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Automatic tree identification and position using high-resolution remote sensing images are
critical for ecological garden planning, management, and large-scale environmental quality
detection. However, existing single-tree detection methods have a high rate of
misdetection in forests not only due to the similarity of background and crown colors
but also because light and shadow caused abnormal crown shapes, resulting in a high rate
of misdetections and missed detection. This article uses urban plantations as the primary
research sample. In conjunction with the most recent deep learning method for object
detection, a single-tree detection method based on the lite fourth edition of you only look
once (YOLOv4-Lite) was proposed. YOLOv4’s object detection framework has been
simplified, and theMobileNetv3 convolutional neural network is used as the primary feature
extractor to reduce the number of parameters. Data enhancement is performed for
categories with fewer single-tree samples, and the loss function is optimized using
focal loss. The YOLOv4-Lite method is used to detect single trees on campus, in an
orchard, and an economic plantation. Not only is the YOLOv4-Lite method compared to
traditional methods such as the local maximum value method and the watershed method,
where it outperforms them by nearly 46.1%, but also to novel methods such as the Chan-
Vese model and the template matching method, where it outperforms them by nearly
26.4%. The experimental results for single-tree detection demonstrate that the YOLOv4-
Lite method improves accuracy and robustness by nearly 36.2%. Our work establishes a
reference for the application of YOLOv4-Lite in additional agricultural and plantation
products.
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1 INTRODUCTION

The smallest tree entity that makes up a terrestrial ecosystem is a single tree. Single-tree detection and
positioning are critical components of precision forestry (Dimitrios and Azadeh, 2021; Dimitrios
et al., 2021). Precision forestry is critical for reducing environmental pollution caused by catkins
(BAILU, 2018) and monitoring the environmental impact of economic forests (Wang, 2019; Dong
et al., 2020; Zhibin et al., 2020). With the advancement and popularization of the remote sensing
image processing technology, the efficient collection of massive amounts of information about
individual trees and the establishment of single-tree databases form the foundation for accurate and
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intensive urban forestry management and are also the
developmental goal of a new generation of intelligent forestry
(Olli et al., 2017; Gomes et al., 2018). Indeed, some individual
forestry fields in China have implemented intensive management
at the single-tree level, such as managing ancient and famous
trees, managing female willow trees precisely in Beijing, and
managing fruit trees (Xiao et al., 2021). However, these are
primarily accomplished through traditional ground surveys,
which are inefficient and require a significant amount of time.
Single-tree extraction from remote sensing images is a critical
technology for efficiently constructing a single-tree database built
on the foundation of single-tree detection from remote sensing
images. Remote sensing platforms and associated processing
technologies have advanced rapidly in recent years (Toth and
Jozkow, 2016). Although active remote sensing technologies such
as lidar have been used to detect single trees (including their
position and height) and to build inversion models (Bouvier et al.,
2015), their costs are prohibitively high, and they are not suitable
for large-scale acquisition. However, single-tree extraction using
high-resolution optical remote sensing images remains a research
hotspot due to its strong technical foundation, large image scale,
widespread availability, and ease of promotion and application
(Wulder et al., 2000; Picos et al., 2020). Numerous studies on
passive remote sensing demonstrate that the data source, season,
tree growth (Liu et al., 2018), and the location method selection
(Larsen et al., 2011) are all significant factors affecting the effect of
a single-tree location. Regarding the problem of locating a single
tree, scholars have successively proposed two types of methods,
one is the direct location method, such as the local maximum
method (Wulder et al., 2000) and threshold segmentation, for
locating a single-tree tip. The other is individual tree crown
detection and delineation (ITCD) (Yinghai et al., 2015), such
as watershed methods (Wang et al., 2004; Zheng et al., 2017), the
valley floor tracking method (Gougeon, Fran ois, 2014), the
regional growth method (Jiang et al., 2016), and the marker
process method (Gomes et al., 2018). Recently, scholars have
experimented with a variety of novel positioning techniques,
including peak climbing (Zhang et al., 2014), CV model
(Nasor and Obaid, 2021), template matching (Hashim et al.,
2020), and machine learning (Dong et al., 2019). Currently, the
accuracy of the single-tree positioning method is insufficient to
meet practical requirements, and no method is adaptable to a
variety of forests (Zhang et al., 2019). ICD’s primary challenges
are as follows: 1) close spacing between single trees and canopy
intersections results in over or under-segmentation within a
single crown and between overlapping crowns, resulting in
misdetection and missed detection of single-tree positioning.
2) The region background color is similar to that of a single
tree, and the region background is complex and diverse. The
background is incorrectly identified as the tree’s crown, and the
region exhibits the phenomenon of under-segmentation,
resulting in the problem of error and missing detection. 3) It
is unclear how the sunlight shadow affects the shape of the trees
and canopy outline. There is no way to collect all single-tree
templates. 4) When multiple trees of varying sizes cover the same
area, a large number of saplings can easily escape detection. As a

