriate radon mitigation strategies in high-
risk residential zones. In the present study, 10 factors (i.e., lithology; fault density; mean soil
calcium oxide [CaO], copper [Cu], lead [Pb], and ferric oxide [Fe2O3] concentrations;
elevation; slope; valley depth; and the topographic wetness index [TWI]) were selected to
map radon potential areas based on measurements of indoor radon levels in 1,452
dwellings. Mapping was performed using three machine learning methods: long short-
term memory (LSTM), extreme learning machine (ELM), and random vector functional link
(RVFL). The results were validated in terms of the area under the receiver operating
characteristic curve (AUROC), root mean square error (RMSE), and standard deviation
(StD). The prediction abilities of all models were satisfactory; however, the ELM model had
the best performance, with AUROC, RMSE, and StD values of 0.824, 0.209, and 0.207,
respectively. Moreover, approximately 40% of the study area was covered by very high
and high-risk radon potential zones that mainly included populated areas in Danyang-gun,
South Korea. Therefore, the map can be used to establish more appropriate construction
regulations in radon-priority areas, and identify more cost-effective remedial actions for
existing buildings, thus reducing indoor radon levels and, by extension, radon exposure-
associated effects on human health.
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1 INTRODUCTION

Radon is a radioactive inert gas, and the only gaseous element
produced during the radioactive decay of uranium and thorium.
Because the earth’s crust is rich in rocks and soil, which contain
uranium and thorium, radon of natural origin exists everywhere
and can be transferred from underlying soil and rocks to building
environments through cracks or holes in foundations. Although
people are frequently exposed to naturally occurring radon,
continuous inhalation of radon and its daughter species
destroys lung tissues through the emission of alpha particles,
thus increasing the risk of life-threatening diseases. The
International Agency for Research on Cancer and the World
Health Organization (WHO) report that radon (and its products)
is the second leading cause of lung cancer after tobacco products
(WHO, 2009; Cogliano et al., 2011; Yoon et al., 2016). To reduce
the preventable risks associated with radon exposure, the
recommended radon level in confined spaces has been set at
less than 148 Bqm−3; each 100-Bqm−3 increase is associated with
an approximately 16% increase of lung cancer-related mortality
(Kim et al., 2018; WHO, 2021). Thus, there is a growing need to
reduce radon levels in enclosed spaces, especially in residential
areas (Lee et al., 2015).

Investigations into indoor radon are underway in many
countries worldwide; various radon guidelines have been
published to raise awareness of its dangers (Dubois, 2005). In
2007, the Korean Ministry of the Environment organized a
comprehensive plan for measurement of indoor radon levels.
Since 2009, indoor radon measurements have been performed to
determine the indoor radon concentration (IRC), with the goal of
developing methods for mitigating radon exposure. The data led
to the establishment of a national radon map (Djamil, 2016).
However, the map was based on mean values for individual
administrative districts, where obtaining detailed location-based
information proved difficult. Furthermore, the mean indoor
radon value is higher in South Korea than in European
countries; the number of lung cancer-related deaths attributed
to indoor radon accumulation is also remarkably higher (Kim
et al., 2018). Consequently, there is a need to develop a detailed
radon distribution map to identify radon-priority areas and
implement effective methods to reduce the risk of radon
exposure.

Local geology, meteorological parameters, soil characteristics,
residence type, and building materials substantially contribute to
the variability in radon levels. Many studies have assessed the
relationships of radon levels with geogenic and anthropogenic
factors. Martínez et al. (2014) analyzed the spatial distribution of
radon with respect to meteorological and geological variables,
including atmospheric pressure, temperature, relative humidity,
and distance to fault. Relative humidity and temperature were
found to have the greatest impact on IRC values. Pásztor et al.
(2016) investigated spatial variations in radon levels with respect
to various meteorological variables (e.g., mean annual
precipitation, temperature, and evaporation), topographical
factors (e.g., elevation, aspect, slope, general curvature,
topographical position index, and the topographic wetness
index [TWI]), geology, land use/land cover, and physical soil

properties. Ciotoli et al. (2017) developed a geogenic radon
potential map for the Lazio region in Italy. Their analysis
revealed relationships of indoor radon levels with rock
permeability, local geology, fault density, and elevation. Park
et al. (2018) described the influence of environmental variables
(i.e., groundwater usage, season, building materials, residence
type, number of residential floors, and construction year) on
changes in radon accumulation in residential areas. Ivanova et al.
(2019) analyzed the spatial variability of radon levels according to
geological parameters including geotectonic units, rock type, and
distance to fault. They found that igneous and volcanogenic-
sedimentary rocks had high radon emanation. The results
provided insight into the combined impact of housing and
geology on IRC. Park et al. (2019) generated a geogenic radon
potential map of South Korea by considering the effects of
geology, fault density, subsoil gravel content, and surface soil
radium level on IRC values. They found that these factors were
responsible for 36% of the variability of radon levels in South
Korea. Phong Thu et al. (2020) evaluated the effects of soil particle
size, moisture content, temperature, and pH on radon emanation.
Notably, radon increased with increasing soil moisture content
and decreasing soil particle size. Kellenbenz and Shakya (2021)
investigated seasonal and annual variations of IRC according to
various factors (i.e., house type, floor level, and weather
conditions) in Pennsylvania, United States. Their findings
showed that geology influenced radon levels. In summary,
indoor radon exposure can be explained by interactions
among diverse variables; thus, the development of an ideal
strategy to identify radon-prone areas is a complex problem.
Direct and precise measurements of indoor radon levels must be
collected and interpreted by experts; precisely calibrated
equipment is also needed. Furthermore, continuous long-term
radon monitoring for individual dwellings is not feasible in some
instances, and long-term field surveys are needed for close
sampling intervals. In the context of insufficient numbers of
high-quality indoor radon measurements, mathematical
models can be applied to predict high-risk areas.

