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The mechanisms behind Arctic warming and associated climate changes are difficult to
discern. Also, the complex local processes and feedbacks like aerosol-cloud-climate
interactions are yet to be quantified. Here, using the Community Earth System Model
(CAM5) experiments, with emission enhancement of anthropogenic sulfate 1) five-fold
globally, 2) ten-times over Asia, and 3) ten-times over Europe we show that regional
emissions of sulfate aerosols alter seasonal warming over the Arctic, i.e., colder summer
and warmer winter. European emissions play a dominant role in cooling during the summer
season (0.7 K), while Asian emissions dominate the warming during the winter season
(maximum ∼0.6 K) in the Arctic surface. The cooling/warming is associated with a negative/
positive cloud radiative forcing. During the summer season increase in low–mid level
clouds, induced by sulfate emissions, favours the solar dimming effect that reduces the
downwelling radiation to the surface and thus leads to surface cooling. Warmer winters are
associated with enhanced high-level clouds that induce a positive radiative forcing at the
top of the atmosphere. This study points to the importance of international strategies being
implemented to control sulfate emissions to combat air pollution. Such strategies will also
affect the Arctic cooling/warming associated with a cloud radiative forcing caused by
sulfate emission change.

Keywords: arctic temperature, transport of sulfate aerosols, cloud radiative forcing, climate change, arctic summer
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INTRODUCTION

The Arctic is warming, which is of great concern because of the twofold rise in surface temperature
compared to the rest of the world (Cohen et al., 2014; Stjern et al., 2019). This enhanced Arctic
warming is known as Arctic amplification. Arctic amplification is manifested as a reduction of sea ice
cover (Serreze and Francis 2006; Notz and Stroeve 2016), a changing mass balance of Arctic glaciers
and the Greenland ice sheet and has significant effects on the Arctic ecosystem (Hinzman et al.,
2013). Arctic warming also impacts the Atlantic overturning circulation (Caesar et al., 2018),mid-
latitude weather (Cohen et al., 2014; Cohen et al., 2018), and the winter monsoon over the Asian
region via dynamic and teleconnection processes (Gong et al., 2001). The recent increase in
anthropogenic activities in the Arctic and its vicinity is one of the factors that amplify climate
change in addition to remote influences (Acosta Navarro et al., 2016).

Despite enormous efforts, the underlying causes of Arctic warming remain uncertain because of
complex meteorology and a combination of remote and local influences (Screen and Simmonds
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2010; Zhang et al., 2018, 2020). The heat and moisture transport
from lower latitudes, local forcing and feedback are claimed to
cause Arctic warming (Hao et al., 2019; Nygård et al., 2020). The
role of snow and sea ice cover, water vapour, clouds, and
circulation in Arctic amplification is reported in several studies
(Stroeve et al., 2007; Serreze and Barry 2011; Cohen et al., 2018).
Further, some studies attribute the GHG induced global warming
for increasing Arctic temperatures (Gillett et al., 2008; Stocker
et al., 2013), while other studies argue that the Arctic warming
(due to GHGs) is compensated by the response to aerosol forcing
(Yang et al., 2018; Stjern et al., 2019; Ren et al., 2020).

Arctic warming is also influenced by the long-range transport
of aerosols from mid-latitudes (Brock et al., 2011; Breider et al.,
2014; Yang et al., 2018). Due to the short residence time, aerosols
act as a localized forcing. They have a negative temperature
response with an increase in aerosol concentrations. Thus, the
regional reduction in aerosol burden has been shown to have a
significant warming response in the Arctic (Acosta Navarro et al.,
2016). Modelling and observation studies show that variations in
Black Carbon (BC), sulfate, and other short-lived air pollutants
can help in explaining the amplification of Arctic warming
(Quinn et al., 2008; Shindell and Faluvegi 2009; Acosta
Navarro et al., 2016; Ren et al., 2020). Among all the aerosol
species, sulfate is the dominant component in Arctic regions
(Breider et al., 2014; Ren et al., 2020). Sulfate aerosols absorb long
wave radiations and warm a layer of the atmosphere where they
are present (Zhou and Savijärvi 2014). A layer of sulfate aerosols
in the upper troposphere and lower stratosphere cools the surface
by solar dimming (Fadnavis et al., 2019). Additionally, sulfate
aerosols play an important role in cloud microphysical processes
and thus affect cloud radiative forcing (Kiehl et al., 2000;
Lohmann et al., 2000; Shupe and Intrieri 2004). However, the
overall importance of both the direct and indirect aerosol effects
for Arctic warming is not well understood (Schmale et al., 2021).