result, it is necessary to investigate a more efficient and stable
method for a single-tree location.

Traditional object detection methods can be broadly
classified into three categories: 1) region selection (Zhou
et al., 2021), such as sliding window; 2) classifiers, such as
support vector machines (SVMs) (Rau et al., 2021); 3) feature
extraction, such as scale-invariant feature transform (SIFT)
(Liang et al., 2020) and histogram of oriented gradient (HOG)
(Syaputra et al., 2021). There are two significant issues with it.
First, the region selection is not targeted, is time-consuming,
and contains numerous redundant windows. On the other
hand, the characteristics have a low degree of robustness, and
many small objects are overlooked. Following the advent of
deep learning, object detection has made a significant leap
forward (Zhao et al., 2020). There are two primary areas of
emphasis: 1) CNNs based on region proposal (R-CNN) (Ma
et al., 2020), spatial pyramid pooling networks (SPP-Nets)
(Wang et al., 2020), and fast R-CNN (Garcia-Ortiz et al., 2020).
Faster R-CNN is used to represent deep learning object
detection algorithms. 2) Regression-based deep learning
object detection algorithms are represented as you only look
once (YOLO) (Chaitanya et al., 2020). The former predicts the
speeds of between 7 and 18 frames per second, which is too
time-consuming. The latter makes use of the regression
concept, which determines an input image and directly
regresses the object boundary and object category of
multiple locations in the image, significantly speeding up
the prediction process. It has a long history of use in
medicine, fishing, construction, and various other fields.
This study performs the urban single-tree detection and
positioning using the deep learning network model YOLOv4
(Richey and Shirvaikar, 2021). This model has a high detection
speed and is capable of multi-object detection. A YOLOv4-Lite
single-tree detection method is proposed to further integrate
the YOLOv4 network model (Meneghetti et al., 2021), simplify
the entire feature extraction network, optimize loss, and
enhance sample data.

2 METHODOLOGIES

2.1 Data Enhancement
By referencing CutMix (Artés-hernández et al., 2017) data
enhancement, the number of reconstructed images is increased
from two to four using mosaic (Hofmann, 2000) data
enhancement. First, four images from the dataset are chosen.
Then, as illustrated in Figure 1, the four images are flipped,
scaled, rotated, and gamut-adjusted, and other processing is
applied. Finally, the four images are scaled and spliced
together to create a single image containing the actual box.
The blank spaces are filled with gray to align the training
images with the network’s characteristic size. One of the
significant advantages of mosaic data enhancement approach
is that it provides a rich background for object detection and can
compute data from four images at once during the batch
normalization calculation.
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2.2 MobileNetv3
Deeply separable convolution is a factorized operation that can be
decomposed into depthwise (Dwise) (Chollet, 2017) and pointwise
convolution. For each input channel, depthwise convolution
employs a unique convolution kernel. A convolution check
should be an input channel. For each input channel, depthwise
convolution employs a unique convolution kernel. Pointwise
convolution changes the number of output channels by
employing a 1 × 1 convolution kernel. While the overall effect
is similar to that of standard convolution, this step operation
significantly reduces the amount of computation and the number
of model parameters. Three steps are required to compute the
inverted residual with a linear bottleneck. As illustrated in Table 1,
dimension is increased through the use of 1 × 1 convolution. Then,
using deeply separable convolution, features are extracted. Finally,
dimension is reduced using 1 × 1 convolution, and a residual edge
is added directly from input to output.