Geographical information systems, integrated with
knowledge- or data-driven methods, are currently regarded as
a cost-effective alternative for mapping radon levels. Knowledge-
driven methods typically rely on expert judgment to determine
the relative importance of the independent variables. Fuzzy logic
(Cerqueiro-Pequeño et al., 2020) and multi-criteria decision
analysis (Ciotoli et al., 2020; Giustini et al., 2021) are
knowledge-driven methods widely used to map radon-prone
areas. In contrast, data-driven methods employ mathematical
expressions to investigate the associations of an event with
various factors using small numbers of samples. These
methods can be classified into two main types: statistical and
machine learning. The frequency ratio (FR) is the most
commonly used bivariate statistical model, and can evaluate
probabilistic relationships between variables (Cho et al., 2015;
Hwang et al., 2017). Although they have the advantage of
simplicity, bivariate and multivariate statistical methods both
have limited accuracy because of their inability to extract and
model nonlinear relationships among variables (Li et al., 2016).
Support vector machines (Petermann et al., 2021), random forest
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algorithms (Vienneau et al., 2021), multivariate adaptive
regression splines (Bossew et al., 2020), bagged neural
networks (Timkova et al., 2017), extreme gradient boosting
(Rafique et al., 2020), weighted k-nearest neighbor algorithms
(Pegoretti and Verdi, 2009), and artificial neural networks
(Torkar et al., 2010; Duong et al., 2021) are the most
commonly used machine learning methods for predicting
radon anomalies. Importantly, geographical information
systems allow data from various sources, with different scales,
to be combined. Machine learning is a promising alternative to
statistical methods; it can be applied to analyze complex data with
nonlinear correlations and explore latent interactions among all
factors, without any statistical assumptions. Moreover, these
algorithms can robustly manage noisy and missing data (Al-
Fugara et al., 2020). However, the inadequate accuracy of some
machine learning methods, for example due to overfitting or
potential convergence to local minima (Liu et al., 2021), has led to
the use of deep learning-based algorithms, which may enable
more accurate prediction of radon levels in enclosed spaces. Deep
learning algorithms are able to extract the main features from the
input. Deep learning algorithms can identify complex
relationships among interdependent variables when processing
large unstructured datasets. Against the background of the
complex nonlinear relationships of indoor radon levels with
various factors, as well as the strengths and weaknesses of
each above-mentioned data-driven approach, selection of an
appropriate algorithm with acceptable accuracy can greatly
influence the likelihood of detection of high radon areas.

Themain objective of this study was tomap radon-prone areas
more accurately with the aid of machine learning methods
(i.e., long short-term memory [LSTM], extreme learning
machine [ELM], and random vector functional link [RVFL]).
To our knowledge, this is the first such study conducted in
Danyang-gun, South Korea. Additionally, this study aimed to
analyze associations of radon risk areas with various geological,
topographical, and geochemical factors and pinpoint the most
effective variables.

Essentially, machine learning algorithms’ architecture and
hyper-parameters’ value significantly affect the prediction
ability of a model and needs to be fine-tuned during the
modeling to assist the researchers with achieving results which
are more accurate. Robustness, fast training rate, minimum need
to adjust parameters during the training process, acceptable
generalization ability, and satisfactory capability of universal
approximation could be mentioned as the most prominent
advantages of selecting LSTM, ELM, and RVFL algorithms
compared to the conventional machine learning technique
(Ding et al., 2015; Zhang and Suganthan, 2016; Diego et al.,
2021). The main novel feature of the present study is to compare
the ability of the three above-mentioned machine learning
methods to determine which locations enjoy high radon
concentrations in spite of the fact that there is not sufficient
data available and the relationships among geogenic drivers of
IRC spatial variability is complex. The results could help protect
the public against the potentially lethal effects of protracted
exposure to radon.

2 MATERIALS AND METHODS

2.1 Study Area
Danyang-gun is a county in the northeast region of
Chungcheongbuk-do Province, South Korea, with a population
of approximately 29,970. It is located in the range of 128°13′ to
128°39′E and 36°47′ to 37°09′N, and has an area of 780.67 km2

(Figure 1). It is well-known for its scenic surroundings, including
the Sobaek Mountain range and Namhan River. Sobaek
Mountain is the second highest mountain in South Korea
(elevation � 1,439 m) and the Namhan River flows for
23.7 km from northeast to southwest along the Sobaek
Mountains. Only 11.2% of the county is cultivable, and 83.7%
is mountainous. Because of this rugged terrain, both settlements
and urban areas are developing in the hills and valleys. The
annual mean precipitation is 1,113 mm and the annual mean
temperature is 11.5°C; the highest and lowest temperatures are
17.5 and 6.6°C, respectively (KMA, 2021).