Long-range transport of sulfate aerosols from regions like Asia
and Europe increases the Arctic sulfate burden (Yang et al., 2018).
A recent study shows that sulfate aerosols having sources in
northern mid-latitudes have a more considerable impact on
Arctic temperature than other regions and explain about 20%
of the Arctic warming since the early 1980s (Ren et al., 2020). The
transport occurs via different layers of the atmosphere (near the
surface, mid-troposphere, and through the upper troposphere
and lower stratosphere) (Shindell et al., 2008; Fisher et al., 2011).
The magnitude of sulfate aerosol transport to the Arctic varies
with season with peaks during winter and spring (Breider et al.,
2014) (Supplementary Figure S1). Hence it is of interest to
investigate the response of Arctic temperatures to the
spatiotemporal perturbations of sulfate emissions. The
implication of international legislation to curb air pollution
has controlled the emission of sulfur dioxide (a gas from
which sulfate aerosol particles form) in various countries, e.g.,
South Asia, East Asia, and Europe (Manktelow et al., 2007; Zheng
et al., 2018; Aas et al., 2019). Because of the implementation of
new emission control measures after 2013 in China, China’s
anthropogenic emissions of SO2, decreased substantially during
2010–2017, while emissions of NH3 and non-methane volatile
organic compounds did not change much (Zheng et al., 2018).

This implementation affects sulfate aerosol loading in the Arctic
since regional transport plays an important role in modulating
the Arctic sulfate burden (Shindell et al., 2008). A recent study
(Wobus et al., 2016) also reports that arctic temperature response
is highly dependent on global sulfate aerosol emissions. The SO2

emission implementation policies may lead to Arctic climate
change via sulfate aerosol-induced changes in cloud
microphysical processes and radiative forcing. Hence,
quantifying the response of different regional and remote
forcing is very important (Stjern et al., 2019). In this study, we
address the following important science question: What are the
effects of sulfate aerosol forcing due to emissions from Europe,
Asia, and all over the globe, on Arctic climate? For this purpose,
we use datasets from the Precipitation Driver Response Model
Intercomparison Project (PDRMIP) experiments (Samset et al.,
2016; Myhre et al., 2017; Liu et al., 2018). The three experiments
for enhanced sulfate aerosols 1) five-fold globally (SULF5), 2) ten-
times over Asia (SULFASIA10), and 3) ten-times over Europe
(SULFEUROPE10) are compared with the control experiment.
This comparison provides an opportunity of estimating the
response of Arctic temperature/climate for global, European,
and Asian sulfate emission enhancement. The details about
the model and datasets used for this study are provided in the
subsequent section. It is worth mentioning that a detailed
modelling study using PDRMIP datasets focusing the role of
BC and other GHGs on Arctic amplification has already been
reprted by Stjern et al. (2019).

DATA AND METHODS

Model and Datasets
We use the Community Earth System Model (CAM5, version
1.1.2) simulations from PDRMIP (Myhre et al., 2017) (http://
www.cicero.uio.no/en/PDRMIP/PDRMIP-data-access). The
model is the same as Kay et al.(2015) but with a coarser
resolution (Myhre et al., 2017); 2.5 × 1.9° in latitude and
longitude with 30 vertical levels. CESM1 (CAM5) consists of
coupled atmosphere, ocean, land, and sea ice component models.
The model uses an emission database (Lamarque et al., 2010) for
aerosols and calculates the life-cycle of aerosols along with their
optical and physical properties. The past studies show that the
model has shown good ability in simulating the mean climate
state and variabilities (Myhre et al., 2018; Smith et al., 2018). The
CAM5 simulations are chosen due its fair agreement to the
magnitude and sign of the multi-model mean (MMM) for
Arctic amplification calculation (Stjern et al., 2019).

Experimental Setup
We analyzed three sensitivity experiments for increased
anthropogenic sulfate concentration 1) globally, and over 2)
Asia, 3) Europe, and a control experiment (Myhre et al., 2017;
Stjern et al., 2019). In the global experiment, anthropogenic
sulfate concentration has been increased five times all over the
globe (SUFL5). On the other hand, in another two regional
sensitivity experiments, anthropogenic sulfate concentration
(sulfate aerosols hereafter) has been increased by ten-times
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over Asia (10°–50°N, 60°–140°E) (SUFLASIA10) and Europe
(35°–70°N, 10°W–40°E) (SULFEUROPE10). All the
enhancements are instantaneous and a setup with fixed sea
surface temperature (fixed-SST hereafter). Fixed-SST
simulations were widely used to study the fast response (also
known as a rapid adjustment) (on a time scale of a month to a
season) of the climate system to the initial enhancement/
perturbations (Hansen 2005; Bala et al., 2010; Ganguly et al.,
2012; Myhre et al., 2017). All the experiments were carried out for
25 years with aerosol emissions of the year 2005. Out of 25 years
of simulations, we use the only last 15 years of simulation output
to investigate the rapid adjustment/fast response of Arctic
temperatures to sulfate enhancement. A brief description of
each of the experiments used is provided in Table 1. The
spatial extent and global sulfate burden for control as well as
emission enhancements are depicted in Supplementary
Figure S1.