The formula for mish activation function is shown in (1).

mish � x tanh(ln(1 + ex)), (1)

where x represents the output of the previous network layer and
the input of this network layer. The h − swish activation function
is shown in formulas (2) and 3. The h − swish activation function

has the advantages of reducing the computation and improving
performance, especially in a deep network.

ReLU6 � min(6, max(0, x)), (2)

h − swish(x) � x
ReLU6(x + 3)

6
. (3)

The backbone network uses MobileNetv3, which employs a
unique BNECK architecture. The structure of BNECK is shown
in Figure 2, where NL stands for different activation
functions. ReLU denotes the activation function of the fully
convolutional (FC) layer, and Pool stands for the pooling layer.
MobileNetv3 first adopts 1 × 1 convolution for dimension
enhancement, and then carries out 3 × 3 depthwise
convolution for feature extraction. It then adds an attention
mechanism on the channel of a feature layer, which is two fully
convolutional layers. This attention mechanism is to average
pool the results of 3 × 3 deep separable convolution and then
carries out two fully connected neural network processing. The
feature layer resulting from this attention mechanism is
multiplied by the feature layer resulting from the depthwise
convolution of 3 × 3. Finally, 1 × 1 convolution is used to adjust
the dimensions.

The detailed structural parameters of the entire MobileNetv3
are listed in Table 2. The first column, “Input,” denotes the shape
changes associated with each MobileNetv3 feature layer. The
second column, “Operator,” indicates the block structure through
which each feature layer will pass. As it can be seen, feature
extraction occurs via a variety of BNECK structures in
MobileNetv3. The third and fourth columns indicate the
number of channels after inverting the residual structure in
BNECK and the number of channels at the characteristic layer
when input to BNECK, respectively. The fifth column, “SE,”
indicates whether or not this level introduces attention
mechanisms. The sixth column, “NL,” represents the type of
activation function, that is, “HS” for h − swish and “RE” for
ReLU . The seventh column, “S,” represents the step size used for
each block structure.

2.3 Feature Pyramid
As illustrated in Figure 3, the feature pyramid is composed of two
components: SPP and PANet. Their primary purpose is to
improve feature extraction. “Concat + Conv a×a” is a deeply
separable convolution, where “a×a” denotes depthwise
convolution with aa’s convolution kernel. The result of the
backbone network is convolved by 3 × 3 in the SPP structure,
and then the maximum pooling of 5, 9, and 13 is performed,

FIGURE 1 | Image of data enhancement.

TABLE 1 | Inverted residual with linear bottleneck.
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finally resulting in 3 × 3 profoundly separable convolutions.
PANet’s structure is depicted in Figure 3. By substituting
deeply separable convolution blocks for standard convolution,
the model’s parameter count can be reduced.

2.4 YOLO Head and Parameter Controller
As illustrated in Figure 3, YOLO Head makes predictions using
the extracted features from the backbone network and
strengthened by the feature pyramid. YOLO Head is primarily
composed of a convolution of 3 × 3 and a convolution of 1 × 1.
Convolution of 3 × 3 is used to integrate all features, whereas
convolution of 1 × 1 is used for prediction.

To reduce the number of parameters and improve the detection
accuracy of the whole network, the α parameter is set at feature
pyramid and Yolo Head, and the formula is as follows:

γ � α × β (4)

where γ is the number of channels per convolution, β is
quantitative and is the value each convolution needs to set in
advance, and α is a global variable. The number of channels in a
convolutional network can be controlled by adjusting the α parameter.