Danyang-gun is composed of various lithological units and
strata, as well as complex and diverse geological structures. It
consists of Precambrian base rock, Paleozoic sedimentary rock,
Mesozoic sedimentary rock, and igneous rock (Figure 2). The
Precambrian rock is located in the eastern study area and
coincides with Sobaek Mountain. This rock has undergone
granitization after regional metamorphism; it is divided into
granitic and migmatitic gneisses (Won and Lee, 1967). The
sedimentary rock includes unknown age quartzite, Paleozoic
clastic sedimentary rock, and carbonate rock. The quartzite
covers carbonate rock on the northwest side with an
unconformity and is located at the western end of the study
area. However, the sequence of formation is unclear because there
is no direct contact with other formations (Won and Lee, 1967).
The clastic sedimentary rock is composed of Cambrian quartzite
and slate; it generally shows a strike of N30°E or N45°E. The
carbonate rock is Cambrian–Ordovician and courses in the NE
and NW directions (Aum et al., 2019). The NE carbonate rock
consists of limestone, dolomitic limestone, dolomite, and banded
limestone. The Mesozoic sedimentary rock covers this carbonate
rock with a clinounconformity. This formation is mostly
composed of clastic sedimentary rock such as shale, sandstone,
and conglomerate; layers containing anthracite have also been
identified.

A fault exists in the northern part of the most recent Mesozoic
formation, and carbonate rock from the NW direction is
distributed to the north of the study area according to this
fault. Most carbonate rock from the NW direction is
composed of limestone and dolomite; several types of clastic
sedimentary rock of unknown age are also present. Mesozoic rock
is divided into sedimentary and igneous rock. The sedimentary
rock is distributed in the NE direction, as described above. The
igneous rock intruded in the Cretaceous period; it includes biotite
granite, quartz porphyry, and granite porphyry. The biotite
granite, which is widely distributed in the south, is in contact
with sedimentary rock; this forms a contact metamorphic zone.
There are faults in the NE and NW directions in the study area.
The faults in the NE direction cross the center of the study area,
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and the geology on both sides is clearly distinguished by these
faults. The faults in the NW direction cut the sedimentary
formations with an NE strike in an almost perpendicular
direction (Won and Lee, 1967).

2.2 Theoretical Background of the Methods
2.2.1 Long Short-Term Memory
LSTM is a deep learning algorithm with an architecture
analogous to that of an artificial recurrent neural network. The
LSTM is designed to capture long-term dependencies between
variables; it has been developed to resolve the exploding and
vanishing gradient problem of recurrent neural networks via its
memory cell structure (Vu et al., 2021). A memory cell comprises
a forget gate (ft), an input gate (it), and an output gate (ot); it
regulates the flow of information entering and exiting the cell.
Gates are employed to remove, maintain, or add information to
the cell. The forget gate is the first filter determining whether
information passes to the next time step or is discarded from the
cell; it examines the current input (xt) and previous hidden state
(ht−1). Subsequently, the input gate decides on the input that
should be employed to update the memory; C̃t contains the new
information. Finally, the output gate determines the information
that should be regarded as output (Fang et al., 2021). This process
can be expressed mathematically, as follows (Shi et al., 2021):

Forget gate: ft � σ(Wf · [ht−1, xt] + bf) (1)

Input gate: { it � σ(Wi · [ht−1, xt] + bi)
C̃t � tanh(Wc · [ht−1, xt] + bc) (2)

Output gate: ot � σ(Wo · [ht−1, xt] + bo) (3)

where σ, W, and b are the sigmoid function, weight matrix, and
corresponding bias vector of each gate, respectively. The new
memory cell is updated as follows:

Ct � ft × Ct−1 + it × C̃t (4)

where × denotes the element-wise multiplication of two vectors,
and Ct−1 and Ct are the previous and new memory cell states,
respectively (Chen et al., 2020). The hidden layer is a vector of
probabilities is passed to the next time step; it is defined as
follows:

ht � ot × tannh(Ct) (5)

Finally, the output of the LSTM network at time t is calculated
as follows (Zhang et al., 2020):

yt � σ(Wyht + by) (6)

2.2.2 Extreme Learning Machine
The ELM, a type of feed-forward neural network, has been widely
used to solve regression, clustering, image processing and
classification problems. Recently, the ELM has attracted
considerable attention from researchers because of its high

FIGURE 1 | Map of the study area showing radon monitoring sites.
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generalization performance and remarkably fast learning rate
compared with traditional methods. The minimal requirement
for human intervention is another advantage of the ELM
approach, where most parameters can be randomly
generated (Yahia et al., 2021). In particular, the ELM can
adaptively determine the number of nodes in the hidden
layer, randomly assign the input weights and hidden layer
biases using an activation function, and obtain output layer
weights through the least squares method; these abilities
appreciably enhance the learning speed and generalization
ability (Ding et al., 2015). For a given training dataset
composed of N samples (xi, ti) ∈ Rn × Rm(i � 1, 2, . . . , N),
the ELM model is defined mathematically as follows (Ding
et al., 2015):

∑Ñ
i�1 βifi(xj) � ∑Ñ

i�1 βif(ai0xj + bi) � tj j � 1, 2, . . . , N (7)

where Ñ represents the number of hidden nodes; good
generalization performance will be obtained if Ñ≪N. 0
indicates the inner product of vectors, f(x) is the non-linear
activation function, and bi denotes the i -th hidden node bias.
Finally, ai and βi are the weight vectors, such that ai connects the
input nodes to the i -th hidden node and βi connects the i -th
hidden node to the output nodes. Equation 7 can be simply
expressed as follows:

Hβ � T (8)

where β �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
βT1
βT2
«
βTN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
N×m

and T �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
TT
1

tT2
«
tTN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
N×m

. H, as the hidden layer

output matrix, is represented as follows:

H(a1, a2, . . . , aÑ, b1, b2, . . . , bÑ, x1, x2, . . . , xN)
� [f(a10x1 + b1) / f(a

Ñ
0x1 + b

Ñ
)

« 1 «
f(a10xN + b1) / f(aN0x

Ñ
+ b

Ñ
)]

N×Ñ (9)

In summary, the ELM stages can be described as follows:
After defining f(x) and Ñ, training is initiated, and ai and bi

are randomly assigned (i � 1, 2, . . . , Ñ). Thereafter, H is
calculated according to Eq. 9. Finally, the output weight β is
calculated as follows:

β̂ � H†T (10)

where H† shows the generalized inverse of H, which can be
computed using various methods (e.g., singular value
decomposition, orthogonal projection, and iterative and
orthogonalization methods) (Rao and Mitra, 1973). However,

FIGURE 2 | Geological map of Danyang-gun (Modified from Chwae et al. (1995)).
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the singular value decomposition method is mostly used in ELM
implementations because of the limitations of the other
approaches (Liang et al., 2006).

2.2.3 Random Vector Functional Link Networks
RVFL networks represent another type of single hidden layer
feed-forward neural network; these have received considerable
attention because of their ability to non-iteratively adjust network
weights, fast convergence, and simple network architectures.
Moreover, unlike ELM networks, RVFL networks have direct
connections between input and output nodes, thus preventing
overfitting problems (Zhang et al., 2019). In RVFL networks,
hidden-to-output and input-to-output node weights can be
determined using the Moore–Penrose pseudo-inverse or ridge
regression method during the training stage; other parameters
(e.g., weights between the input-to-hidden node and biases) are
randomly selected in the interval [ − 1, 1] without iterative tuning
(Cao et al., 2018; Abd Elaziz et al., 2021). An RVFL network with l
hidden nodes can be formulated as follows (Zhang et al., 2019):

yi � ∑l

j�1 βjhj(xi) +∑l+d
j�l+1 βjxij i � 1, 2, . . . , N (11)

where (xi, yi) ∈ Rd × Rc(i � 1, 2, . . . , N) represents the training
samples, among which xi and yi are d- and c -dimensional input
and target vectors, respectively. hj(xi) represents the activation
value for the j -th hidden node, xij denotes the j -th attribute in
the i -th instance, and β ∈ R(l+d)×c indicates the output weight
matrix for the hidden nodes; these nodes can be calculated
through the least squares method, as follows (Zhang et al., 2019):

β � (HTH)−1HTY (12)

where H � ⎡⎢⎢⎢⎢⎢⎣ h1(x1) / hl(x1)
« 1 «
h1(xN) / hl(xN)

x11 . . . x1d

« 1 «
xN1 . . . xNd

⎤⎥⎥⎥⎥⎥⎦
N×(l+d)

.

2.3 Factor Selection
Various geological, geochemical, and topographical factors are
associated with IRC values. Following a literature review and
assessment of the available data, as well as application of the FR
method, 10 effective factors were identified for IRC modeling
(Table 1). These factors included lithology; fault density; mean
soil calcium oxide (CaO), copper (Cu), lead (Pb), and ferric oxide

(Fe2O3) concentrations; elevation; slope; valley depth; and TWI.
Importantly, the FR values reflect probabilistic spatial
relationships of dependent variables (IRC values, obtained
from field measurements) with the various classes of each
independent variable (“radon factors”). The FR values can be
calculated as follows:

FR � Nr/Tr

Np/Tp
(13)

where Nr is the number of training samples in each subclass of
IRC effective factors, Tr denotes the total number of training
samples,Np is the is the number of pixels of each sub-class of the
effective factor, and Tp indicates the total pixels of the study area.
An FR value >1 indicates a high correlation between radon level
and a particular factor, an FR value <1 indicates a low correlation,
and an FR value of 1 indicates a moderate correlation (Al-Abadi
et al., 2016).

To identify relationships among the included effective factors,
multicollinearity analysis was performed based on the variance
inflation factor (VIF) and tolerance (TOL) (Arabameri et al.,
2021c). Importantly, some factors were found to exert a negative
influence on the predictive capacity of the model. Such variables
were removed from the model to increase its prediction accuracy
(Miraki et al., 2019). The relative importance and predictive
abilities of the various factors were determined using the
information gain ratio (IGR). This is an entropy-based
method that only considers variables associated with
occurrence of an event (Bui et al., 2018). A higher IGR value
indicates that a factor has greater impact on the model
predictions (Panahi et al., 2021).

2.4 Geospatial Database of Radon Factors
Radon levels and their controlling factors vary spatially, and the
selection of appropriate predictive variables is important for
radon mapping accuracy. As shown in Table 1, 10 geogenic
effective factors were used to model the indoor radon level. Local
lithology and fault density are crucial factors affecting radon
production and distribution, even in adjacent areas (Buttafuoco
et al., 2010). Radon is released naturally via uranium-bearing
mineral decay, such that fractures and faults provide an
important route for radon migration from bedrock to the

TABLE 1 | Factors considered to map indoor radon levels.

