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The air quality index (AQI) indicates the short-term air quality situation and changing trend
of the city, which includes six air pollutants: PM2.5, PM10, CO, NO2, SO2 and O3. Due to the
diversity of pollutants and the fluctuation of single pollutant time series, it is a challenging
task to find out the main pollutants and establish an accurate forecasting system in a city.
Previous studies primarily focused on enhancing either forecasting accuracy or stability
and failed to analyze different air pollutants at length, leading to unsatisfactory results. In
this study, a model selection forecasting system is proposed that consists of data mining,
data analysis, model selection, and multi-objective optimized modules and effectively
solves the problems of air pollutants monitoring. The proposed system employed fuzzy
C-means cluster algorithm to analyze 13 original AQI series, and fuzzy comprehensive
evaluation is used to find out the main air pollutants in each city. And then multiple artificial
neural networks are used to forecast the main air pollutants for each category and find the
optimal models. Finally, the modified multi-objective optimization algorithm is used to
optimize the parameters of optimal models and model selection to obtain final forecasting
values from optimal hybrid models. The experiment results of datasets from 13 cities in the
Beijing–Tianjin–Hebei Urban Agglomeration demonstrated that the proposed system can
simultaneously obtain efficient and reliable data for air quality monitoring.
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INTRODUCTION

In recent years, air pollution has received increasing attention due to the negative effects, such as
respiratory diseases, that it has on human health (Jiang et al., 2017). Simultaneously, air pollution is a
growing environmental concern, responsible for approximately 2 million premature deaths per year
worldwide (World Health Organization, 2008). A report issued by the World Health Organization
(WHO) acknowledges that air pollution is one of the biggest health risks (Xu et al., 2016). Since the
industrial revolution, many countries have focused on economic development while ignoring air
quality, and incidents that cause harm are everywhere. In 1930, the Mas Valley event in Belgium
caused nearly 60 deaths in a week. In the 1940s, the smog incident in Los Angeles caused many
people to have red eyes, pharyngitis, respiratory disease deterioration, and even confusion and
pulmonary edema. In 1948, the American Donora incident caused 5,911 people to become violent.
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The most serious is the well-known London smog event of
1952—more than 4,000 deaths in 4 days and more than 8,000
deaths in 2 months. In addition, air pollution in China is also
quite serious. The previous results in 2009 showed that the air
quality index (AQI) in 107 cities of China did not meet the
country’s national air quality standards (NAAS) (Zhou et al.,
2014). In addition, 7 of the 10 most polluted cities in the world are
in China. According to the World Bank, China loses 10% of its
gross domestic product each year due to air pollution. Air
pollution is also associated with elevated rates of mortality,
causing between 350,000 and 500,000 premature deaths each
year in China (Shanshan et al., 2014). Air pollution has become
the fourth leading health risk factor for China after smoking, diet,
and obesity (Zhang et al., 2018). In order to reduce the losses
caused by air pollution, several health and governmental
institutions gather and publish data regarding what is known
as AQI to inform people about the state of air pollution. For
instance, the European Environment Agency (EEA) and the
European Commission (EC) have launched, in 2017, an online
platform that provides information about current air quality
situation based on measurements from more than 2,000 air
quality monitoring stations across Europe (Akyüz and Çabuk,
2009). In addition, China’s environmental supervisors have also
issued some plans and programs, including EIA (Environmental
Influence Assessment) and Emergency Response for reducing air
pollution. Since 2013, China has also begun to evaluate the quality
of air through AQI values and graded the city’s air quality by AQI
values. AQI is an important evaluation indicator that
comprehensively reflects the air pollution status related to
human health. Through the use of the AQI it was possible to
synthesize, in a single daily value, concentrations of major
pollutants in urban areas (NO2, O3, CO, SO2, PM2.5, PM10)
for the entire period (Feng et al., 2015). The greater the AQI
value, the more serious the air pollution. But real-time air quality
monitoring can no longer meet people’s needs. Like weather
forecasts, people also long for air quality prediction to arrange
their activities and take protective measures in advance (Hao
et al., 2021).

Obviously, if we can provide early warning before the hazard
occurs, based on a good air quality early-warning system, these
losses might be avoided by taking effective corresponding
protection measures. In order to establish an effective air
warning system, observation and control of air quality is the
key issue for authorities. The most significant point in any kind of
air pollution control system is to be able to detect increasing
(deterioration) or decreasing (improvement) trends (Hao and
Tian, 2018). Unfortunately, because air quality data is obtained in
limited time and space, its incompleteness and non-stationarity
may result in low accuracy and poor stability of the forecasting
results (Hao et al., 2019). Therefore, the prediction of AQI or
other pollution indicators is a challenging task.

In recent years, many studies on air quality have focused on
the prediction of atmospheric pollutant concentrations. From the
angle of methodology, various quantitative prediction methods of
the atmosphere pollutant concentrations can be classified into
two categories, including deterministic models and empirical
models (Steffens et al., 2017). The deterministic model is

mainly the chemical transport model (CTM), which is based
on the fundamental principles of simulating atmospheric physics
and chemistry that involve transportation, emissions, and
conversion processes in air pollution (Rivas et al., 2018). The
forecasts are used to support flight planning by enabling the
representation of important three-dimensional (3-D)
atmospheric chemical structures (such as dust storm plumes,
polluted air masses originated by large cities, and widespread
biomass burning events) and their time evolution, which are often
research targets to be detected and investigated through specific
flight plans (Latif et al., 2018). Various models have been
proposed to identify the interactions between various air
pollutants and their emission sources (Yang and Wang, 2017).
Nonetheless, due to the incomplete knowledge and
understanding of the sources, dispersion and sinks of
pollutants, transport processes, and atmospheric chemicals,
there are some significant uncertainties in the models,
resulting in air pollutant concentrations being among the most
difficult to forecast accurately using CTMs (Liu et al., 2008).
Therefore, CTM forecasts are less accurate than empirical air
quality predictive models that are trained with local
meteorological data and air quality.

A large number of empirical models include statistical models
and machine learning models for the forecast of atmospheric
pollutant concentrations. Common statistical models for air
quality prediction include autoregressive (AR) models, moving
average (MA) models, autoregressive integrated moving average
(ARIMA) models, and multiple linear regression (MLR) models.
For example, Zhang et al. (2018) applied the RIMA model to
predict the concentration of PM2.5 based on time series air quality
data covering two warm periods and two cold periods and
concludes that PM2.5 concentration is higher in the cold
period and lower in the warm period. MLR models are
applied by Mehmet Akyüz et al. (Pereira et al., 2018) to
forecast the concentration of individual pollutants. The study
also considers the effects of contaminant concentrations and
other meteorological parameters. Although Box–Jenkins Time
Series (ARIMA) andMLRmodels have been applied to air quality
forecasting in urban areas, they have limited accuracy owing to
their inability to predict extreme events, and they are not
applicable when performing long-term prediction and
nonlinear sequence prediction.

On the contrary, artificial neural networks (ANNs) are more
popular for their no-linear systems, especially when it is difficult
to determine the theoretical models (Lanzafame et al., 2015).
Díaz-Robles et al. (2008) combined a new hybrid model of
ARIMA and ANN to improve the prediction accuracy of areas
with limited air quality and meteorological data. Xiao Feng and
Qi Li et al. (Feng et al., 2015) combined air mass trajectory
analysis and wavelet transform and proposed that ANN predicts
the daily average concentration of pollutants 2 days in advance,
improves the accuracy of prediction, and is superior to other
models. However, they also have certain shortcomings that may
fall into local optimum or over-fitting, which may result in poor
prediction.

Any model has its inevitable shortcomings, and due to the
advent of the world’s big data era, data mining techniques such as
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decomposition methods (Güçlü et al., 2019), feature selection
techniques (Pan et al., 2011), and optimization algorithms (Liu
et al., 2019) combined with artificial intelligence technology are
more operational. Therefore, with consideration of forecast
accuracy, hybrid models which combine a new method with
artificial intelligence are of great significance in air quality
forecasting field (D’Allura et al., 2011). Although the
construction of the combined model is usually based on actual
problems to achieve the expected test objectives, there are still
some problems that most of the past studies have focused on
improving the prediction accuracy of the model while ignoring
the stability of the model prediction. Many optimization
algorithms inspired by nature including cuckoo algorithm
(Urbancok et al., 2017), firefly algorithm (Bessagnet et al.,
2019), bat algorithm (Liu et al., 2018), and particle swarm
optimization algorithm (Kumar et al., 2019) have been
developed to solve single-objective problems in recent years.
However, real-world optimization problems always involve
multiple objectives and so-called multi-objective optimization,
which means, in this case, the solutions for a multi-objective
problem, which is the main focus of the algorithm, represent the
trade-offs between the objectives due to the nature of such
problems (Shenfield and Rostami, 2015). The developed multi-
objective optimization algorithm has been applied more and
more widely in the fields of finance (Li et al., 2019) and
mechanical engineering (Dhiman and Kumar, 2018). The
atmosphere is a highly complex dynamic system. The air
quality data sequence usually has characteristics such as non-
stationarity and nonlinearity; thus, the multi-objective
optimization algorithm is a suitable choice.

Furthermore, air quality assessment algorithms are developed
to assess air quality and protect human health from air pollution
and play a vital role in air quality warning systems. The early-
warning system can increase the environmental consciousness of
society and protect the public against hazardous air quality. It can
also aid the relevant departments to better control air pollution
and avoid negative social, economic, and environmental impacts.
According to the aforementioned analysis, developing a novel
and robust air quality early-warning system has become highly
desirable for society. Therefore, a variety of models are employed
in air quality assessment, including mobile monitoring (Li et al.,
2018), CFD-RANS simulation (Lauriks et al., 2020), principal
component regression (PCR), sensitivity analysis (Kim et al.,
2018), Bayesian models (Han et al., 2021), support vector
machines (SVM) (Leong et al., 2019), ANNs (Davood et al.,
2021), and fuzzy techniques (Dass et al., 2021). However,
although the air quality warning system has important
practical significance to the public in other fields, China’s
research in this field is still relatively small.

Looking back at the previous literature on air quality
forecasting research, the shortcomings of the traditional air
quality forecasting models are summarized as follows: 1) the
large amount of information required by the CTMmodel leads to
uncertainty in the forecasting. 2) The single statistical models
with low forecasting accuracy cannot meet the requirements of air
quality forecasting. 3) In the past, many air quality studies
focused on eliminating the effects of noise on data processing

and less on the feature extraction of data. 4) It is easy for single-
objective optimization algorithm commonly used to fall into local
optimum and over-fitting, resulting in poor stability. 5) In
addition, previous studies on air quality have focused on air
quality forecasting, while the research on air quality assessment
was relatively rare.

Based on the above analysis, it is necessary to overcome these
deficiencies and develop a novel and robust air quality warning
system. The evaluation–forecast system developed in this study
consists of two parts: evaluation and forecasting. The evaluation
part involves feature extraction and finding out the main air
pollutants; in the forecasting part, a new metric is developed to
find the optimal model in each category, and optimal forecasting
models are optimized with modified gray wolf optimization
(DEGWO) optimization algorithm and leave-one-out deciding
weight strategy to improve the accuracy of forecasting results and
provide support for early warning systems. The specific
implementation steps of the hybrid forecasting system are as
follows: First, the feature extraction of the original data is
performed to find similar attributes of AQI time series
according to the relevant theory of fuzzy C-mean cluster.