2.5 Loss Function
Due to the unbalanced and difficult-to-classify nature of the single-
tree data collected in plantation monitoring, the YOLOv4-Lite uses
focal loss to optimize the classification loss (Ruihuan hou, 2021; YuZ,
2021). In a one-stage model, the focal loss can be used to correct the
background classification imbalance and the serious imbalance of
positive and negative samples. The loss function in the YOLOv4 is
divided into three components: position loss, confidence loss, and
class loss. By combining the cross-entropy loss function, the sigmoid
is calculated. Cross-entropy measures the distance between the
actual output of the activation function and the expected output
value in a multi-classification task. The lower the cross-entropy, the
more compact the probability distribution. The following is the
calculation formula:

L � −y log _y, (5)

where L represents the cross-entropy, y represents the expected
output, and _y denotes the actual output of the activated function.
The calculation of improved focal loss is as follows:

Lf � − _α[1 − _y]
_β log _y, (6)

where Lf is the improved cross-entropy, _α is 0.25, _β is 2, the role
of _α factor is to balance the number of samples, and the role of
_β> 0 is to reduce easily classified objects.

3 EXPERIMENTS

3.1 Experimental Platform
This study’s experimental model is built on the Keras � 2.1.5
framework, Python � 3.6, and the Spyder platform. The model is
trained on an experimental 11th Gen Intel(R) Core (TM) i7-
11800H at 2.30GHz, NVIDIA GeForce RTX 3060 Laptop GPU,
and 16.0 GB of RAM running Windows x64.

3.2 Datasets
3.2.1 Dataset Description
There are specific management requirements for individual
plants for urban plantation, such as catkin management and
wind-fallen tree management. Furthermore, the technical
foundation is sound. The urban plantation is classified into
three types: campus, orchard, and economic plantation. To

FIGURE 2 | Structure of BNECK.

TABLE 2 | Structure of MobileNetv3.

Input Operator Exp size #Out SE NL S

224 × 224 × 3 Conv2d — 16 — HS 2
112 × 112 × 16 BNECK, 3 × 3 16 16 — RE 1
112 × 112 × 16 BNECK, 3 × 3 64 24 — RE 2
56 × 56 × 24 BNECK, 3 × 3 72 24 — RE 1
56 × 56 × 24 BNECK, 3 × 3 72 40 √ RE 2
28 × 28 × 40 BNECK, 3 × 3 120 40 √ RE 1
28 × 28 × 40 BNECK, 3 × 3 120 40 √ RE 1
28 × 28 × 40 BNECK, 3 × 3 240 80 — HS 2
14 × 14 × 80 BNECK, 3 × 3 200 80 — HS 1
14 × 14 × 80 BNECK, 3 × 3 184 80 — HS 1
14 × 14 × 80 BNECK, 3 × 3 184 80 — HS 1
14 × 14 × 80 BNECK, 3 × 3 480 112 √ HS 1
14 × 14 × 112 BNECK, 3 × 3 672 112 √ HS 1
14 × 14 × 112 BNECK, 5 × 5 672 160 √ HS 2
7 × 7 × 160 BNECK, 5 × 5 960 160 √ HS 1
7 × 7 × 160 BNECK, 5 × 5 960 160 √ HS 1
7 × 7 × 160 Conv2d, 1 × 1 — 960 — HS 1
7 × 7 × 960 Pool, 7 × 7 — — — — 1
1 × 1 × 960 Conv2d, 1 × 1, NBN — 1,280 — HS 1
1 × 1 × 1,280 Conv2d, 1 × 1, NBN — K — — 1
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verify the single-tree detection experiment, sample sites from
these three types of urban plantations were chosen.