Category Factors Resolution or scale Data source

Geological Lithology 1:250,000 Korea Institute of Geoscience and Mineral Resources (KIGAM; http://www.kigam.re.kr)
Fault density 1:50,000

Geochemical Mean soil CaO concentration 1:250,000
Mean soil Cu concentration
Mean soil Pb concentration
Mean soil Fe2O3 concentration

Topographical Elevation 10 × 10 m National Geographic Information Institute (NGII; http://www.ngii.go.kr)
Slope
Valley depth
TWI
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surface (Ciotoli et al., 2017). For the current study, geological and
geochemical maps from the Korea Institute of Geoscience and
Mineral Resources (https://www.kigam.re.kr/) were used
(Figure 3). In addition to site geological characteristics, the
concentrations of some chemical elements (i.e., CaO, Cu, Pb,
and Fe2O3) remaining in minerals and soil after erosion can affect
IRCs. Soil geochemistry can serve as a predictor of radon level
(Ball et al., 1991; Schumann and Gundersen, 1997; Drolet et al.,
2014). The effects of bedrock geochemistry on IRC are reportedly
greater than those of topsoil properties, because a large portion of
the topsoil tends to be removed during construction; thus, only a
few centimeters remain (Appleton, 2013).

In addition to geological variables, topographical factors were
considered for our indoor radon potential mapping. The data
were derived from a digital elevation model with a resolution
of 10 m, provided by the National Geographic Information
Institute (http://www.ngii.go.kr). The data were processed
by SAGA software (http://www.saga-gis.org/en/index.html)
to produce slope, valley depth, and TWI maps (Figure 3).

In the present study, the TWI was used as a proxy of the
spatial distribution of soil moisture, and was calculated as
follows:

TWI � ln
β

tan α
(14)

where β and α are the cumulative catchment area in m2 and slope
angle in radians, respectively (Arabameri et al., 2021b). The TWI
can reflect the water transmissivity and infiltration rate at a given
location. Areas with low slope angles have high TWI values, while
steeper areas have low TWI values (Mattivi et al., 2019). Notably,
pores saturated with water trap radon in the soil and slow its
transport through soil into the atmosphere (Kellenbenz and
Shakya, 2021; Shahrokhi and Kovacs, 2021). However, soil
moisture content can influence radon escape from mineral
matter if fewer than 30% of the soil pores are filled with
water; higher soil moisture content leads to a considerable
reduction in radon emanation because of decreased gas

FIGURE 3 | Indoor radon maps: (A) elevation, (B) slope, (C) TWI, (D) valley depth, (E)mean soil CaO concentration, (F)mean soil Cu concentration, (G)mean soil
Fe2O3 concentration, (H) mean soil Pb concentration, (I) lithology, and (J) fault density.
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permeability (Je et al., 1999). Furthermore, large valley depth
values indicate areas with low elevation and gentle slopes
(Figure 3). In such areas, the infiltration rate is high; the high

soil wetness and fine texture lead to low permeability, in turn
causing convective radon flow and slow soil gas exhalation
(Wiegand, 2001).

FIGURE 4 | Flowchart of the method used to map indoor radon potential.
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2.5 Model Development
The generation of a radon inventory map is important for
developing a machine learning-based model. In the current
study, with the aim of obtaining representative samples of
indoor radon levels, 1,452 dwellings were selected at random
throughout the study area. Since 2008, passive IRCmeasurements
have been conducted by National Institute of Environmental
Research (NIER) using alpha-track detectors (Raduet; Radosys
Ltd., Budapest, Hungary). The detectors were typically positioned
in the living room, where residents spent most of their time. Each
measurement period (all in winter) was 90 days in duration; the
collected data were returned to NIER for analysis, and showed
that the IRC value exceeded the recommended level of 148 Bqm−3

in 726 samples. To develop the model, samples were classified in a
binary manner in terms of their IRC values. Samples with IRC
>148 Bqm−3 were coded as 1, indicating locations with high
radon levels. All remaining samples with low IRC values were
coded as 0, indicating locations with low radon levels. Two classes
of data (high and low radon levels) with equal numbers of
samples (726) were randomly divided into training and testing
subsets at the ratio of 70:30 (Kadirhodjaev et al., 2020; Panahi
et al., 2021; Roy et al., 2021). The distribution of the training and
testing samples is illustrated in Figure 1. To build the model, the
training dataset was constructed by combining 508 samples
belonging to the high and low radon level classes. Similarly, to
validate the predictive accuracy of the model, the testing dataset
was constructed from 218 samples that belonged to the high and
low radon level classes. The training and testing datasets were
then superimposed with all of the radon factors to extract their
attribute characteristics. Finally, the data were transferred into
MATLAB software (https://www.mathworks.com) to construct
the LSTM, ELM, and RVFL models.

2.6 Model Validation
Model validation is critical to confirm the reliability of machine
learning algorithms. Various statistical analysis methods are used
to evaluate modeling accuracy. The area under the receiver
operating characteristic curve (AUROC) is a useful
quantitative parameter, where accurately detected events are
plotted on the y-axis (i.e., sensitivity) against false detections
on the x-axis (i.e., 1–specificity). AUROC can be constructed
from both training and testing datasets, to yield success and

prediction rates, respectively. The success rate curve represents
model accuracy according to the locations of the samples; the
prediction rate curve indicates the predictive power or
generalizability of the model (Golkarian and Rahmati, 2018).
The AUROC takes a value between 0 and 1, where values closer to
1 reflect better predictive ability (Park et al., 2017).The root mean
square error (RMSE) and standard deviation (StD) are another
statistical approaches used to assess the prediction accuracy of a
model with n total variables, as follows:

RMSE �
�����������������������
1
n
∑n

i�1 (Xpredicted −Xactual)2√
(15)

StD �
�������������������������
1
n
∑n

i�1 (Xpredicted −Xpredicted)2√
(16)

where Xpredicted is the mean value of the predicted dataset,
Xpredicted and Xactual indicate the predicted and actual values
of the variable, respectively. An overview of the methods used for
indoor radon potential mapping is provided in Figure 4.