Moreover, air quality evaluation based on the forecasting
results of air pollutant concentration plays a crucial role in the
development of the air quality warning system.

In this paper, in view of the uncertainty and ambiguity of each
air pollutant, the fuzzy comprehensive evaluation is applied in
AQI. According to the implementation of fuzzy comprehensive
evaluation results, finding out the main pollutants in each city is
another important part of this work. Next, we use long short-term
memory (LSTM), backpropagation neural network (BPNN),
adaptive network-based fuzzy inference system (ANFIS),
generalized regression neural network (GRNN), and SVM
models to forecast the main air pollutants time series, and a
developed new metric is used to select optimal forecasting model.
Finally, all these individual forecasting models’ predictors based
on the leave-one-out deciding weight strategy are optimized by
the DEGWO optimization algorithm, and the final forecasting
results are obtained. Therefore, the combination of these methods
will result in more accurate forecasts and assessments
performance, providing significant advantages for the
construction and implementation of early warning systems for
detecting air quality. The main contributions of this paper are as
follows:

1) The fuzzy comprehensive evaluation is established for six air
pollutants, which calculates the fuzzy membership degree of
each pollutant and determines the main pollutants of
each city.

2) A model selection index is established to select the optimal
forecasting model from different neural network models.
Based on model selection, the established weighted
information criterion can select the optimal forecasting
model for PM2.5, PM10, and NO2 forecasting.

3) The forecasting performance of the optimal single model is
improved. In the forecasting process, an improved multi-
objective optimization algorithm is used to optimize the
parameters of the single forecasting model, which not only
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improves the prediction accuracy but also improves the
stability of the single model

4) The model selection index is used to select the optimal
forecasting value from the optimal hybrid model.

METHODOLOGY

In this subsection, the relative methods are presented in detail,
including the data mining technique, forecasting model, and the
DEGWO) algorithm. Subsequently, the marching process of our
developed combined model is demonstrated.

Forecasting Model
Five typical models, namely, the multilayer perceptron (MLP) (You
et al., 2017), ANFIS (Jang, 1993), LSTM (Muzaffar and Afshari,
2019), SVM (Brereton and Lloyd, 2010), and GRNN (Land and
Schaffer, 2020), have been widely used for air pollutants forecasting
because of their robustness, efficiency, and accuracy.

Modified Gray Wolf Optimization (DE-GWO)
For the DE algorithm and gray wolf optimization (GWO) algorithm,
the defects of prematurity, poor stability, and ease in falling into local
optimum will occur when solving the optimization problem
separately. Combining the advantages and disadvantages of the
two algorithms, a more efficient hybrid optimization algorithm,
DEGWOalgorithm, is proposed to improve global search capabilities.

Firstly, in order to avoid the phenomenon in which the
population is iteratively reduced to a certain area, the crossover
and selection operations of the DE algorithm are used to maintain
the diversity of the population. Then, as the initial population of the
GWO algorithm, the objective function value of the individual is
calculated. The optimal three individuals Xα, Xβ, and Xδ are selected
to update the positions of other gray wolf individuals. Then, the
position of the gray wolf individual is updated by the intersection
and selection operations of DE, and the iterative update is repeated
until the optimal one is selected. The target function value is output.

The hybrid algorithm not only improves the global search
ability but also effectively avoids the defects of early maturity
stagnation and falling into local optimum. The specific
implementation steps of the algorithm are as follows:

Step 1: Set the relevant parameters of the hybrid optimization
algorithm, population size N, maximum iteration number
tmax, crossover probability CR, search dimension D, search
range ub, lb, and scaling factor range F.
Step 2: The parameters a, A, and C are initialized, and the DE
variant operation is performed on the population individual
according to Eq. 1 to generate an intermediate; an initial
population and the number of iterations is set to t � 1.

vij(g + 1) � { hij(g), rand(0, 1)≤ CR or j � rand(1, n)
xij(g), rand(0, 1)> CR or j≠ rand(1, n)

(1)

Then the competition selection operation is performed
according to Eq. 2 to generate.

xi(g + 1) � { vi(g), f[vi(g + 1)] <f[xi(g + 1)]
xi(g), f[vi(g + 1)] ≥ f[xi(g + 1)] (2)

Step 3: Calculate the objective function value of each gray wolf
individual in the population, sort according to the size of the
objective function value, and select the optimal first three
individuals as Xα, Xβ, and Xδ, respectively.
Step 4: Calculate the distance between other gray wolf
individuals in the population and the optimal Xα, Xβ, and
Xδ according to Eqs 3–5.

Dα � |C1Xα(t) −X(t)| (3)

Dβ �
∣∣∣∣C2Xβ(t) −X(t)∣∣∣∣ (4)

Dδ � |C3Xδ(t) −X(t)| (5)

Finally, update the current position of each gray wolf
individual according to Eqs 6–9.

X1(t + 1) � Xα(t) − A1Dα (6)

X2(t + 1) � Xβ(t) − A2Dβ (7)

X3(t + 1) � Xδ(t) − A3Dδ (8)

Xp(t + 1) � X1 +X2 +X3

3
(9)

Step 5: Update the values of a,A, and C in the algorithm, cross-
operate the position of the individual population according to
Eq. 1, retain the better components, then perform Eq. 2 to
select new individuals and calculate the objective function
values of all gray wolf individuals.
Step 6: Update the positions of the top three gray wolf
individuals Xα, Xβ, and Xδ.
Step 7: Determine the count value. If the maximum iteration
number tmax is reached, the algorithm exits and, based on Eq. 10,
outputs themulti-objective function value of the global optimalXα;
otherwise, let t � t + 1, and then go to Step 3 to continue execution.

minf � f1(x) + f2(x)

s.t

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
f1(x) � 1

n
∑n

i�1 (errori)2

f2(x) � 1
n
∑n

i�1 (errori − error)2
(10)

Fuzzy C-Means Clustering
Fuzzy C-means clustering (FCM), known as fuzzy ISODATA, is a
clustering algorithm that uses membership degrees to determine
the extent to which each data point belongs to a certain cluster. In
1973, Bezdek proposed the algorithm as an improvement to the
early hard C-means clustering (HCM) method (Gayen and
Biswas, 2021). The clustering steps are as follows:

Step 1: Initialize the membership matrix U with a random
number whose value is between 0 and 1, so that it satisfies the
constraint in Eq. 11.

∑
i�1
c

uij � 1,∀j � 1, ..., n (11)
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Step 2: Calculate c cluster centers ci (i � 1, c) using Eq. 12.

ci �
∑n

j�1u
m
ijxj∑n

j�1u
m
ij

(12)

Step 3: Calculate the value function according to Eq. 13. If it is
less than a certain threshold, or if the amount of change from
the value of the last value function is less than a certain
threshold, the algorithm stops.

J(Uc1, ..., cc) � ∑
i�1
c

Ji � ∑
i�1
c ∑

j

n
um
ijd

2
ij (13)

Step 4: Calculate the new U matrix with Eq. 14. Go back to
Step 2.

uij � 1

∑c
k�1(dij

dkj
) 2

(m−1)
(14)

Fuzzy Synthetic Evaluation Theory
The process of establishing a fuzzy synthetic evaluation (FSE)
system is as follows (Lu et al., 2011).

Step 1. The set of factors for the evaluation object is
determined.

The selected factors should possess the traits of
representativeness, feasibility, and system. Air quality evaluation
relies on the concentration levels of the main air pollutants.
Therefore, in this study, the indicators were chosen according to
China’s ambient air quality standards (AAQS: GB3095-2012).
Moreover, different geographical areas have different topographic
and economic characteristics, and consequently, the different key
pollutants in the study areas should be also considered.

Step 2. The evaluation rank standard is determined.

The evaluation rank set is described as V � {v1, v2,/,vn}. In
our study, the air pollution degrees were divided into five levels.
The pollutants grading standard according to AAQS is shown in
Supplementary Appendix S1.

Step 3. Index fuzzification.

In this step, the membership functions (MFs) corresponding to
each index are obtained. The process of fuzzification constitutes the
process of membership calculation by using MFs. In this study, we
used the trapezoidal membership to calculate the membership value.

Step 4. The factor weight is calculated.

Weight reflects the importance of each factor in synthetic
evaluation and directly affects the outcome of the evaluation.
Many methods exist for determining the weight, such as weighted
statistics, coefficient of variation method, the Delphi method, and

entropy methods. In our study, the weight was calculated by fuzzy
weighting method.

Step 5. The evaluation results are output.

The objective function of the DEGWO algorithm is based on
stability and accuracy, in which MSE is the standard to measure
accuracy and the variance of error is the standard to measure
stability. Algorithm 1 briefly outlines the process of the
MODEGWO.

Algorithm 1. MMODA
Input: Objective function Min fitness(x) � f1 + f2

min

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
f1(x) � MSE � 1

N
∑N
i�1

(x̂i − xi), i � 1, 2, ..., N

f2(E) � Var(E) � 1
N

∑N
i�1

(Ei − �E)2, i � 1, 2, ..., N

Note: Ei is the test error; the calculation equation
is Ei � x̂i − xi

x̂i and xi are the actual data and output data by each model
Parameters of DEGWO
CR is crossover probability: 0.2;
MaxGen is the maximum number of the iteration: 500;
F is the scaling factor: [0.2, 0.8];
psize is population size: 50.

Output: The optimal solution and the best objective
function value.

Initialize a parent population, mutant population, and child
population of gray wolf with a random position in a feasible
region using equation;

xk
p � xk

p(low) + (xk
p(up) − xk

p(low)) × rand(0, 1)
Note: xk

p(low) is the lower bound of the pth component of the
kth individual.

xk
p(up) is the upper bound of the pth component of the kth

individual.
rand(0, 1) represents a random number in [0, 1].
p � 1, 2/, d. k � 1, 2/, psize

Initialize crossover probability Pc and scaling factor F;
Initialize a, A, and C;
Evaluate f for all individuals in the parent population;
Sort the parent population in a non-decreasing order,

according to the objective function value;
Xα is the best individual in the parent population of gray

wolves;
Xβ is the second individual in the parent population of gray

wolves;
Xδ is the third individual in the parent population of gray

wolves;
While (t <MaxGen)
for each individual in the parent population of gray wolves
Update the position using the following equation;
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Xp(t + 1) � X1 +X2 +X3

3

end for
Obtain a mutant population of gray wolves using the following

equation;

Vi(g) � Xr1 + F · (Xr2(g) +Xr3(g))
Note: g is the generation number,

F is the scaling factor, g � 0, 1, 2,/, MaxGen,
MaxGen is the maximum number of the iteration

Obtain a child population of gray wolves using the following
equation;

vij(g + 1) � { hij(g), rand(0, 1)≤CR j � rand(1, n)
xij(g), rand(0, 1)>CR j � rand(1, n)

CR represents the crossover probability
for each individual Parenti in a parent population of gray

wolves
If f(Childi) < f(Parenti)
Replace Parenti with Childi
end if
Update A, C, and a;
Sort the parent population of gray wolves in a nondecreasing

order;
Update Xα, Xβ, Xδ;

t � t + 1;
End while
Return Parentα and f(Parentα).

Formulation of the Hybrid Model
The hybrid AQI forecasting system in this paper is composed of
the above three parts. A flow chart of the hybrid model is
presented in Figure 1.