In June 2019, the green trees surrounding Beijing Forestry
University’s basketball court were located at 11,620′8.76″E,
400′6.52″N. The campus’s primary tree species were broad-
leaved Sophora japonica Linn and steamed bread willow (Salix
matsudana var. matsudana F. umbraculifera Rehd.). In
December 2017, the litchi orchard was located in Shenzhen’s
Bao ‘a District at 11,353′26.34″E, 2,238′41.22″N. The image of a
section of a palm plantation in Phang Nga, Thailand, was taken at
9,820′53.22″ E, 827′18.45″ N. Google Earth images with a spatial
resolution of 0.27m, a scale of 800:1, and a visual field height of
1 km were used in our experiment.

Due to Thailand’s extensive palm cultivation, the terrain is
varied. We sampled palm trees from three different types of palm
plantation: open plantation, complex background plantation, and
dense plantation.

For each of the five sample locations, the entire image was
predicted using local image features. The training data are divided
into two sections. To begin, each sample site’s image was divided into
numerous small pieces. Then, from a large number of small pieces of
training data, a small number of images were selected. The remaining
training data were gathered in the vicinity of the sample sites. Data
enhancement was used to increase the training dataset to 600 pieces.
Individual trees of various tree species, backgrounds, and sizes are

included in the training data. Diverse backgrounds are incorporated
to increase the variety of elements and the training effect.

3.2.2 Experiment Parameter
The experiment’s primary parameters are listed in Table 3.
The term “Epoch” refers to the process by which a complete
dataset passes through a neural network once and returns
once. When a large amount of data cannot be processed in a
single pass through the neural network, the dataset must be
divided into several “batch sizes.” Each batch size corresponds
to a new small dataset; the batch size parameter specifies the
size of the new small dataset. The term “score” refers to a
measure of confidence. The “weight file size (MB)” column
indicates the amount of space consumed by the YOLOv4-
Lite model.

FIGURE 3 | Schematic diagram of YOLOv4-Lite.

TABLE 3 | Training model parameters.

Training model YOLOv4-Lite

Epochs 400
Batch sizes 8
Input image size 416×416
A 2
Score 0.2
Weight file size (MB) 47.5
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3.3 Process
Figure 4 illustrates the overall process of single-tree detection.
The acquisition of high-resolution remote sensing image data is
divided into two stages. One part contains training data. Manual
labeling of training data is required. The second part contains the
test data, which are displayed in the article. The YOLOv4-Lite
model extracted single-tree features from training data
repeatedly. On the test data, the trained YOLOv4-Lite model
performs single-tree detection.

3.4 Evaluation Criteria
A professional evaluation standard is critical when evaluating
the effect of a variety of single-tree detection methods. There is
no unified evaluation standard in place at the moment. Correct
detection occurs when the difference between the ground
reference single tree and the detected single tree is within a
specified range. The location of a single tree defines the actual
box’s geometric center. The position of each detected single
tree is represented by Mi. The position of each ground
reference single tree is represented by Ej. There are three
possibilities for the results of single-tree detection: correct
detection, error detection, and omission. Setting threshold
ε> 0, d (Mi, Ej) is denoted as the distance between two
points Mi and Ej. The experiment results are as follows:

1 When d (Mi, Ej) < ε, it is considered that the detected single
tree matches the ground reference single tree. It is the correct
detection.

2 If d (Mi, Ej) > ε for any Mi, there is no ground reference
single-tree matching with the detected single tree. The detected
single tree is considered as error detection.

3 Ej is neither in case (1) nor in case (2), in which case Ej is
omission.

Based on the above conditions, Nr is the number of reference
single trees, Na is the number of detected single trees, and Nmatch is
the correct number of correctly detected single trees in the detected
single trees. The calculation formula of all values is shown inTable 4,
Nleave is the number of undetected reference single trees and is also
the difference between Nr and Nmatch, Nerror is the difference
between Nmatch and Na, the recall rate is represented by the
symbol Nmat , the commission rate is represented by the symbol
Nom, the omission rate is represented by the symbol Ncom, and the
accuracy is represented by symbol M.