3 RESULTS

3.1 Multicollinearity and IGR Analysis
Collinearity among effective radon factors was determined by
calculating the VIF and TOL, where VIF> 10 and TOL< 0.1
indicate collinearity among predictors (Arabameri et al., 2021a).
As shown in Table 2, the VIF and TOL values of the selected
factors were lower than the critical values; thus, there was no
collinearity among inputs. Notably, elevation had the lowest TOL
(0.316) and highest VIF (3.160).

The IGR method was applied to rank the predictive
capabilities of the variables; the results indicated that elevation
had the strongest effect on radon-prone area mapping (IGR �
0.61), followed by lithology (0.32), valley depth (0.30), and mean
soil Cu concentration (0.29). In fact, all factors with IGR> 0 had
predictive power (Table 2).

3.2 Assessment of the Contributions of
Each Factor to Model Performance
Various geogenic factors can affect radon levels; this can be
quantified through statistical modeling, such as the FR
method. Stronger correlations are indicated by higher FR
values, while FR< 1 indicates a weak relationship between a
given predictor and the IRC value. As shown in Table 3, 10
variables were used to predict areas with potentially dangerous
radon levels. The results implied that an elevation of 120–242 m
(FR � 3.29) had the greatest influence on the IRC. Importantly,
approximately 80% of Danyang-gun is mountainous, with a
shallow soil profile that mostly contains coarse fragments. This
promotes soil permeability and movement of radon gas within
the soil (Hauri et al., 2012). In contrast, soil gas accumulation in
lowlands is high; thus, it can easily infiltrate indoor environments
via the soil through openings and cracks in basement
foundations. Analysis of the FR values for the slope factor
showed that the highest value (2.41) was associated with the

TABLE 2 | Multicollinearity analysis using VIF, TOL, and IGR.

Effective factor Collinearity statistics IGR

TOL VIF

Elevation 0.316 3.160 0.61
Lithology 0.647 1.546 0.32
Valley depth 0.554 1.805 0.30
Mean soil Cu concentration 0.550 1.819 0.29
Mean soil Pb concentration 0.618 1.618 0.25
Slope 0.488 2.049 0.25
TWI 0.561 1.782 0.24
Mean soil Fe2O3 concentration 0.790 1.266 0.13
Mean soil Cao concentration 0.749 1.335 0.13
Fault density 0.778 1.286 0.03
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TABLE 3 | Spatial relationships of predictor variables with the IRC values, determined through FR analysis.

Factor Classes Percentage of domain Percentage of radon
monitoring sites

Frequency ratio (FR)

Elevation (m) 120–242 16.85 55.38 3.29
243–316 16.70 28.46 1.70
317–401 16.67 10.77 0.65
402–517 16.69 4.87 0.29
518–693 16.60 0.51 0.03
694–1,370 16.48 0.00 0.00

Slope (degree) 0–13.5 16.50 39.74 2.41
13.6–21.9 16.84 15.38 0.91
22–27.2 16.24 12.05 0.74
27.3–31.9 17.30 13.33 0.77
32–37 16.65 8.97 0.54

37.1–79.9 16.47 10.51 0.64

Valley depth (m) −83 to 36 16.36 4.36 0.27
36–67.9 16.65 5.90 0.35
68–96.3 16.57 13.08 0.79
96.4–125 16.77 17.95 1.07
126–160 17.21 25.13 1.46
161–370 16.45 33.59 2.04

TWI 0.36–3.66 38.36 30.26 0.79
3.67–4.21 33.55 28.97 0.86
4.22–4.76 15.45 14.36 0.93
4.77–5.58 6.50 13.08 2.01
5.59–7.32 4.06 10.77 2.65
7.33–23.7 2.09 2.56 1.23

Mean soil CaO concentration (0.11 wt%) 0.27–1.39 16.36 26.64 0.27
1.4–2.32 20.86 57.76 0.58
2.33–3.62 16.83 97.49 0.97
3.63–5.86 16.18 147.39 1.47
5.87–10.1 15.22 102.75 1.03
10.2–47.8 14.54 190.48 1.90

Mean soil Cu concentration (ppm) 0–19.9 16.20 25.13 1.55
20–28.3 16.25 25.90 1.59
28.4–33.6 18.99 10.77 0.57
33.7–37.8 16.18 14.87 0.92
37.9–46.1 17.58 14.10 0.80
46.2–267 14.80 9.23 0.62

Mean soil Pb concentration (ppm) 0–20.8 12.81 22.56 1.76
20.9–24.7 20.07 26.67 1.33
24.8–27.3 15.57 12.56 0.81
27.4–31.2 22.12 22.56 1.02
31.3–35.1 14.24 7.44 0.52
35.2–331 15.18 8.21 0.54

Mean soil Fe2O3 concentration (0.02 wt%) 0.42–4.67 16.46 24.36 1.48
4.68–5.38 16.33 17.95 1.10
5.39–5.84 16.77 21.28 1.27
5.85–6.46 16.66 15.38 0.92
6.47–6.92 16.54 7.18 0.43
6.93–11 17.25 13.85 0.80