From the above, we can see that the AQI forecasting step using
the hybrid forecasting system proceeds as follows:

Step 1: Data Mining
1. Collect the original data in the proposed hybrid forecasting

model. Specifically, the average hourly AQI and six air
pollutants are utilized as experiment data in this work.

2. Using data mining technology, 13 cities in
Beijing–Tianjin–Hebei Urban Agglomeration (BJ-TJ-HE)
are clustered, the characteristics of each category are
summarized, and each category is further analyzed.

The AQI and six air pollution time series with missing
points is filling processed by shape-preserving piecewise cubic
spline interpolation, which maintains the continuity of each
time series.

Step 2: Feature selection and data setting for each model

FIGURE 1 | Flowchart of air quality index forecasting system for Beijing–Tianjin–Hebei Urban Agglomeration.
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1. Feature selection: According to the result of cluster,
establish fuzzy comprehensive evaluation for six
pollutants and find out the main air pollutants of each in
the same category.

2. Data setting: Each main air pollutants time series can be
divided into three parts: training sample and testing samples
for the forecasting values. The training sample is used to
construct and train the ANNs, which in this work consist of
a BPNN, SVM, GRNN, LSTM, and ANFIS. In addition, the
testing sample is used to select the optimal model. For this,
the WIC values of the ANNs are calculated, and the best
model in terms of the WIC is selected. The input data are
used to train the ANNs before calculating the forecasting
value, with 1–6 input nodes and 1–30 hidden nodes.
According to the value of WIC, the best forecasting
model and best structure are chosen.

Step 3: Optimize the parameters of the best forecasting model.

To ensure the forecasting performance, a modified
optimization algorithm is used to further optimize the
parameters of the best forecasting model (expect LSTM).
Finally, the main air pollutants forecasting results are obtained
and compared with those of different hybrid forecasting models.

EXPERIMENT DESIGN AND ANALYSIS

In this section, the specific information of experiment datasets in
BJ-TJ-HE are described in detail. Eight performance metrics are
applied to assess the performance of the proposed model. The
experiments conducted in this study were implemented on
Matlab 2018a, and the specifications of the hardware were as
follows: Intel Core i9-7920X 2.90 GHz CPU and 32 GB RAM.

Data Description
The BJ-TJ-HE is the national capital region of the People’s
Republic of China. It is the biggest urbanized megalopolis
region in Northern China, where Beijing, Tianjin, Baoding,
and Langfang are the central core areas of BJ-TJ-HE. In this
paper, the 13 cities of BJ-TJ-HE are evaluated to develop an early
warning indicator for air quality. The datasets of hourly
concentrations of the six major air pollutants used in this
study are retrieved from the website of the China National
Environment Monitoring Centre (http://www.cnemc.cn/sssj/).
The first dataset includes AQI hourly concentrations collected
from January 1, 2017, to December 31, 2018, in BJ-TJ-HE.
Figure 2 shows the result of fuzzy C-mean cluster, which
displays the construction of a fuzzy matrix based on the
attributes of AQI in 13 cities and objectively and accurately
cluster (Category I: Beijing, Baoding, Langfang; Category II:
Shijiazhuang, Tangshan, Handan, Chengde, Hengshui, Xingtai;
Category III: Tianjin, Qinhuangdao, Zhangjiakou, Cangzhou).
The result of fuzzy comprehensive evaluation is shown inTable 1,
which found that the main air pollutants are PM10, PM2, and NO2

in 13 cities.
According to the analysis in Table 1, the main air pollutants

from statistical analysis of BJ-TJ-HE are NO2, PM2.5, and PM10

shown in Table 2, in which the average value of the main air
pollutants shows obvious differences among the 13 cities. The
average value of NO2 in the different cities is between 22.2525 and
49.4348 μg/m3, in which the average value in Xingtai is higher
than in the other cities. At the same time, the PM2.5 and PM10

average values in Xingtai are 69.6938 and 135.8368 μg/m3, which
are also higher than in the other cities. The maximum values of
NO2, PM2.5, and PM10 were in Hengshui, Baoding, and
Zhangjiakou, with values of 215, 402, and 1581 μg/m3, and the
minimum values of the three main air pollutants were in
Zhangjiakou, Beijing, and Zhangjiakou, with values of 1, 3,
and 12 μg/m3.

In terms of skewness, all data sets are rightward, with values of
skewness are greater than 0. For the values of kurtosis, only three
data sets of NO2 were less than 3, which meant that these three
sets (Qinhuangdao, Shijiazhuang, and Xingtai) had a fat tail. At
the same time, the other data sets had a thin tail.

Forecasting Metric
This section focuses on the efficiency of the different forecasting
model with respect to computational performance. Eight
evaluation criteria are applied to estimate the forecasting
performance, namely, mean absolute error (MAE), root mean
square error (RMSE), mean absolute percentage error (MAPE),
Theil U statistic 1 (U1), and Theil U statistic 2 (U2) were
calculated for all the fits; the goodness of forecasting fit (R2)
and the standard of forecasting error (STDE) indicates the
stability of the forecasting models; and the direction accuracy
(DA) evaluates the optimal decision-making, often relying on
correct forecasting directions or turning points between the
actual and forecasting values. These performance metrics are
defined in Table 3.

Experiment Preparation: Model Selection
In the forecasting processing, there is no model that can be
applied to all time series in the process of forecasting. Therefore,
in this paper we developed a new metric, which measures
accuracy of each hybrid model testing set and determines
whether the model can provide the optimal forecasting value.
The process of model selection is as follows:

Each model data is divided into 840 training samples, 168
testing samples, and one forecasting value. The accuracy of the
testing sample is calculated by using the WIC. In order to
eliminate the difference of the order of magnitude of
forecasting metric, the MAE, MAE RMSE, MAPE, STDE, U1,
and U2 are normalized. The calculation formula is as follows:

WIC � NMAE +NRMSE +NMAPE +NSTDE + U1 + U2

+ R2 + (1 − DA)
For the first forecasting, the 1st to 840th samples are the

training samples, the 841st to 1008th samples are the testing
samples, and the 1009th sample is the forecasting value. At the
end of the forecasting, the WIC value of the testing sample is
calculated. If the WIC of the ith model is the smallest, the
forecasting value of the ith model provides the optimal
forecasting value.
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For the second forecasting, the 2nd to 841st samples are the
training samples, the 842nd to 1009th samples are the testing
samples, and the 1010th sample is the forecasting value. At the
end of the forecasting, the WIC value of the testing sample is
calculated. If the WIC of the ith model is the smallest, the
forecasting value of the ith model provides the optimal
forecasting value.

For the kth forecasting, the kth to (840 + k − 1)th samples are
the training samples, the (840 + k)th to (1008 + k − 1)th samples
are the testing samples, and the (1008 + k)th sample is the
forecasting value. At the end of the forecasting, the WIC value
of the testing sample is calculated. If the WIC of the ith model is
the smallest, the forecasting value of the ith model provides the
optimal forecasting value.

FIGURE 2 | Result of data mining for Beijing–Tianjin–Hebei Urban Agglomeration.

TABLE 1 | The result of fuzzy comprehensive evaluation

City Air pollution

PM10 PM2.5 NO2 CO SO2 O3

Beijing 0.91237 0.98072 0.63530 0.43071 0.39424 0.38603
Tianjin 0.86953 0.90659 0.64191 0.30671 0.37710 0.48547
Shijiazhuang 0.75937 0.70576 0.67125 0.38993 0.43133 0.41205
Tangshan 0.91044 0.74470 0.64615 0.37757 0.35546 0.43152
Qinhuangdao 0.87371 0.89213 0.72628 0.41083 0.30361 0.41777
Handan 0.82031 0.98267 0.72983 0.48603 0.31468 0.49503
Baoding 0.87530 0.95838 0.75981 0.34638 0.41152 0.39322
Zhangjiakou 0.90838 0.99560 0.63953 0.30755 0.42579 0.31045
Chengde 0.81195 0.73604 0.82316 0.40926 0.48029 0.31550
Langfang 0.75893 0.81218 0.87910 0.47526 0.42354 0.30550
Cangzhou 0.84830 0.82908 0.86664 0.49499 0.31973 0.41617
Hengshui 0.75544 0.93064 0.97252 0.35830 0.40872 0.33812
Xingtai 0.90721 0.93224 0.70024 0.47492 0.44532 0.31803

Note: if the result of fuzzy comprehensive evaluation is greater than 0.5, the pollutant is the main pollutant. The bold values are main Air Pollution, which the fuzzy comprehensive evaluation
results are greater than 0.5.
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TABLE 2 | Statistic of each main air pollutant in different cities.

City Pollutant Min Max Mean Skewness Kurtosis Mode

Beijing NO2 16 158 39.1947 0.7894 3.2759 18
PM2.5 3 273 50.0068 1.7017 6.5652 5
PM10 56 1,058 83.0744 5.7125 63.4085 27

Tianjin NO2 17 195 49.4348 0.8042 3.5754 36
PM2.5 11 237 49.9759 2.0621 9.2214 40
PM10 23 321 85.0560 1.7136 7.1605 68

Shijiazhuang NO2 4 145 44.0150 0.6088 2.7786 16
PM2.5 12 343 69.6938 1.7761 6.5778 43
PM10 29 461 132.2141 1.3934 4.9017 80

Tangshan NO2 5 200 54.2055 0.6325 3.5206 36
PM2.5 12 350 60.4803 2.4753 12.7626 44
PM10 26 484 114.9052 1.8083 8.0477 76

Qinhuangdao NO2 4 130 43.2894 0.6124 2.7408 17
PM2.5 6 250 38.2879 2.1722 9.8110 21
PM10 15 392 78.6504 1.7126 7.8222 54

Handan NO2 4 153 40.4909 0.9210 3.4780 17
PM2.5 8 321 69.4114 1.9836 7.2348 45
PM10 24 513 135.8368 1.6375 5.8557 85

Baoding NO2 4 159 44.7402 0.8947 3.3395 15
PM2.5 11 402 66.6175 1.9971 8.9785 33
PM10 24 527 115.9434 1.5658 6.3524 65

Zhangjiakou NO2 1 136 22.2525 1.9035 8.0002 19
PM2.5 7 184 31.1680 2.2524 10.1861 16
PM10 12 1,581 88.7293 6.2068 64.1126 31

Chengde NO2 2 126 30.6221 0.7458 3.5114 6
PM2.5 7 189 31.7188 2.2798 10.0002 13
PM10 14 561 81.6457 2.6593 14.4003 36

Langfang NO2 7 206 45.0315 1.0029 3.9963 20
PM2.5 9 282 51.8249 1.9651 7.9869 15
PM10 21 428 100.0498 1.6177 6.3231 69

Cangzhou NO2 5 170 41.2205 1.0111 4.0626 22
PM2.5 10 381 58.8355 2.5108 12.7637 35
PM10 16 509 104.4355 1.8495 8.5249 75

Hengshui NO2 2 215 32.2611 1.1356 4.8037 15
PM2.5 14 310 61.7583 2.3912 10.0981 40
PM10 19 391 103.5030 1.7636 6.3377 68

Xingtai NO2 3 155 47.4996 0.5950 2.9794 18
PM2.5 11 369 69.1419 1.9618 7.4487 35
PM10 17 524 135.3799 1.3911 5.2029 88

TABLE 3 | Definition of the performance metrics.