4 RESULTS AND DISCUSSION

To assess the method’s effectiveness, two classical traditional
methods, namely, the local maximum method and the
watershed method, are compared to two novel methods,
namely, the CV model and template matching method (Peng
et al., 2017; Dong and Zhou, 2018; Zhang et al., 2020). This study
analyzes and interprets the experimental results.

We use 416 × 416 images as the input image in this
experiment. Because the experiment area is too large, it is
divided into numerous small images for detection. Partitioning
divides a tree in half or even a quarter.

4.1 Campus and Orchard Detection
Figures 5, 6 illustrate the results of various methods used to test
the green trees surrounding the basketball court and the litchi
trees near the litchi orchard. Red circles and yellow dots denote
the trees that have been detected.

As illustrated in Figure 5, the campus experiment site resembles
a plantation scene. The sliding window size is set to 23 for the local
maximum method. The pixel difference threshold between the
template and the sample is set to between 0.28 and 0.35 for the
template matching method. The watershed method’s marker
parameter is set to 24. The treetop probe window and the
background label parameter of the CV model are both set to
23. Because the local maximum value extracts only the maximum

FIGURE 4 | Single tree detection process based on YOLOv4-Lite.

TABLE 4 | Single tree detection evaluation indicators.

Evaluation indicators Formula

Recall Nmat � Nmatch
Nr

Commission rate (1-precision) Nom � Nerror
Na

Omission rate Ncom � Nleave
Nr

Accuracy M � Nmatch
Nmatch+Nleave+Nerror

× 100
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value, the watershed method extracts the contour of the puddle
while easily being influenced by the tree branches. Several trees on
the campus site have two large branches that reach the tree’s top.
As illustrated in Figure 5B and Table 5, both the local maximum
and watershed methods incorrectly identify the tree branch as a
tree, resulting in significant error detection. To minimize error
detection, the CVmodel combines the advantages of the watershed
and local maximum methods. On the other hand, the CV model
considers two trees with a close crown connection to be a single
tree, resulting in numerous detection omissions. Japonica Sophora
Linn and Salix are the campus experimental site’s dominant tree
species. The two trees have similar characteristics, as do the tree
canopy characteristics of the same trees. Additionally, the template
matching method cannot extract all tree templates for trees with
close crown connections.

Although the template matching method has a zero-commission
rate, its accuracy, recall rate, and omission rate are lower than those
of the YOLOv4-Lite method.

The YOLOv4-Lite method has a single tree detection accuracy
of 96.3%. In conclusion, when compared to other algorithms, the
proposed YOLOv4-Lite algorithm achieves the highest detection
success rate and recall rate. Due to the small tree population on
the campus experimental site, the experimental effect of
YOLOv4-Lite is significantly greater than that of other
sample sites.

As illustrated in Figure 6, the litchi garden’s experimental
site resembles an urban orchard. The sliding window size is
set to 18 for the local maximum method. The template
matching method sets the pixel threshold between the
template and the sample to be between 0.32 and 0.38. The
watershed method’s marker parameter is set to 25. The CV
method’s treetop probe window is set to 20 and the background
label parameter to 24.

As illustrated in Figure 6F, the single-tree detection method
proposed by YOLOv4-Lite appears to have a high degree of error
detection. Indeed, this phenomenon demonstrates Yolov4-Lite’s

FIGURE 5 | Results of different methods in campus: (A) original image, (B) local maximum, (C)watershed, (D) CVmodel, (E) template matching, and (F) YOLOv4-
Lite.
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extremely low omission rate and ability to detect up to a quarter
of a tree. The YOLOv4-Lite single-tree detection method
successfully detects each half-crown or quarter crown in the
small image. Finally, the detected images were spliced
together. The tree crown shape is irregular in the experimental
site of the litchi garden. The crown difference is obvious, the
connection is relatively close, and some background areas have
higher values. As illustrated in Table 6, the detection efficacy of
several methods is quite low. The local maximum method
extracts only the tree with the greatest value and performs
numerous error and omission detections. The experimental
site of litchi garden contains a large number of saplings, and