Fault density 0–0.013 41.57 27.11 0.65
0.014–0.12 10.81 16.62 1.54
0.13–0.23 12.27 9.97 0.81
0.24–0.33 11.47 10.23 0.89
0.34–0.57 12.40 9.46 0.76
0.58–1.2 11.49 26.60 2.32

Lithology CEdls 3.98 2.30 0.58
CEdy 2.18 29.92 13.71

(Continued on following page)
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class of 0–13.5°. This finding implies that the IRC decreases in
sloped areas because the released radon is rapidly diluted in
outdoor air (Appleton, 2013). In terms of valley depth and TWI,
the highest FR values were found in the sixth (161–370 m) and
fifth (5.59–7.32) classes, respectively. These factors reflect the
effects of hydrological variables (e.g., rainfall-runoff and
infiltration rates) and soil moisture content on soil gas
exhalation capacity; this capacity is generally diminished when
soil wetness is increased (Sasaki et al., 2004; Raduła et al., 2018).
Analysis of the relationship between the radon emanation rate
and presence of specific uranium- and radium-containing
minerals (i.e., in the host rock and remaining soils after
weathering) showed that the highest values of FR were 1.47,
1.59, 1.76, and 1.48 for mean soil CaO, Cu, Pb, and Fe2O3

concentrations, respectively. For all factors, the FR values were
>1, indicating strong correlations with radon levels at the
monitoring sites. Furthermore, radon levels were high in areas
where the fault density varied between 0.58 and 1.2 (FR � 2.32).
Notably, fault systems located in fracture zones provide a route
for radon to migrate upward from deeper sources (Han et al.,
2006). Finally, in terms of lithology, the FR analysis yielded higher
values, of 200.65, 32.74, and 13.71, for Cretaceous acidic dike
(Kad), Cretaceous quartz porphyry (Kqp), and Cambrian
quartzite and slate (CEdy) units, respectively. Generally,
sedimentary, igneous, and metamorphic rocks contain variable
amounts of uranium and radium, depending on the rock
formation processes (Pasculli et al., 2014).

3.3 Radon Potential Mapping
Themaps generated using the LSTM, ELM, and RVFL algorithms
are shown in Figure 5. The maps included five classes of radon-
prone areas (very low, low, moderate, high, and very high), based
on the quantile method (Khosravi et al., 2018). The percentage
area of each class on each map is shown in Figure 6. The ELM
model was the most accurate; it categorized 19.62, 20.64, 19.84,
20.01, and 19.88% of the study area into the very low, low,
moderate, high, and very high classes. As depicted in
Figure 5, high radon levels were observed in central and

southwestern parts of the study area due to the distribution of
sedimentary rock and unconsolidated deposits such as carbonate,
shale, sandstone, conglomerate, limestone, and dolomite, all of
which are rich in uranium and organic materials. These findings
were consistent with the results of previous studies (Cho et al.,
2015; Hwang et al., 2017; Kim and Ha, 2018; Park et al., 2019).

The reliability of the results was checked using the FR method,
which revealed that most of the samples with high radon levels
were from the very high and high radon potential areas. Thus, the
models exhibited satisfactory performance in terms of study area
classification. The AUROC values were calculated to
quantitatively evaluate the predictive accuracy of each model.
The AUROC values for the success rate curve analysis of the
LSTM, ELM, and RVFL models were 0.81, 0.83, and 0.82,
respectively. The AUROC value for the prediction rate curve
analysis was 0.82 for the ELM model; the LSTM and RVFL
models had lower values of 0.80 and 0.78, respectively (Figure 7).
The RMSE values exhibited a similar pattern. As shown in
Figure 8, analysis based on training data showed that the
RMSE was lowest for the ELM model (0.152); the LSTM and
RVFL models exhibited higher RMSEs of 0.163 and 0.182,
respectively. Further analysis based on the testing data showed
that the RMSEs of the ELM, LSTM, and RVFLmodels were 0.209,
0.232, and 0.0286, respectively. The standard deviation (StD)
values for the ELM model (0.152 and 0.207) were lower than
those for the LSTM and RVFL models, during both the training
and validation phases. In summary, by comparison of the
AUROC, RMSE, and StD values calculated using the training
and testing datasets, all of the evaluated models had acceptable
performance in terms of classifying radon-prone areas; however,
the ELM model was slightly superior to the two other models.

4 DISCUSSION

As a subclass of data-driven methods, machine learning
algorithms have attracted attentions in geospatial studies
because of their robust performance in modelling nonlinear

TABLE 3 | (Continued) Spatial relationships of predictor variables with the IRC values, determined through FR analysis.