Metric Definition Equation

MAE The average absolute forecasting results error of n MAE � 1
n ∑n

i�1 |yi − ŷi |
RMSE The mean absolute percentage error of n forecasting results RMSE �

��������������
1
n ∑n

i�1 (yi − ŷi)2
√

MAPE The root mean square error of n forecasting results MAPE � 1
n∑n

i�1|yi− ŷi
yi

| × 100%

STDE The standard of error of n forecasting results STDE � �����������
Var(yn − ŷn)

√
U1 Theil U statistic 1

U1 �
����������
1
T∑T

T�1(yi−ŷi )2
√

��������
1
T∑T

T�1(yi )2
√

+
��������
1
T∑T

T�1(ŷi )2
√

U2 Theil U statistic 2
U2 �

�����������
1
T∑T

T�1(
yi+1−ŷi+1

yi
)2

√
����������
1
T∑T

T�1(
yi+1−ŷi

yi
)2

√
R2 The goodness of forecasting fit R2�∑N

n�1(yn−�y)−∑N

n�1(yn−ŷn)∑N

n�1(yn−�y)
DA Directions or turning points between actual and forecasting values

DA � 1
T ∑T

i�1 ai , ai � {1 if (yi+1 − ŷi)(ŷi+1 − yi)>0
0 otherwise.

Note: yi is the actual value, ŷi is the forecasted value, and T is the total number of data items.
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In the whole forecasting process, 168 optimal forecasting
values are generated, and 168*5 WIC values are generated at
the same time. Table 4 only shows the optimal model and the
percentage of optimal forecasting value for three main air
pollutants.

From Table 4, it can be seen that SVM provides more
optimal forecasting value for the three main pollutants at
different times, especially in the PM10 forecasting process;
the optimal forecasting value for the first quarter and the third
quarter is 82.14% (138 optimal forecasting value), and the
other four models also provide corresponding optimal
forecasting value.

Experiment I: Forecasting Processing for
Three Categories of NO2 by Each Model in
the First Season
In this portion, the hourly NO2 time series for 13 cities in three
categories were utilized as the testing data for the five hybrid

models with one-step-ahead forecasting. Beyond that, with the
purpose of comprehensively comparing the precision of the
modeling forecasting, this experiment consisted of two parts:
the multi-step forecasts demonstrated inTable 4 and, for the local
analysis horizon, the local forecasts presented in Table 95 and
Figure 3, which focus on first season. Table 5 and Figure 3
demonstrate the following:

1) Focusing on Category I, the new proposed model based on
model selection realizes excellent results on the eight
evaluation indices in the first season forecasting. On the
contrary, DEGWO-ANFIS has the lowest effectiveness. The
maximum reduction of MAPE for the proposed model
compared with the other hybrid models is approximately
71.18% in Beijing’s NO2 forecasting, 53.93% in Baoding’s
NO2 forecasting, and 61.61% in Langfang’s NO2

forecasting, respectively. The reduction was about
62.39% and 76.49% for one-step forecasting and 2.79%,
6.10%, and 19.33% for the three cities at the hourly interval

TABLE 4 | The result of model selection for main air pollutants in different seasons.

Category Air pollutants Selection First season Second season

I NO2 Model SVM GRNN BPNN ANFIS SVM GRNN BPNN LSTM
Percentage 67.86% 21.43% 7.14% 3.57% 39.29% 46.43% 10.71% 3.57%

II Model SVM GRNN BPNN LSTM SVM GRNN BPNN ANFIS LSTM
Percentage 53.57% 35.71% 3.57% 7.14% 64.29% 17.86% 7.14% 3.57% 7.14%

III Model SVM GRNN BPNN SVM GRNN BPNN LSTM
Percentage 53.57% 35.71% 10.71% 32.14% 50.00% 10.71% 7.14%

I PM2.5 Model SVM BPNN SVM BPNN
Percentage 42.86% 57.14% 57.14% 42.86%

II Model SVM BPNN ANFIS LSTM SVM BPNN ANFIS LSTM
Percentage 64.29% 21.43% 3.57% 10.71% 64.29% 17.86% 4.29% 3.57%

III Model SVM BPNN ANFIS LSTM SVM BPNN ANFIS LSTM
Percentage 71.43% 17.86% 3.57% 7.14% 78.57% 14.29% 3.57% 3.57%

I PM10 Model SVM BPNN ANFIS SVM BPNN
Percentage 82.14% 14.29% 3.57% 78.57% 17.86%

II Model SVM BPNN SVM BPNN
Percentage 76.79% 16.07% 78.57% 21.43%

III Model SVM BPNN SVM GRNN BPNN
Percentage 82.14% 17.86% 75.00% 14.29% 10.71%

Category Air pollutants Selection Third season Fourth season

I NO2 Model SVM GRNN BPNN SVM GRNN BPNN LSTM
Percentage 57.14% 25.00% 17.86% 60.71% 28.57% 5.36% 5.36%

II Model SVM GRNN BPNN SVM GRNN BPNN LSTM
Percentage 60.71% 32.14% 7.14% 51.79% 32.14% 8.93% 7.14%

III Model SVM GRNN BPNN ANFIS LSTM SVM GRNN BPNN
Percentage 46.43% 25.00% 14.29% 7.14% 7.14% 46.43% 39.29% 10.71%

I PM2.5 Model SVM BPNN LSTM SVM BPNN ANFIS
Percentage 60.71% 17.86% 21.43% 50.00% 33.93% 14.29%

II Model SVM BPNN ANFIS LSTM SVM BPNN ANFIS
Percentage 71.43% 17.86% 7.14% 3.57% 71.43% 21.43% 7.14%

III Model SVM BPNN ANFIS LSTM GRNN SVM BPNN ANFIS LSTM
Percentage 53.57% 28.57% 7.14% 7.14% 3.57% 64.29% 21.43% 10.71% 3.57%

I PM10 Model SVM BPNN SVM BPNN ANFIS
Percentage 82.14% 17.86% 71.43% 21.43% 7.14%

II Model SVM BPNN ANFIS SVM BPNN
Percentage 71.43% 17.86% 10.71% 67.86% 21.43%

III Model SVM BPNN ANFIS SVM BPNN ANFIS
Percentage 78.57% 17.86% 3.57% 76.79% 17.86% 5.36%
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TABLE 5 | The forecasting results of each model for NO2 in three categories.

Category I

Metric Model MAE RMSE STDE DA U1 U2 MAPE R2

Beijing MODEGWO-SVM 2.1754 3.1919 3.2010 80.84% 0.0464 2.0148 9.95% 0.9868
MODEGWO-GRNN 3.0082 3.9179 3.9242 50.90% 0.0569 2.6113 15.23% 0.9800
MODEGWO-BPNN 2.6589 3.7849 3.7857 69.46% 0.0550 2.4488 13.07% 0.9814
MODEGWO-ANFIS 3.4548 6.0636 6.0514 64.07% 0.0889 4.1096 16.57% 0.9524
Model select 2.1300 3.1765 3.1847 77.25% 0.0463 1.9446 9.68% 0.9869

Baoding MODEGWO-SVM 4.7162 7.4952 7.5055 77.25% 0.0665 2.1441 12.69% 0.9620
MODEGWO-GRNN 5.1070 7.9556 7.8716 60.48% 0.0706 3.6465 17.57% 0.9569
MODEGWO-BPNN 6.9580 9.8870 9.5789 59.28% 0.0906 2.3774 17.26% 0.9355
MODEGWO-ANFIS 7.0574 10.5964 10.1816 56.89% 0.2401 2.4591 18.41% 0.9223
Model select 4.4448 7.3418 7.3599 76.65% 0.0654 2.1115 11.96% 0.9628

Langfang MODEGWO-SVM 4.5141 7.5578 7.5731 76.05% 0.0880 2.2411 13.46% 0.9372
MODEGWO-GRNN 3.8320 5.2949 5.3098 62.28% 0.0625 1.7523 12.52% 0.9682
MODEGWO-BPNN 5.3965 8.4998 8.3895 62.87% 0.0980 2.9703 17.22% 0.9214
MODEGWO-ANFIS 6.3336 11.4957 11.3948 60.48% 0.1305 3.2108 18.23% 0.8745
Model select 3.6594 5.3249 5.3380 68.86% 0.0627 1.7819 11.28% 0.9676

Category II

Shijiazhuang MODEGWO-SVM 2.8162 4.8606 4.8733 82.04% 0.0498 2.3785 8.21% 0.9695
MODEGWO-GRNN 3.5480 5.0067 5.0163 50.90% 0.0517 2.2642 10.46% 0.9674
MODEGWO-BPNN 4.3533 6.7126 6.6382 58.68% 0.0694 2.9803 11.62% 0.9450
Adam-LSTM 5.8291 8.3652 8.3630 55.09% 0.0859 3.5319 14.95% 0.9167
Model select 2.8001 4.0036 4.0095 74.25% 0.0412 2.0289 8.02% 0.9792

Tangshan MODEGWO-SVM 4.2928 6.4751 6.4876 82.63% 0.0584 2.3028 12.41% 0.9643
MODEGWO-GRNN 3.5396 5.2423 5.2563 73.65% 0.0474 1.5259 9.14% 0.9763
MODEGWO-BPNN 5.9179 8.2307 8.2550 68.86% 0.0743 2.3721 16.20% 0.9423
Adam-LSTM 5.0169 6.9705 6.9845 74.25% 0.0630 2.3430 13.86% 0.9579
Model select 3.5604 5.3107 5.3266 77.84% 0.0481 1.5419 9.10% 0.9757

Handan MODEGWO-SVM 3.6331 5.9196 5.9315 72.46% 0.0570 2.2986 9.69% 0.9552
MODEGWO-GRNN 4.0699 6.2263 6.2395 60.48% 0.0604 2.3158 11.35% 0.9494
MODEGWO-BPNN 5.7352 8.4969 8.4366 55.69% 0.0832 2.3412 13.92% 0.9058
Adam-LSTM 5.3202 7.0150 6.9787 60.48% 0.0682 2.2208 12.31% 0.9378
Model select 3.3618 5.4628 5.4791 76.05% 0.0527 2.1130 8.79% 0.9620

Chengde MODEGWO-SVM 2.6775 4.0365 4.0326 71.26% 0.0653 1.8783 15.35% 0.9735
MODEGWO-GRNN 2.6787 4.0350 4.0461 62.87% 0.0658 2.0476 17.48% 0.9735
MODEGWO-BPNN 3.4332 4.9117 4.9230 60.48% 0.0804 2.2906 20.15% 0.9605
Adam-LSTM 4.5095 6.9772 6.9648 67.07% 0.1123 2.6262 26.28% 0.9201
Model select 2.4481 3.7646 3.7746 73.05% 0.0612 1.7081 13.90% 0.9769

Hengshui MODEGWO-SVM 4.7952 6.5453 6.5494 73.65% 0.0764 2.1369 15.41% 0.9405
MODEGWO-GRNN 6.0417 8.0467 8.0648 47.90% 0.0950 3.2945 23.59% 0.9078
MODEGWO-BPNN 10.7085 17.2255 16.7668 55.69% 0.2122 3.6978 27.02% 0.5924
Adam-LSTM 7.5643 10.4959 9.9896 49.70% 0.1296 2.3976 22.00% 0.8544
Model select 4.3346 6.1328 6.1423 74.85% 0.0717 2.0600 14.27% 0.9477