RESULTS AND DISCUSSION

Impact of Sulfate Forcing on Near-Surface
Air Temperature
To study the fast response of the Arctic temperature to regional
and global sulfate emission enhancements, we estimated
surface temperature changes from EXPT-CTRL (surface
temperature anomalies hereafter). Figure 1 shows surface
temperature anomalies averaged over 60–80°N. A striking
feature seen in Figure 1 is that sulfate aerosol has induced
cold spring and summer (March-August). There is a slow

transition in Arctic surface temperature; colder summer is
followed by warmer autumn-winter (October-February) that
passes through a cold phase at the end of summer month
(September). The warmer winters are then followed by colder
autumn-summers, passing through a warm phase at the end of
the winter month (February). Asian emissions play a role in
the cooling of the spring (March-April), while the dominant
cooling effect due to European and global emissions is evident
in summer. The warming effect is most pronounced for Asian
and global emissions in winters, except in January where the
global emissions produce higher warming than European
emissions. A deep in cooling ∼ −0.8 K was seen in summer
(July) due to global emissions, while a peak in warming
(∼0.6 K) is seen in winter (January) due to Asian emissions.
The European emissions also produce significant cooling
(−0.6 K) in summer (July).

Figure 1 shows that the seasonal response varies in magnitude
for the different emission scenarios, but the tendency of cooling
(spring-summer) and warming (autumn-winter) is the same for
global and regional emission enhancements. The reason for the
different seasonal responses for sulfate emission enhancement;
cooling in spring-summer and warming in autumn-winter
seasons are investigated further in the following sections. The
mechanism is the same for 1) cooling in spring and summer and
2) warming in autumn and winter. Hence, we show in the analysis
below for the two seasons; summer (June, July, and August
months) and winter (November, December, and January),
where the emission enhancement response on surface
temperature is strongest.

Spatial Distribution of Changes in the Arctic
Temperature Due to Sulfate Forcing
Figure 2 shows the spatial distribution of surface temperature
anomalies during the summer and winter seasons for different
emission enhancement experiments. During the summer season,
the surface temperature anomalies are negative over a large part
of the polar region irrespective of emission sources (Figures
2A–C). The magnitude of the anomalies varies spatially for each
of the emission sources. It may be noted that large spatial cooling
is observed over Greenland, part of the Russian Arctic and
Siberian region for a change in global and European sulfate
emission. However, global emission enhancement impacts are
more pronounced over the Canadian Arctic, whereas it is well
marked over part of Northern Europe and the Russian Arctic for
European emissions changes. Interestingly, the surface
temperature anomalies during the winter season highlight the
dominant effect of Asian emissions over global and European

TABLE 1 | Experiments used in this study.

Simulations Details

Control (CTRL) Specified all anthropogenic and natural climate forcing agents at present-day abundances
SULF5 Increase in present-day anthropogenic sulfate emissions by 5 times relative to control all over the globe
SULFASIA10 Increase in present-day anthropogenic sulfate emissions by 10 times over Asia only
SULFEUROPE10 Increase in present-day anthropogenic sulfate emissions by 10 times over Europe only

FIGURE 1 | Area mean (60–80°N) near-surface air temperature
anomalies (EXPTs-CTRL) over the Arctic for different months.
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emissions (Figure 2D–F). Unlike the summer season, the winter
season shows a positive anomaly (warming) over the polar and
adjacent regions.

The magnitude and spatial extent of warming in winter
(over 60–80°N) are larger for regional sulfate emission
enhancements than for the global emission enhancement.
The spatial map of anthropogenic emissions enhancements
for all the scenarios (global, Asia and Europe) (Supplementary
Figure S2) shows that the anthropogenic sulfate emissions are
confined in the northern hemisphere. Thus, their impact on
Arctic regions is largely modulated by seasonal transport

processes, forcing, and through feedback and response
mechanisms.