Factor Classes Percentage of domain Percentage of radon
monitoring sites

Frequency ratio (FR)

CEOyls 29.54 7.42 0.25
Cp 3.67 7.42 2.02
Jb 5.55 8.18 1.47
Kad 0.06 12.28 200.65
Kbgr 8.17 2.05 0.25
Kgp 0.34 0.26 0.74
kq 1.55 2.81 1.81
Kqp 0.84 27.37 32.74
Odls 7.18 0.00 0.00
PCEgrgn 15.62 0.00 0.00
PCEmgn 6.32 0.00 0.00
PCEygo2 0.84 0.00 0.00
Pp 3.44 0.00 0.00
Qa 8.00 0.00 0.00
Trp3 2.71 0.00 0.00
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problems. The present study was conducted to determine the
effects of geogenic factors on radon levels in residential
environments, and to identify areas of high radon risk using
machine learning methods. To fulfill these aims, IRCs were
measured during field surveys of 1,452 dwellings. Notably,

IRCs exceeded the threshold value (148 Bqm−3) in 726
locations; they varied from 148.7 to 1,775.1 Bqm−3, with a
mean value of 346.9 Bqm−3. This study demonstrated that the
geological and topographical properties of a given site are the
fundamental drivers of IRC spatial variability. Higher IRC values

FIGURE 5 | Radon potential maps derived from the (A) LSTM, (B) ELM, and (C) RVFL models.
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were observed in the central and southwestern parts of the study
area (Figure 5), where the dominant lithology is limestone; the
higher fault density in that region facilitates radon migration
from bedrock to the surface. These results were consistent with
the findings of Park et al. (2019), who reported that the mean
IRCs were higher in Danyang than other counties in South Korea;
the high values in that study were attributable to coal-bearing
formations in the Daedong system and limestone intercalation in
the Pyeongan system. Additionally, more than 200 limestone
caves are present in Danyang; radon gas can easily accumulate in
the holes within limestone areas andmoves to the surface through

faults and fractures. Therefore, lithology can be considered as a
key predictor in defining geogenic radon-prone areas, in line with
former studies including Przylibski et al. (2011) and Cho et al.
(2015), who revealed the relationship between radon levels and
variability of lithological units in the study area. In addition, Kim
et al. (2011) pointed out that the high IRC values were correlated
with the concentration of radionuclides in the surface soil and
granitic rocks distribution in South Korea.

Furthermore, elevation had a greater effect on the IRC values
in the present study than lithology, according to the IGR analysis.
In highland areas with steep slopes, soil has coarser fractions;
consequently, it also has high permeability, such that radon gas
emitted from rocks and surficial soil can easily migrate to the
atmosphere and rapidly disperse in open air. Conversely, in areas
of low elevation with gentle slopes, where most of the residential
areas are located, indoor radon levels are high because there are
no mitigation activities (Cinelli et al., 2015). Oliver and Khayrat
(2001) showed the inverse relationship between radon
concentrations and elevation. It perfectly overlaps the findings
of Siaway et al. (2010), Mose et al. (2010), and Cho et al. (2015),
who concluded that in highlands with steep slopes, indoor
radon levels may be reduced because of high soil permeability.
The presence of coarser soil with limited moisture leads to less
soil accumulation of radon beneath buildings because of more
rapid dilution of radon emanating from host rocks in the
outdoor air.

Accurate determination of the geographical distribution of
IRCs and prediction of radon priority areas can inform
construction regulations and promote more cost-effective
radon policies. We used three machine learning algorithms
(i.e., LSTM, ELM, and RVFL) to map areas of high radon risk.
The AUROC, RMSE, and StD values indicated that the ELM was
superior to the LSTM and RVFL, in terms of predictive accuracy,
during both the training and validation phases. The main
advantage of the ELM method is that only the hidden layer
weights require adjustment; therefore, it has better
generalizability and is less computational complex, especially
for large-scale samples (Liu et al., 2012; Fernández et al.,
2019). The present study supports the findings of Lian et al.

FIGURE 6 | Percentage areas of the different radon potential classes for
the (a) LSTM, (b) ELM, and (c) RVFL models.

FIGURE 7 | (A) Success rate curve and (B) prediction rate curve AUROC results.
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FIGURE 8 | Assessment of model performance: (A) LSTM, (B) ELM, and (C) RVFL. (a) Targets and outputs for the training dataset; (b) targets and outputs for the
testing dataset; (c) MSE and RMSE for the training dataset; (d) frequency of errors for the training dataset; (e) MSE and RMSE for the testing dataset; (f) frequency of errors
for the testing dataset.
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(2014), Huang et al. (2017), Yadav et al. (2017), and Anupam and
Pani (2020), who stated the efficiency and applicability of the
ELM algorithm to generating more accurate predictive models in
various fields of study such as landslide displacement prediction,
landslide susceptibility mapping, groundwater level prediction,
and flood forecasting, respectively. However, the suitability of the
ELM model for identifying the radon-affected areas has not been
reported in the literature.

5 CONCLUSION

IRCs were measured in 1,425 randomly selected dwellings in
Danyang-gun, South Korea, to facilitate indoor radon
potential mapping using LSTM, ELM, and RVFL machine
learning algorithms. The results showed that the ELM
method had the best prediction performance; approximately
40% of the study area was located within very high and high-
risk radon potential zones. Elevation was the strongest
predictor of radon-prone areas, followed by lithology and
valley depth.

Uranium and thorium in soil and rocks are the main
sources of variability in IRC values, and more than 80% of
the ionizing radiation to which humans are exposed is of
natural origin (Pantelić et al., 2019). However, in this study
the distribution of radon in indoor environments could not
be reliably estimated solely on the basis of geogenic factors.
In addition to the characteristics of the underlying soils and
rocks, building materials, ventilation systems and resident
lifestyles can substantially affect indoor radon levels.
Nevertheless, the results of the present study should
facilitate identification of high radon areas, and thus
allow the negative effects of natural radon on human
health to be reduced (through regular monitoring of

existing houses and the imposition of restrictions on the
construction of new structures in affected areas). An
accurate indoor radon map is important for more
efficient future surveys.
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