Xingtai MODEGWO-SVM 3.7973 5.6732 5.6880 70.66% 0.0494 2.1280 9.22% 0.9688
MODEGWO-GRNN 4.0825 6.1326 6.1358 65.87% 0.0535 2.3674 10.61% 0.9633
MODEGWO-BPNN 5.5707 8.1697 8.0221 61.68% 0.0727 2.6425 12.39% 0.9361
Adam-LSTM 7.1767 11.0393 11.0367 65.87% 0.0967 2.9015 15.29% 0.8884
Model select 3.5614 5.4338 5.4465 67.07% 0.0474 1.9570 8.58% 0.9710

Category III

Tianjin MODEGWO-SVM 2.5155 3.5288 3.5317 80.84% 0.0355 1.8109 5.98% 0.9830
MODEGWO-GRNN 2.9357 4.2368 4.2449 70.06% 0.0427 1.9437 7.51% 0.9750
MODEGWO-BPNN 3.1418 4.3375 4.3501 77.84% 0.0436 2.0924 7.57% 0.9744
Model select 2.3407 3.3033 3.3130 87.24% 0.0333 1.7699 5.66% 0.9850

Qinhuangdao MODEGWO-SVM 3.8108 5.4949 5.4950 81.44% 0.0554 1.7553 10.87% 0.9744
MODEGWO-GRNN 3.7633 5.3865 5.3965 65.87% 0.0549 2.1029 12.88% 0.9752
MODEGWO-BPNN 5.4520 7.6113 7.3974 67.66% 0.0791 2.0834 14.56% 0.9531
Model select 3.4285 4.8590 4.8733 74.85% 0.0494 1.7261 10.28% 0.9797

Zhangjiakou MODEGWO-SVM 2.3096 3.5862 3.5967 75.45% 0.0945 1.8076 13.87% 0.9058
MODEGWO-GRNN 3.1474 4.1463 4.1587 44.91% 0.1106 2.3875 20.99% 0.8669
MODEGWO-BPNN 2.7829 4.2140 4.1925 61.08% 0.1137 2.0222 16.66% 0.8640
Model select 2.0741 2.8440 2.8524 71.86% 0.0753 1.7182 13.10% 0.9395

Cangzhou MODEGWO-SVM 6.1489 9.0417 9.0626 78.44% 0.0803 2.0706 15.17% 0.9373
MODEGWO-GRNN 5.4532 7.6253 7.6448 58.68% 0.0682 2.0220 14.67% 0.9535
MODEGWO-BPNN 8.0522 11.4542 11.4009 55.69% 0.1031 2.8158 19.38% 0.9018
Model select 5.3105 7.9582 7.9179 70.66% 0.0716 1.9162 12.87% 0.9509
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NO2 forecasting in Category I. As for the R2, the proposed
model has the best performance among the four single-
hybrid models for hourly interval NO2 time series.

2) Focusing on Category II, it is clear that proposed model based
on model selection exhibits the best performance among the
single fourth hybrid models implemented for all eight criteria

FIGURE 3 | Forecasting result of NO2 for three categories in the first season.
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TABLE 6 | The PM2.5 forecasting result for each city in Category II by different models.

Metric Shijiazhuang

MODEGWO-SVM MODEGWO-BPNN MODEGWO-ANFIS Adam-LSTM Model select

MAE 0.4632 0.4450 0.6554 1.2945 0.3518
RMSE 0.6106 0.5877 1.2148 2.0978 0.4497
STDE 0.6124 0.5809 1.2182 2.1038 0.4509
DA 75.45% 73.05% 70.66% 42.51% 81.44%
U1 0.0067 0.0064 0.0133 0.0221 0.0049
U2 1.4464 1.3998 3.4525 4.3147 1.2087
MAPE 1.31% 1.08% 1.85% 2.88% 0.88%
R2 0.9991 0.9992 0.9964 0.9889 0.9995

Metric Handan

MODEGWO-SVM MODEGWO-BPNN MODEGWO-ANFIS Adam-LSTM Model select

MAE 0.5522 0.5250 1.3025 2.1956 0.4694
RMSE 0.7024 0.7009 2.5927 3.1495 0.6125
STDE 0.6835 0.7007 2.5352 3.1450 0.6092
DA 82.63% 83.83% 71.26% 43.71% 88.02%
U1 0.0051 0.0051 0.0191 0.0232 0.0045
U2 1.3944 1.4399 2.7102 4.7186 1.2395
MAPE 0.90% 0.85% 2.08% 3.46% 0.76%
R2 0.9993 0.9992 0.9896 0.9831 0.9994

Metric Hengshui

MODEGWO-SVM MODEGWO-BPNN MODEGWO-ANFIS Adam-LSTM Model select

MAE 0.4649 0.5305 1.5424 2.6723 0.4392
RMSE 0.6107 0.7545 3.3746 3.8908 0.6260
STDE 0.6044 0.7515 3.3556 3.8552 0.6279
DA 82.63% 74.85% 65.87% 38.92% 83.44%
U1 0.0056 0.0070 0.0312 0.0356 0.0058
U2 1.3886 1.4988 6.8777 6.1294 1.2831
MAPE 0.92% 1.07% 3.34% 5.02% 0.88%
R2 0.9985 0.9984 0.9744 0.9724 0.9989

Metric Tangshan

MODEGWO-SVM MODEGWO-BPNN MODEGWO-ANFIS Adam-LSTM Model select

MAE 0.3165 0.4449 1.1059 1.5655 0.3107
RMSE 0.3984 0.5718 2.9201 2.4642 0.3948
STDE 0.3961 0.5714 2.8491 2.4622 0.3947
DA 80.24% 69.46% 62.28% 43.11% 82.04%
U1 0.0052 0.0074 0.0381 0.0321 0.0051
U2 1.0656 1.3226 11.8381 5.4107 1.0363
MAPE 0.94% 1.36% 3.85% 4.63% 0.91%
R2 0.9996 0.9992 0.9818 0.9845 0.9996

Metric Chengde

MODEGWO-SVM MODEGWO-BPNN MODEGWO-ANFIS Ada-LSTM Model select

MAE 0.2413 0.3283 0.6149 0.9537 0.2388
RMSE 0.3103 0.4255 1.1569 1.7033 0.3017
STDE 0.3101 0.4241 1.1353 1.7052 0.3007
DA 70.06% 61.08% 53.89% 37.13% 72.06%
U1 0.0096 0.0104 0.0281 0.0414 0.0076
U2 1.0296 0.9017 2.7485 5.1292 1.0022
MAPE 1.46% 1.79% 3.20% 4.77% 1.34%
R2 0.9987 0.9976 0.9827 0.9663 0.9987

Metric Xingtai

MODEGWO-SVM MODEGWO-BPNN MODEGWO-ANFIS Ada-LSTM Model select

MAE 0.4611 0.5550 0.9154 1.4376 0.4354
RMSE 0.5936 0.7151 1.4925 1.9675 0.5685
STDE 0.5905 0.7119 1.4969 1.9238 0.5691
DA 74.85% 70.06% 56.89% 33.53% 77.25%
U1 0.0049 0.0059 0.0123 0.0161 0.0047
U2 1.3588 1.4830 3.4545 4.4867 1.2932
MAPE 0.79% 0.98% 1.67% 2.47% 0.75%
R2 0.9988 0.9983 0.9923 0.9874 0.9989
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involved. For theMAPE, there are average reductions between
the proposed model and single hybrid model, by
approximately 12.48%, 29.12%, 60.00%, and 66.70% in six
cities for the hourly NO2 time series forecasting, respectively.
Comparing the four single hybrid models for the hourly NO2

forecasting, the forecasting accuracy of DEGWO-SVM is

higher than that of the other three hybrid models. The
average reduction of MAPE among the MODEGWO-SVM
and the other three hybrid models is 16.70%, 42.79%, and
50.10%, respectively. In addition, all the R2 values of the
proposed model are over 90%, which underlines the higher
fitting effect on Category II.

FIGURE 4 | Forecasting performance of each model for Category II in the first season.
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3) The forecasting metric of the single hybrid models and the
proposed model in Table 4 indicates that the proposed model
based on model selection performs better than the single
hybrid model in Category III. As an example, with respect
to Tianjin, the DA values of the individual hybrid models are
80.84% (MODEGWO-SVM), 70.06% (MODEGWO-GRNN),
and 77.84% (MODEGWO-BPNN), while the DA values of the
proposed models is 87.24%, respectively. The comparative
analysis between the proposed model and the single model
confirms the advantages of the hybrid forecasting model.

4) Moreover, Table 5 displays each metric of NO2 forecasting
among the developed hybrid forecasting system and the single
hybrid models. According to Table 5, it is obvious that the
values of MAE, RMSE, MAPE, U1, and U2 of the proposed
hybrid model are all smaller than the other considered models,
and the values of DA and R2 of the developed hybrid
forecasting system are all greater than that of the single
hybrid model, which further confirms the superiority of the
presented hybrid forecasting system in terms of forecasting
ability.

In summary, from the analyses above, it can be concluded that
the model selection forecasting system realizes the best
forecasting results compared to the single hybrid model.
Model selection also gives better forecasting performance in
the other season with the results shown in Supplementary
Appendices S2–S4 indicating better robustness of the model
selection forecasting system.

Experiment II: The Forecasting Results of
Category II PM2.5 Forecasting in the First
Season
This experiment mainly focused on the forecasting performance
of each model for PM2.5 of Category II in the first season, with the
forecasting results of four different hybrid models (MODEGWO-
SVM, MODEGWO-BPNN, MODEGWO-ANFIS, Adam-LSTM)
and model selection represented in Table 6 and Figure 4

1) For first season PM2.5 forecasting accuracy, the final forecast
results of PM2.5 for six cities in Category II are composed of
four hybrid models, which include MODEGWO-SVM,
MODEGWO-BPNN, MODEGWO-ANFIS, and Adam-
LSTM. Among the four models, MODEGWO-SVM and
MODEGWO-BPNN have better forecasting performance,
with the MODEGWO-SVM obtaining 64.29% optimal
forecasting points and the MODEGWO-BPNN obtaining
21.43% optimal points for six cities in Category II. The
smallest MAPE values of MODEGWO-SVM are 0.92%,
0.94%, 1.36%, and 0.79% for Hengshui, Tangshan,
Chengde, and Xingtai PM2.5 forecasting, and the
MODEGWO-BPNN obtains the best MAPE (1.08% and
0.85%) value for Shijiazhuang and Handan.

2) For the goodness of fit, the R2 values of four different hybrid
models are over 0.95 for six cities in the first season, which
indicates that the forecasting values obtained by these models
is close to the actual value. The forecasting result of

Shijiazhuang shows that the R2 value of best hybrid modes
(MODEGWO-BPNN) is 0.9993, very close to 1, which
indicates that there is less difference between forecasting
data and actual data, and the forecasting value is basically
consistent with the actual value. Meanwhile, The DA values of
the best hybrid model are over 70%, which proves the best
models can effectively capture the changing trend of the
actual data.

3) For the forecasting results of model selection, Table 6 and
Figure 4 clearly show that the forecasting performance of
model selection is better than the hybrid model. The MAPE
value of model selection is 0.88%; compared with the optimal
hybrid model the MAPE improved 22.73%, and the MAE and
RMSE reduced 26.49% and 30.69%, respectively. Although the
model selection can improve the forecasting accuracy, in the
PM2.5 forecasting of some cities, due to the better forecasting
performance of the single hybrid model, the forecasting
accuracy of the model selection is not significantly
improved. For example, in the PM2.5 forecasting of Xingtai,
the MAPE value of optimal forecasting model (MODEGWO-
SVM) is 0.79%, and theMAPE of the model selection is 0.76%,
which shows that forecasting accuracy has no significant
improvement.