Latitudinal Temperature Changes Due to
Sulfate Forcing
Figure 3 depicts the latitudinal distribution of zonal mean surface
temperature anomalies for the three sulfate enhancement
experiments considered in this study. It shows gradual
diversification of surface temperature anomalies, over the
subtropics (∼20–40°N) that amplify in the polar region. In the

FIGURE 2 | Spatial changes (EXPTs minus CTRL) of near-surface temperature during summer (A–C) and winter (D–F).
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subtropics, the surface temperature anomalies are negative
irrespective of season and forcing. The seasonal effects are
opposite north of 50°N, the magnitude of summer cooling is
highest due to global and European emission (∼67°N), and the
winter warming is dominant due to Asian and global emissions
(∼65°N). Warming during the winter season shows a maximum
of ∼78°N due to European emissions. The relative strength of
cooling is comparatively less than that of warming for Asian
emission enhancement. It is interesting to note that the surface
temperature response to anthropogenic sulfate emission is clearly
visible over sub-tropical to polar latitudes. However, the changes
are maximum for the polar latitudes (60–80°N) irrespective of
seasons. For this reason, we have chosen the above latitude range
as a representation of the Arctic region and used it for calculating
spatial averaging in this study.

Vertical Distribution of Temperature
Changes Due to Sulfate Forcing
To examine the vertical extent of seasonal warming and cooling,
we have analysed the latitude height cross-sections of
temperature anomalies (Figure 4).

The temperature changes are prominent beyond the north
of 40°N (Figure 3); hence, we show vertical temperature
anomalies between 40–90°N. Interestingly, the temperature
response to emission enhancement extends from the surface
to the lower stratosphere (150 hPa) at high latitudes. It may be
noted that there exists a widespread anomalous cooling pattern
during the summer season in all three experiments. During the
summer, cooling is strongest in the lower troposphere
(1,000–800 hPa) for the global and European emission
experiments. Maximum cooling (>1 K) is observed north of
66° for the global and European experiment (Latitudinal
Temperature Changes Due to Sulfate Forcing). The vertical
extent of the magnitude of cooling is lowest for Asian emission

enhancements compared to the global and European
emissions.

The warming in winter, however, mostly observed over the
high latitudes, are quite distinct in each experiment. The results
for the different emission experiments differ in the maximum
temperature anomaly and in the vertical extent of the signal.
Unlike the other two experiments, the Asian emission experiment
shows a high magnitude of warming extending to Upper
Troposphere—Lower Stratosphere (UTLS ∼100 hPa) in the
region 75–90°N. The strength of winter warming over high
latitudes is moderate for global and European sulfate
perturbations. The warming in the UTLS in the SULFASIA10
experiment is due to the transport of Asian sulfate aerosols to the
Arctic through the UTLS (Shindell et al., 2008; Fadnavis et al.,
2019). The Community Atmosphere Model, version 5 equipped
with Explicit Aerosol Source Tagging (CAM5-EAST) simulations
also show that increases in emissions from South and East Asia
led to positive trends (1980–2018) in Arctic sulfate in the upper
troposphere (Ren et al., 2020). On the other hand, the warming is
mostly observed close to the Arctic surface (60–80oN) for
European emissions since a higher amount of sulfate aerosols
are transported from Europe than for global/Asia to the Arctic
through the lower troposphere in winter (Shindell et al., 2008). A
source attribution study (Ren et al., 2020) also shows that surface
concentrations of sulfate in the Arctic are mainly dominated due
to emissions from Europe, Russia, and the local Arctic. On the
other hand, South and East Asia sulfate emissions enhancement
mainly causes an increase in the upper tropospheric sulfate
concentration in the Arctic.

The magnitude and spread of emissions perturb energy
balance by altering radiative forcing. As a response, the
transport of moisture and energy from the tropics to the polar
regions and clouds also change. The clouds are one of the
important forcing agents regulating the Arctic climate
(Bennartz et al., 2013; Willis et al., 2018). Cloud radiative
forcing may be playing a role during summer and winter that
has not been reported hitherto. In the next section, we deliberate
the impact of sulfate emissions enhancement on Arctic clouds.

Impacts of Sulfate Forcing on Clouds
Clouds are critical to Arctic climate feedbacks. However, Arctic
clouds and their radiative impacts are difficult to observe and
evaluate in climate models (Kay and Gettelman 2009). The
community atmospheric model (CAM) version 5 has a more
realistic representation of cloud properties than the previous
version. This version exhibits substantial improvement in three
long-standing climate model cloud biases like the
underestimation of total cloud, the overestimation of optically
thick cloud, and the underestimation of midlevel cloud (Kay et al.,
2012). The Arctic cloud fraction seasonal cycle and annual mean
cloud fraction are found to be comparable with the CALIPSO
observation (Kay et al., 2012). Hence, the selection of CAM5 to
evaluate the response of Arctic clouds to aerosol changes may add
more confidence to the findings presented in the subsequent
section. However, there are other biases in the CESM-I, e.g.,
biases in the relative distributions of cloud cover, microphysics
including phase, and the characteristics of the underlying surface.