the contours of these saplings were not detectable using the
watershed method. Additionally, the CV model incorporates
extensive error and omission detection. Not all templates for
single trees are available in advance. Because the template
matching algorithm can only match regions of the same size, a
small number of trees are labeled as missing errors, and
numerous connected tree crowns are misidentified as a single
tree. The YOLOv4-Lite method was found to have the best anti-
interference ability in this study. It is capable of distinguishing a
limited number of difficult-to-distinguish samples while
maintaining a 93.8% accuracy, a 95.5% recall rate, and a 1.9%
omission rate.

FIGURE 6 | Results of different methods in litchi garden: (A) original image, (B) local maximum, (C) watershed, (D) CV model, (E) template matching, and (F)
YOLOv4-Lite.

TABLE 5 | Campus single-tree detection results’ statistics.

Image
number

Method Nr Na Nmatch Nleave Nerror M, % Nmat, % Ncom, % Nom, %

Campus YOLOv4-Lite 26 27 26 0 1 96.3 100 0.0 3.7
Watershed 26 73 25 1 48 33.8 96.2 3.8 65.8
Local maximum 26 71 26 0 45 36.6 100 0.0 63.4
Template matching 26 17 17 9 0 65.4 65.4 34.6 0.0
CV model 26 21 17 9 4 56.7 65.4 34.6 19.0
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4.2 Economic Plantation Detection
Palm trees are economic plantations, and many countries have a
sizable artificial planting base. Palm tree monitoring and
management are critical for plantation production. A stand of
the open plantation has a canopy density of between 0.4 and 0.6,
while a dense plantation has a canopy density of between 0.7 and
1. As illustrated in Figure 7, this study examines three distinct
scenarios involving a single palm tree. The three scenes are sparse
plantation with a simple background, sparse plantation with a
complex background, and dense plantation. Red circles indicate
correctly detected single trees. The trees that have been identified
as having an error are circled in white. Blue circles indicate
undetected single trees.

Sample site one depicts an open plantation with a simple
background. The sliding window size is set to 23 for the local
maximum method. The template matching method sets the pixel
threshold between the template and the sample to between 0.31
and 0.35. The watershed method’s marker parameter is set to 22.
The CV model’s treetop probe window is set to 23 and the
background label parameter to 22. The background value of
sample site one is high, which results in a high number of
detected errors using the local maximum method and a high
number of missed single trees using the watershed method.
Many saplings are present at experimental site 1. Not all
templates for single trees are available. The template matching
method has a low recall rate and accuracy. As shown inTable 7, the

TABLE 6 | Litchi garden single-tree detection results’ statistics.

Image
number

Method Nr Na Nmatch Nleave Nerror M, % Nmat, % Ncom, % Nom, %

Litchi garden YOLOv4-Lite 111 108 106 5 2 93.8 95.5 4.5 1.9
Watershed 111 127 91 20 36 61.9 82.0 18.0 28.3
Local maximum 111 204 76 35 128 31.8 68.5 31.5 62.7
Template matching 111 116 104 7 12 84.6 93.7 6.3 10.3
CV model 111 149 90 21 59 52.9 81.1 18.9 39.6

FIGURE 7 | Results of different methods in palm: (A) original image of sample site 1, (B) YOLOv4-Lite of sample site 1, (C) original image of sample site 2, (D)
YOLOv4-Lite of sample site 2, (E) original image of sample site 3, and (F) YOLOv4-Lite of sample site 3.
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YOLOv4-Lite method has a higher accuracy and recall rate than
the template matching method.