4) Similar to the first season, the PM2.5 forecasting results of
Category II in the second to fourth seasons are listed in
Supplementary Appendix Table 7 in which the best
forecasting performances of the hybrid model are shown
by DEGWO-SVM, DEGWO-BPNN, DEGWO-ANFIS, and
Adam-LSTM for PM2.5 forecasting in each city. Compared
with the optimal hybrid model, the final forecasting results
obtained by the model selection is more accurate than single
hybrid model, which indicates that the optimal hybrid model
has good forecasting performance but cannot be applied to all
the forecasting data.

In summary, for the Category I and Category III PM2.5

forecasting list in Supplementary Appendices S5–S7, the
model selection forecasting system exhibits the best forecasting
accuracy among the different hybrid models for four seasons. It is
evident that the forecasting capacity of the model selection is
robust when considering each forecasting metrics. The accuracy
of model selection depends on the hybrid model, so it is necessary
to increase the types of models in the modeling process which
ensures that more forecasting results can be obtained, and the
optimal forecasting value can be selected in the model selection
process.

Experiment III: PM10 Forecasting Analysis
for Category III in Four Seasons
For the hourly PM10 time series for three categories, it can be
observed that the model selection forecasting system attains
satisfactory results. Specifically, the lowest values of MAE are
0.4643, 0.4600, and 0.3869 and of RMSE are 0.7302, 0.7906, and
0.5561, corresponding to PM10 forecasting in Category I in three
cities, successively. The results of Category I indicate that the
smaller the MAE and MSE, the smaller the deviation between the
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TABLE 7 | The forecasting result of each model in different seasons for Category III.

Location Metric First season Second season Third season Fourth season

DEGWO-
SVM

DEGWO-
BPNN

Model
selection

DEGWO-
SVM

DEGWO-
GRNN

DEGWO-
BPNN

DEGWO-
ANFIS

Model
selection

DEGWO-
SVM

DEGWO-
BPNN

DEGWO-
ANFIS

Model
selection

DEGWO-
SVM

DEGWO-
BPNN

DEGWO-
ANFIS

Model
selection

Tianjin MAE 0.4119 0.4687 0.3576 2.3288 3.1388 2.6986 6.2681 1.8811 0.7567 0.8285 1.1091 0.5870 0.6775 0.8685 1.0346 0.5747
RMSE 0.5572 0.6236 0.4552 8.1840 7.7183 8.6510 25.5466 7.1780 0.9382 1.1333 1.5570 0.7880 0.8649 1.1016 1.4746 0.7649
STDE 0.5472 0.6019 0.4535 8.2080 7.7255 8.6768 25.5589 7.1987 0.9259 1.1090 1.5400 0.7841 0.8531 1.0938 1.4463 0.7531
DA 81.44% 74.25% 76.05% 76.05% 31.74% 64.67% 65.87% 76.05% 55.09% 55.09% 47.90% 68.26% 71.26% 50.30% 50.90% 71.26%
U1 0.0037 0.0051 0.0037 0.0435 0.0412 0.0460 0.1343 0.0382 0.0064 0.0078 0.0107 0.0054 0.0063 0.0076 0.0101 0.0053
U2 1.3126 1.4969 1.2192 1.9855 1.9275 2.0215 13.1964 1.6470 2.8029 1.8298 2.7405 1.7659 2.2110 2.2721 2.9704 2.1810
MAPE 0.71% 0.83% 0.65% 2.65% 3.69% 3.09% 7.55% 2.12% 1.09% 1.13% 1.53% 0.84% 0.93% 1.19% 1.41% 0.83%
R2 0.9998 0.9996 0.9998 0.9601 0.9629 0.9534 0.7662 0.9681 0.9974 0.9965 0.9930 0.9982 0.9973 0.9969 0.9938 0.9983

Qinhuangdao MAE 0.4140 0.5075 0.4034 0.7588 2.5923 1.0097 1.9170 0.7441 0.4645 0.6423 1.1009 0.4303 0.7377 0.8356 1.1088 0.6459
RMSE 0.5527 0.6725 0.5440 1.2183 3.4536 1.6718 3.9976 1.2117 0.6622 0.8380 2.4277 0.5914 1.0205 1.2012 1.5364 0.9614
STDE 0.5529 0.6736 0.5452 1.2219 3.4639 1.6274 3.9538 1.2146 0.6639 0.8317 2.3892 0.5932 1.0232 1.2029 1.5351 0.9642
DA 82.04% 68.86% 83.23% 85.63% 32.93% 79.64% 72.46% 86.23% 81.44% 70.66% 72.46% 82.63% 79.04% 80.84% 64.67% 85.63%
U1 0.0044 0.0054 0.0044 0.0061 0.0173 0.0083 0.0199 0.0061 0.0053 0.0067 0.0194 0.0047 0.0054 0.0063 0.0081 0.0050
U2 1.1881 1.2933 1.1573 1.3515 4.7857 1.5998 4.0494 1.2920 1.6354 1.6295 5.0927 1.4787 1.4708 1.4926 1.9014 1.3827
MAPE 0.81% 0.96% 0.75% 0.86% 3.22% 1.09% 2.09% 0.84% 0.96% 1.19% 2.18% 0.82% 1.00% 1.07% 1.49% 0.83%
R2 0.9997 0.9996 0.9997 0.9995 0.9964 0.9993 0.9959 0.9996 0.9994 0.9991 0.9925 0.9995 0.9996 0.9994 0.9991 0.9997

Zhangjiakou MAE 0.6366 0.7970 0.4310 4.1069 7.4836 4.7017 4.8835 3.7104 0.4875 0.5652 0.8045 0.4782 0.7864 1.0681 1.7907 0.7297
RMSE 0.7642 1.1575 0.5662 11.3281 12.9323 11.1572 12.2400 9.2301 0.6852 0.7945 1.2237 0.6836 1.0777 1.4880 2.8905 1.0128
STDE 0.7655 1.1117 0.5666 11.3585 12.8990 11.1833 12.2350 9.2556 0.6797 0.7559 1.1982 0.6802 1.0638 1.4884 2.8853 0.9772
DA 67.25% 62.87% 77.25% 83.83% 33.53% 74.25% 67.07% 82.04% 72.46% 70.06% 65.87% 72.46% 74.25% 66.47% 56.89% 75.45%
U1 0.0099 0.0101 0.0049 0.0219 0.0251 0.0217 0.0237 0.0179 0.0042 0.0049 0.0075 0.0042 0.0066 0.0091 0.0177 0.0062
U2 1.7496 2.5892 1.3923 1.6411 3.0821 1.5223 1.8703 1.3734 1.4487 1.7344 1.5603 1.4729 1.9104 2.1059 2.8750 1.8712
MAPE 1.09% 1.93% 0.97% 2.27% 6.19% 2.51% 3.28% 2.06% 0.61% 0.72% 1.02% 0.59% 1.24% 1.73% 2.78% 1.18%
R2 0.9993 0.9991 0.9998 0.9979 0.9973 0.9980 0.9976 0.9986 0.9988 0.9985 0.9963 0.9988 0.9993 0.9986 0.9945 0.9994

Cangzhou MAE 0.5447 0.5872 0.5178 4.8605 4.9067 4.8833 4.8570 2.0438 0.4579 0.5585 0.7233 0.4391 0.6380 0.8810 1.8394 0.6300
RMSE 0.7422 0.7952 0.7083 7.2624 7.2642 7.2682 7.2725 3.8192 0.5983 0.7079 1.0983 0.5802 0.8898 1.2163 3.6287 0.8931
STDE 0.7422 0.7963 0.7061 5.9796 5.9749 5.9578 5.9428 3.8275 0.5990 0.6926 1.0950 0.5813 0.8872 1.2080 3.6191 0.8812
DA 81.44% 82.63% 83.23% 80.84% 73.89% 77.84% 80.84% 87.31% 80.24% 68.86% 64.07% 82.63% 85.03% 78.44% 68.86% 86.83%
U1 0.0045 0.0048 0.0043 0.0293 0.0293 0.0294 0.0294 0.0127 0.0040 0.0048 0.0074 0.0039 0.0043 0.0059 0.0176 0.0043
U2 1.3594 1.3911 1.3065 5.5390 5.6602 5.5440 5.5906 1.8692 1.4269 1.4604 1.5698 1.4152 1.4389 1.4227 2.7705 1.3837
MAPE 0.72% 0.76% 0.67% 2.83% 2.90% 2.84% 2.81% 1.67% 0.65% 0.80% 0.99% 0.62% 0.66% 0.93% 1.83% 0.65%
R2 0.9996 0.9995 0.9996 0.9251 0.9288 0.9386 0.9472 0.9984 0.9992 0.9990 0.9975 0.9993 0.9994 0.9989 0.9904 0.9994
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observations and forecasting, which verifies the forecasting
performance. In addition, the average MAPE values of model
selection for six cities of Category II in four seasons are lower than
1%. Compared with the optimal hybrid model, the model
selection is approximately reduced by 10%. The analyses reveal
the forecasting superiority of the model selection system. By
parity of reasoning, a similar conclusion can be reached through
the analyses of the hourly PM10 forecasting results for Category
III (the forecasting results are shown in Table 7 and Figure 5).

1) For PM10 forecasting in the first season, the optimal hybrid
models are DEGWO-SVM and DEGWO-BPNN, with which
the MAPE values of the best hybrid model (DEGWO-SVM)
for four cities of Category III are 0.71%, 0.81%, 1.09%, and
0.72%. The final forecasting values are obtained by model
selection; based on the results of DEGWO-SVM and
DEGWO-BPNN the MAPE values of model selection are
0.65%, 0.75%, 0.97%, and 0.67%. Additionally, the values of
other forecasting metrics are at their best under the model
selection.

2) In the second season of PM10 forecasting for four cities, the
final forecasting results consist of four different hybrid models
(DEGWO-SVM, DEGWO-GRNN, DEGWO-BPNN, and
DEGWO-ANFIS). From the forecasting performance of
four hybrid models, the forecasting performance of

DEGWO-SVM is better than the other three models, in
which the values of MAPE are 2.65%, 0.86%, 2.27%, and
2.83% for different cities’ PM10 forecasting in Category III.
Additionally, the DA value of MODEGWO-SVM is over 75%,
which indicates that the hybrid model can capture future
changing trends of PM10. The final forecasting results are
obtained bymodel selection, in which the forecasting accuracy
is better than those of the four hybrid models. Compared with
the best hybrid model, theMAPE values of model selection are
reduced by 25.00%, 2.38%, 10.19%, and 69.46%, respectively.

3) According to forecasting results in Table 7 and Figure 5 for
PM10 of the third season, the three kinds of hybrid models
(DEGWO-SVM, DEGWO-BPNN, and DEGWO-ANFIS) are
employed to forecast hourly PM10; the DEGWO-SVM has the
best forecasting performance among the three hybrid models
in Zhangjiakou, and the MAPE is 0.61%. DEGWO-SVM has
better forecasting accuracy, and model selection has little
improvement on the forecasting accuracy in the final
prediction results, but the MAPE has maximum
improvement of 29.76% for Tianjin PM10 forecasting.

4) According to the results in Table 6, the three kinds of hybrid
models are used to forecast PM10 for four cities of Category III
in the fourth season, and the R2 value of each model was
greater than 0.99, which shows that these models have a good
forecasting performance for the PM10. Meanwhile, model

FIGURE 5 | The forecasting result of PM10 for Category III in different seasons.
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selection uses the predicted values of each model to form the
final forecasting results, and the corresponding MAE values
are 0.5747, 0.6459, 0.7297, and 0.6300 for four cities.

In summary, whether for Category III or the other categories
(the results are shown in Supplementary Appendix S8 and
Supplementary Appendix S9) PM10 forecasting, the model
selection system attained the best performance for 13 cities. In
the comparison of various hybrid models, the forecasting
performance of MODEGWO-SVM is better than other hybrid
models. Additionally, it can be observed that some models have
low accuracy, which can still provide some optimal forecasting
values for the model selection system for hourly PM10 forecasting.
Based on the above analysis, it can be seen that none of the models
has been playing the best forecasting performance in the
forecasting process, and various hybrid models are needed to
make up for the shortcomings of the single hybrid model.

DISCUSSIONS

This section mainly discusses the hyperparameter related to the
SVM and ANN model that would influence the forecasting
performance. A large variety of machine learning models and
ANNs are available for air pollution time series including three
different type pollutants. Finally, compare computing in different
model.

Support Vector Machine
According to the results of each experiment, SVM provided the
more optimal forecast values for the three main pollutants in the
four quarters of 13 cities. The reason for the favorable score
produced by SVM is that SVM provides a way to avoid the
complexity of high-dimensional space by directly using the inner
product function of the space (which is the kernel function) and
then directly solving the corresponding decision-making problem
in high-dimensional space by using the solution method under
the condition of linear separability. When the kernel function is
known, it can simplify the difficulty of solving the problem in
high-dimensional space. Meanwhile, SVM is based on the small
sample statistical theory, which conforms to machine learning. In
addition, support vector machine has better generalization ability
than neural network. Although the time series of the three main
air pollutants are neither regular nor seasonal, SVM can also
effectively capture future changes of the three main air pollutants.

SVM has two very important parameters: c and g. c is the
penalty coefficient, that is, tolerance of errors. The higher the c,
the more intolerable the errors and easy to over-fit. The smaller
the c, the less easy fitting is. If c is too large or too small, the
generalization ability becomes worse. g is a parameter that comes
with RBF function when it is selected as a kernel. Implicitly it
determines the distribution of data after mapping to a new feature
space. The bigger the g, the less support vectors; it will only act
near the support vector samples. For the unknown samples, the
classification effect is very poor. There is a possibility that the
training accuracy can be very high, and the test accuracy is not
high, that is, over-fitting. The smaller the g value is, the more

support vectors there are, and the greater the smoothing effect
will be; the higher accuracy of the training processing cannot be
obtained, and the accuracy of the testing processing will also be
affected. This paper used DEGWO algorithm and GWO
algorithm to optimize the parameters of SVM (c and g). The
results of two types of hybrid SVMs are shown in Table 8, which
displays that the optimum penalty coefficients of SVM
corresponding to pollutant forecasting in different cities vary
widely. For example, in the forecasting processing of NO2, the
variation range of parameters is [2, 99]. However, the fluctuation
range of g is small, with most variations ranging from 0 to 1. In
general, the air pollutants forecasting performances of support
vector machine are very dependent on the penalty coefficient. In
the whole experiment it can be observed that the support vector
machine has good forecasting accuracy for three main air
pollutants forecasting, but it cannot provide the best
forecasting value in each point. It indicates that the support
vector machine is suitable for hourly air pollutants forecasting.

Artificial Neural Network: Number of Input
Layer and Number of Hidden Layers
ANN as a nonlinear mapping model is used to solve the problem
of time series forecasting, because the ANN model can find the
optimal solution of a complex problem with the help of high-
speed computing ability of the computer. In order to ensure the
forecasting accuracy of the ANNmodel, parameters of ANN need
to be elaborately configured. However, there is no effective rule
for establishing the values of these parameters on air pollutants
forecasting. Although there are many studies on the tuning of the
parameters of the neural network, it is obvious that the selection
of the whole parameter space is beyond the scope of this study.
Therefore, the parameters of the neural network are set by means
of simulation experiment and optimization algorithm: the
experimental design is as follows:

This processing configured various input layers and a number
of hidden layers to find out the influence of the usage of recent
data on the performance of different ANN models. The number
of input layers from 1 to 10 increases for three main air pollutants,
whichmeans there are 1,008 pieces of sample data on NO2, PM2.5,
and PM10; the train-to-verify ratio 5:1 means that 840 pieces of
sample data were used as training data for building the ANN
model, while 168 pieces of sample data were used as testing data
for finding the training-to-testing ratio and parameter of each
ANN model (the optimal number of input layers of each model
and the number of hidden layers of LSTM and BPNN). Figure 6
shows the forecasting performance with the different
configurations of the optimal number of input layers and the
number of hidden layers of LSTM and BPNN, in which it is
difficult to find a regular correlation between the forecasting
performances and the parameters. Consequently, it is difficult to
find an optimal combination of ANN’s parameters that brings the
model to the best performance in the practical air pollutant
forecasting where MAPE and R2 are unknown.

During the experiment on configurations of ANN’s parameter,
the optimal parameter setting trained the networks models for
each ANNmodel in 13 cities. The forecasting values with the best

Frontiers in Environmental Science | www.frontiersin.org December 2021 | Volume 9 | Article 76128718

Huang et al. Main Air Pollution Forecasting

https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


TABLE 8 | The result of two types of SVM for three main air pollutants in different cities.

Air Pollution Parameter Beijing Tianjin Shijiazhuang Tangshan Qinhuangdao Handan Baoding Zhangjiakou Chengde Langfang Cangzhou Hengshui Xingtai

DEGWO-
SVM (NO2)

best.C 46.9568 99.5518 99.309 99.161 99.8544 9.6662 83.7412 3.5907 16.9145 2.6853 49.9809 99.1334 4.3575
best.g 0.9694 0.0763 0.1945 0.3663 0.0393 0.5403 0.0101 4.0931 0.0105 1.4979 0.0105 0.4098 0.4622
SSE 1.74*103 1.92*103 3.82*103 7.76*103 5.30*103 7.12*103 8.78*103 2.09*103 3.06*103 8.96*103 1.27*104 7.37*103 5.62*103

min.E 0.0338 0.0186 0.0061 0.0336 0.0002 0.0446 0.0216 0.0127 0.0355 0.0077 0.0494 0.0305 0.0259
max.E 10.7395 13.5376 36.7462 27.3748 20.6095 41.3333 38.0069 13.0612 18.5541 44.2883 34.1065 27.4761 24.1837
Var.E 10.3228 11.1665 22.8619 46.4519 31.2395 42.479 52.0663 12.3554 18.01 53.4352 75.7013 43.7583 33.6634
Time 467.0666 493.4147 487.456 503.9043 510.1607 497.2697 474.2788 495.2658 499.3622 474.5837 490.1128 478.4362 492.8458

GWO-SVM (NO2) best.C 78.5905 324.3692 210.5643 31.6254 212.0154 10.2694 200.0915 33.5771 17.2807 278.5659 50.1119 169.9275 401.8597
best.g 0.9669 0.0765 0.1961 0.3913 0.0395 0.5486 0.01 3.9411 0.1216 1.4618 0.0105 0.4118 0.2077
SSE 1.86*103 1.94*103 4.12*103 7.96*103 5.70*103 7.67*103 9.29*103 2.10*103 3.33*103 9.74*103 1.32*104 7.90*103 5.76*103

min.E 0.0368 0.0187 0.0062 0.0367 0.0003 0.049 0.023 0.0134 0.0383 0.0083 0.0507 0.0321 0.0283
max.E 11.3172 13.5905 38.0581 29.5744 20.7387 44.7556 38.7649 13.1132 19.3 45.5339 35.1327 28.8798 25.4748
Var.E 10.612 11.2675 23.2602 50.7895 32.7046 46.1177 53.6559 13.2875 18.7424 56.4917 78.4229 46.1941 34.9107
Time 414.2995 409.8461 397.1843 439.9873 449.712 434.443 409.6929 405.8517 405.4657 426.6385 438.0274 395.0127 436.3719

DEGWO-SVM
(PM2.5)

best.C 77.7686 0.079 0.1832 32.0261 0.697 4.7476 47.0616 88.2993 99.8909 2.7945 1.4898 0.0972 5.0422
best.g 5.0885 2.6319 7.6937 0.01 3.736 0.01 0.01 0.016 0.0134 4.7102 3.5942 1.9463 0.01
SSE 8.67*102 4.91**102 7.68*102 2.42*102 1.10*102 1.61*103 1.71*103 50.63 1.63*102 7.55*102 1.69*103 1.31*103 5.85*102

min.E 0.024 0.0079 0.0308 0.0114 0.0008 0.0034 0.0016 0.0011 0.0039 0.0182 0.0711 0.0363 0.0053
max.E 4.3326 4.8468 7.4561 3.3869 2.1798 9.1996 9.9057 1.5044 2.5344 5.0337 8.2179 8.8812 6.0958
Var.E 3.6799 2.544 4.0871 1.4022 0.6552 7.9582 10.6013 0.2743 0.6602 3.8421 9.8701 6.7322 3.4501
Time 78.5201 79.9691 79.8954 80.0222 81.0965 85.7327 85.5043 80.7387 85.0065 80.3694 84.4306 83.4787 83.4082

GWO-SVM (PM2.5) best.C 40.8136 93.0752 8.4678 31.86 60.0461 4.7539 52.6286 87.9288 100 92.1335 17.8947 41.9715 59.3705
best.g 5.0366 1.397 8.7715 0.01 3.7298 0.01 0.01 0.0165 0.0134 4.7102 3.6199 3.306 0.01
SSE 8.83*102 8.08*102 8.20*102 2.43*102 1.11*102 1.63*103 1.77*103 50.61 1.57*102 7.55*102 1.68*103 2.63*103 6.07*102

min.E 0.0086 0.0136 0.0147 0.0106 0.0039 0.0263 0.0038 0.0038 0.0013 0.0182 0.0474 0.0024 0.0018
max.E 4.2931 6.2686 8.4904 3.422 2.1569 9.2235 9.9212 1.5028 2.4958 5.0337 8.1801 7.6894 6.0805
Var.E 3.7291 4.6545 4.282 1.4157 0.6563 7.9943 10.5457 0.2739 0.6459 3.8421 9.753 9.6812 2.0456
Time 63.6136 65.0956 67.7701 71.8366 67.2112 70.9237 68.4242 68.8076 68.1498 69.0608 74.1707 71.644 68.8802

DEGWO-SVM
(PM10)

best.C 3.5114 18.3746 4.8387 61.0409 56.5602 0.847 83.9649 51.5595 5.1477 19.6408 12.4613 1.2529 0.553
best.g 4.7786 7.0919 0.01 0.0366 0.0187 0.3343 0.0103 0.01 0.0563 5.9592 3.3231 0.4991 4.3841
SSE 2.58*103 9.35*102 8.17*103 1.49*103 8.61*102 2.98*103 6.80*103 8.81*102 1.69*103 1.71*103 1.72*103 1.67*103 1.46*103

min.E 0.0176 0.0076 0.0036 0.0026 0.0005 0.0778 0.1005 0.0003 0.1025 0.0015 0.0039 0.03 0.0134
max.E 10.9659 8.4861 14.0939 8.4406 5.9929 10.8543 15.9743 6.9388 7.4138 10.0266 10.3846 7.3109 8.9293
Var.E 10.2272 5.1871 28.3304 8.9646 5.1568 17.5229 33.6806 3.9992 7.9292 5.211 14.8334 9.6962 8.9122
Time 81.873 85.2247 85.6066 84.1662 79.4368 80.1318 80.0802 86.2987 82.036 83.7506 82.7005 81.4053 85.2475