The background has the greatest influence on the experimental
results when it comes to single-tree detection. The scene in which the
background color matches the color of the crown of a single tree has
the most interference. Sample site two is an open plantation with a
complex background plantation. Table 7 summarizes the
experimental results for sample site 2. A single tree’s canopy
color in site two is very similar to the background color. The
sliding window size is set to 23 for the local maximum method.
The pixel difference threshold between the template and the sample
is set to between 0.22 and 0.26 for the template matching method.
The watershed method’s marker parameter is set to 25. The CV
model’s treetop probe window is set to 23 and the background label
parameter to 22. Local maximum only extracts the maximum value.
When the crown color of a single tree is similar to the background
color, the background color is brighter. The background is frequently
mistaken for the crown apex, resulting in many missed and error
detection data. Watershed is also difficult to extract the correct seed
points, which results in numerousmissed and incorrect detections in
this case. In sample site 2, there are single trees of varying sizes, and
not all single-tree templates can be extracted. As a result, the
template matching method’s recall rate and accuracy are low. In
the scenario of sample site 2, the YOLOv4-Lite method maintains a
97.4% accuracy and a 99.1% recall rate.

Sample site three represents a dense plantation. The sliding
window size is set to 35 for the local maximum method. The
template matching method sets the pixel threshold between the
template and the sample to between 0.16 and 0.22. The watershed
method’s marker parameter is set to 34. The CV model’s treetop
probe window has been set to 34, and the background label
parameter has been set to 33. Dense plantations are typically
mature plantations with large trees. When one tree crown is near
another, the background cannot interfere with the single-tree
detection effect. Because sample site three is the same age
plantation as sample site 1, there are no saplings. As
illustrated in Table 7, sample site 3 has the best effect for
single-tree detection. If a tree has a large number of branches,

multiple maximums will occur, and the local maximum method
will result in a high rate of missed and error detection.
Additionally, the watershed method generates a large amount
of error detection. Additionally, the morphological characteristics
of palm tree crowns are evident, and the template matching
method detects sample site 3 with a 96.1% accuracy. The template
matching method, on the other hand, is ineffective at detecting
half and quarter crowns. This results in some missing tests. The
accuracy of the YOLOv4-Lite method achieves 98.0%.

5 CONCLUSION

A YOLOv4-Lite method for single-tree detection is proposed in
this study. Although it is not revolutionary in terms of object
detection, it offers an excellent balance of speed and accuracy. Not
only does the YOLOv4-Lite method overcome the four difficulties
discussed in Chapter 1 but it also has a stronger anti-interference
capability. Moreover, it performs well in various plantation types,
including campus, orchards, and economic plantation, with
extremely stable single-tree detection and location
performance. The research presented in this article serves as a
reference for the YOLOv4 model’s application in its field.
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TABLE 7 | Sample site single-tree detection results’ statistics.

Image
number

Method Nr Na Nmatch Nleave Nerror M, % Nmat, % Ncom, % Nom, %

Sample site 1 YOLOv4-Lite 164 165 162 2 3 97.0 98.8 1.2 1.8
Watershed 164 117 108 56 9 62.4 65.9 34.1 7.7
Local maximum 164 213 132 32 81 53.9 80.5 19.5 38.4
Template matching 164 157 155 9 2 93.4 94.5 5.5 1.32
CV model 164 143 119 45 24 63.3 72.6 27.4 16.8

Sample site 2 YOLOv4-Lite 224 226 222 2 4 97.4 99.1 0.9 1.8
Watershed 224 123 118 106 5 51.5 52.7 47.3 4.1
Local maximum 224 162 93 131 69 31.4 41.5 58.5 42.6
Template matching 224 217 203 21 14 85.3 90.6 9.4 6.5
CV model 224 202 111 113 91 35.2 49.6 50.4 45.0

Sample site 3 YOLOv4-Lite 148 147 146 2 1 98.0 98.6 1.4 0.7
Watershed 148 183 136 0 47 74.3 91.8 0.0 31.7
Local maximum 148 162 124 24 38 66.7 83.8 16.2 23.5
Template matching 148 152 147 1 5 96.1 99.3 0.7 3.3
CV model 148 173 130 18 43 68.1 87.9 12.1 24.9
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