GWO-SVM (PM10) best.C 5.9521 18.4212 0.6008 56.4077 82.7556 0.8624 88.0444 51.7353 5.124 67.6243 5.4252 1.2881 9.1351
best.g 4.7723 7.0158 0.0101 0.0367 0.0187 0.3284 0.0101 0.0101 0.0565 5.9744 0.01 0.4842 0.01
SSE 2.61*103 9.43*102 8.30*103 1.50*103 8.65*102 3.00*103 6.88*103 9.74*102 1.69*103 1.72*103 3.11*103 1.68*103 1.51*103

min.E 0.0249 0.0083 0.0207 0.0192 0.0528 0.081 0.1022 0.079 0.1026 0.0071 0.0256 0.066 0.0899
max.E 10.9762 8.5423 14.7419 8.4423 6.0089 10.9071 16.0619 6.9653 7.416 10.0514 11.5914 7.4373 12.3556
Var.E 10.2477 5.2718 38.3341 8.8981 5.1728 17.469 33.8092 4.1143 7.9363 5.2235 10.2618 9.5788 8.6932
Time 73.6691 70.3273 73.1108 72.0992 69.9234 64.3441 65.0347 75.2683 71.9299 72.8245 69.424 65.4326 71.6009
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performance of each ANN (the best forecasting metric inTable 9)
were selected to forecast three main air pollutants in each
experiment. However, it can be found that there were no giant
differences on forecasting performance among the networks
trained with the same configuration, even if the neural
network has the randomness and probability mechanism
inside the training processing. A large sample of the times
series is another reason that the training stability of the neural
network can be ensured. For example, the best MAPE of BPNN
for the forecasting of NO2 in Beijing shown in Figure 6 is 5.82%,
and the worst one is 8.94%. Most of the MAPEs are between 6%
and 7%. It is practical to use ANN in real air pollutants forecasting
application where forecasting the changing air pollutant time
series is suitable.

In summary, with the rapid development of ANN, it has
become a powerful tool to solve prediction problems. Neural
network is used in the field of air pollution to solve the problem of
non-linear forecasting which cannot be solved by statistical
models. Its non-linear mapping is especially suitable for the
application of air pollutant forecasting. The main reason is
that the ANN has the following advantages:

1) Non-linear mapping ability: ANN realizes a mapping function
from input to output in essence. Mathematical theory proves
that three-layer neural network can approximate any non-
linear continuous function with arbitrary precision. This
makes it especially suitable for solving complex internal

mechanism problems, that is, ANN has strong non-linear
mapping ability.

2) Self-learning and self-adapting ability: ANN can
automatically extract the “reasonable rules” between output
and output data by learning and self-adaptively memorizing
the learning content in the weights of the network. ANN has a
high ability of self-learning and self-adaptation.

3) Generalization ability: When designing pattern classifiers, the
so-called generalization ability refers to whether the network
can forecast the unknown time series correctly after training,
while ensuring that the classified objects are correctly
classified. ANN can apply learning results to new knowledge.

4) Fault-tolerant ability: ANNwill not have a great impact on the
global training results after its local or partial neurons are
damaged; the system can work normally even when it is
damaged locally. ANN has certain fault-tolerant ability.

Computing Time for Each Model
In order to improve the computing efficiency and save the
computing time, training and forecasting processing of all the
models for the main air pollutants time series with parallel
computing by central processing unit (CPU) and graphics
processing unit (GPU). The computing times of every
independent hybrid model in each experiment are shown in
Table 10, from which we can further research the
computational efficiency of the developed model selection
forecasting system for the main air pollutants. Specifically, the

FIGURE 6 | The simulation result of each ANN model for three main air pollutants in different cities.
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TABLE 9 | The simulation result of each ANN model.

Model BPNN ANFIS

Metric NO.
Input

NO.
Hidden

MAE MSE MAPE R2 NO.
Input

MAE MSE MAPE R2

Beijing 7 29 2.7515 13.4095 12.82% 0.9825 7 2.2208 14.1852 11.61% 0.9816
Tianjin 4 21 2.6124 12.3784 6.07% 0.9830 4 1.8908 18.6934 5.00% 0.9747
Shijiazhuang 7 23 3.2795 28.5628 8.32% 0.9628 2 1.7853 9.7964 5.20% 0.9876
Tangshan 6 15 4.8308 49.0277 11.76% 0.9583 4 3.2171 25.9431 8.18% 0.9779
Qinhuangdao 8 24 4.4735 38.3830 13.34% 0.9672 7 4.2183 33.3884 14.23% 0.9722
Handan 10 21 3.9385 30.7437 9.47% 0.9602 3 1.9940 16.6067 5.23% 0.9788
Baoding 9 26 4.8845 54.5972 12.89% 0.9626 4 5.1107 52.7317 16.64% 0.9637
Zhangjiakou 2 21 2.6965 14.1237 15.52% 0.8956 2 3.0306 16.3035 19.68% 0.8805
Chengde 5 21 3.1457 21.7384 17.12% 0.9642 4 2.0878 12.3017 13.23% 0.9799
Langfang 4 21 5.0108 53.2976 13.89% 0.9393 4 4.2474 37.6082 13.43% 0.9602
Cangzhou 3 24 5.5917 58.3720 13.31% 0.9547 4 3.0234 31.2348 9.23% 0.9759
Hengshui 7 23 4.5165 37.0716 14.85% 0.9482 5 3.7816 33.4263 11.99% 0.9550
Xingtai 9 21 3.4928 30.4963 8.57% 0.9702 6 2.4056 28.1033 5.40% 0.9725

Model LSTM GRNN

Metric NO. Input NO. Hidden MAE MSE MAPE R2 NO. Input MAE MSE MAPE R2

Beijing 8 27 2.8379 15.0298 14.37% 0.9805 2 3.1653 17.7058 14.09% 0.9772
Tianjin 9 9 2.6240 13.6968 6.72% 0.9812 8 3.1290 20.3228 6.97% 0.9720
Shijiazhuang 3 30 3.1771 28.2116 8.22% 0.9634 9 3.8065 34.9429 10.99% 0.9577
Tangshan 5 21 4.7107 43.2069 10.36% 0.9630 10 5.5704 55.6046 14.00% 0.9522
Qinhuangdao 4 30 4.5057 37.7889 13.13% 0.9673 7 5.2814 47.7487 16.22% 0.9590
Handan 6 29 3.6311 25.9993 8.01% 0.9663 2 4.8767 60.1796 12.32% 0.9271
Baoding 8 9 4.7872 50.7279 11.98% 0.9651 5 6.2932 72.5647 16.31% 0.9538
Zhangjiakou 7 29 2.7874 17.0202 18.70% 0.8783 8 2.9293 17.9413 16.74% 0.8711
Chengde 1 29 3.1558 20.0247 15.77% 0.9673 3 3.5448 25.0984 18.05% 0.9588
Langfang 10 30 5.0278 53.3276 13.90% 0.9383 10 5.9260 76.8659 15.51% 0.9170
Cangzhou 8 30 5.3683 56.0168 12.77% 0.9570 7 6.9785 94.2087 16.45% 0.9265
Hengshui 10 27 4.3802 36.2420 14.52% 0.9523 6 5.5657 56.0395 16.84% 0.9239
Xingtai 4 27 3.8483 33.5689 9.43% 0.9670 9 5.1267 52.2457 11.13% 0.9551

TABLE 10 | Computing time by each model.

Category Model Min Max Average Model Min Max Average

Category I (NO2) MODEGWO-SVM 39.4238 48.1795 43.9663 First season for Category III (PM10)
MODEGWO-GRNN 65.7006 80.2975 72.8432 DEGWO-SVM 32.49657 39.71566 36.03983
MODEGWO-BPNN 65.7133 80.2837 72.7285 DEGWO-BPNN 54.17679 66.18566 60.13886
MODEGWO-ANFIS 39.4207 48.1762 43.7417 Model selection 0.108317 0.132383 0.120239
Model select 0.1314 0.1605 0.1460 Final time 87.15716 105.6679 96.29893

Final time 214.8663 251.5786 233.4256 Second season for Category III (PM10)

Category II (NO2) MODEGWO-SVM 44.5487 54.4188 49.4898 DEGWO-SVM 43.09741 52.62296 47.78303
MODEGWO-GRNN 74.2109 90.6824 82.7233 DEGWO-GRNN 71.80499 87.73968 79.55603
MODEGWO-BPNN 74.2103 90.7002 82.6234 DEGWO-BPNN 43.08113 52.63649 48.01184
Adam-LSTM 133.5967 163.2337 148.2152 DEGWO-ANFIS 71.80864 87.74184 79.77636
Model select 0.1484 0.1813 0.1650 Model selection 0.143618 0.175492 0.159656
Final time 330.6037 393.0909 363.2167 Final time 235.9748 276.3926 255.2869

Category III (NO2) MODEGWO-SVM 41.5062 50.7174 46.0609 Third season for Category III (PM10)

MODEGWO-GRNN 69.1727 84.5312 76.9191 DEGWO-SVM 37.79408 46.17638 42.03216
MODEGWO-BPNN 69.1691 84.5052 76.7223 DEGWO-BPNN 62.98502 76.9619 70.11255
Model select 0.1383 0.1689 0.1537 DEGWO-ANFIS 75.59966 92.35553 83.84003
Final time 183.1891 218.0664 199.8560 Model selection 0.125959 0.15388 0.139823

(Continued on following page)
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average computation time of the model selection forecasting
system ranges from 330.6037 to 363.2167 s for NO2

forecasting in Category II, with the longest computing time
appearing in the different categories. Notably, Adam-LSTM
with complex model structure has longer computing time than
the other hybrid models, taking more time in the iterative
optimization process. Moreover, this paper establishes multiple
hybrid models and uses the model selection method to find the
best forecasting value, in which the final forecasting accuracy is
improved but needs more computing time.

CONCLUSION

In this study, a novel model selection forecast system was
proposed that overcomes the shortcomings of the single
hybrid model, which cannot give the optimal results for the
forecasting process. First, the FSE theory is employed to analyze
the major pollutant for each city in BJ-TJ-HE, and the fuzzy
c-means algorithm is used to analyze the feature of the 13 cities.
Then, to further improve modeling accuracy and rationality of
modeling, a modified optimization algorithm (DEGWO) was
used to optimize the premasters of different models. Finally, the
model selection forecasting system obtains forecasting results at
each time point from different hybrid models.

The developed model selection forecasting system was
evaluated on hourly NO2, PM2.5, and PM10 from 13 cities, and
several performance metrics were calculated, with experimental
results indicating that the model selection forecasting system is
superior to single hybrid models with the smallest MAPE in the
different cities pollutant forecasting, indicating its strong
forecasting performance. Overall, the proposed model selection
forecast system exhibits outstanding performance in data analysis
and time series forecasting for air pollutants. Specifically, it can

not only deeply analyze major pollutants of AQI for BJ-TJ-HE but
also approximate the actual values with high accuracy and
stability.
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