FIGURE 3 | Zonal mean surface temperature anomalies for summer
(solid line with markers) and winter (solid lines) for SULF5 (green line),
SULFASIA10 (blue line) and SULFEUROPE10 (red line) experiments. The
shading shows the zone of maximum effect.
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These biases are the same in the CTRL and sensitivity simulations
that lenient the biases in the estimated change in cloud
parameters.

The vertical distribution of anomalies in the cloud fraction/
cover (Figure 5) shows a pronounced difference between the
summer and winter seasons. The clouds considered are low
clouds when formed between 1,000–600 hPa, mid clouds:
600–300 hPa, and high clouds: 300–50 hPa. The column
average of cloud fraction/cover is depicted in Supplementary
Figure S3. During summer, cloud fraction anomalies for all three
experiments exhibit higher values of positive anomalies in the
lower-mid troposphere (800–500 hPa) indicating higher amounts
of low-mid clouds than high clouds over most of the Arctic
region. The global and European emissions contribute more
strongly than the Asian emissions towards the low cloud
enhancement in the Arctic (also see Supplementary Figure
S3). In all three experiments, during winter, cloud fraction
anomalies are positive in the lower stratosphere region in the
Arctic, indicating high clouds. The cloud anomalies are mostly
negative in the lower and mid-troposphere (except near 80–85°N
for Asian emissions), indicating low-mid cloud’s absence. Thus,

during winter, European, Asian, and global emissions result in the
formation of high clouds in the Arctic. The high cloud amounts
are found to be higher in magnitude for Asian and global
emissions than for European emissions. Vertically integrated
cloud fractions show a maximum over parts of Greenland,
Canadian Arctic, and the Russian Arctic regions
(Supplementary Figure S3).

The enhancement on low/high clouds in summer/winter seen
in Figure 5 is linked with the layer of the atmosphere through
which transport of sulfate aerosols to the Arctic occurs. Higher
amounts of low clouds in summer for European and global
emission enhancements are associated with the transport of
sulfate aerosols through the lower-mid troposphere (Shindell
et al., 2008). The prevailing meteorological conditions in
summer, i.e. increase in solar radiation, melting of ice, warm-
air advection from adjacent open water or land over the melting
ice, increase in cloud liquid water path and surface evaporation
rate, upward heat fluxes, together further enhance the low-mid
cloud formation (Sotiropoulou et al., 2016; Yu et al., 2019). High
clouds in winters for Asian and global emission enhancement are
associated with the transport of sulfate aerosols through the UTLS

FIGURE 4 | Zonal mean latitude-height plot of air temperature anomalies for summer (A–C) and winter (D–F). Stippling indicates statistical significance at 90%
confidence level (EXPT-CTRL) determined using student’s t-test for the difference of the mean. The black line indicates the climatological tropopause (CTRL) for
corresponding seasons.
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(Shindell et al., 2008; Ren et al., 2020). Sulfate aerosols are known
to play an important role in the formation of high clouds (Aloyan
et al., 2016). Previous studies have also reported high cloud
formation in the lower stratosphere (between 50 and 200 hPa)
in the Arctic both during the winter and summer seasons
(Fadnavis et al., 2019; Cairo and Colavitto 2020). Arctic clouds
in the stratosphere in winter (polar stratospheric clouds) occur
because of low stratospheric temperatures (e.g., Grooß and
Müller, 2021; Tritscher et al., 2021). During summer, the
negative anomalies in the high cloud in the upper troposphere
(300–150 hPa) may be associated with the transport of sulfate
aerosols mostly occurring above the tropopause (Fadnavis et al.,
2019). However, detailed analysis in this regard is warranted.

Clouds interact with radiation depending on their height and
optical properties. In general, low clouds have a net cooling effect
on the Earth’s surface and atmosphere due to their large reflection
in the shortwave (overcompensating their absorption in the long-
wave). On the other hand, high clouds which are much colder
than the low clouds, warm the Earth’s surface and atmosphere by
trapping and re-emitting the outgoing infrared radiation (Shupe
and Intrieri, 2004). Hence, clouds and the associated radiative
effects induced by sulfate emission enhancements will affect the
Arctic temperature. Figures 4, 5 together show a strong
association between seasonal change in temperature and low/

high clouds. To quantify the effects of clouds on radiation and
energy balance, we compute cloud radiative forcing, which largely
depends on cloudiness. We have quantified the change in cloud
radiative forcing for summer and winter corresponding to each
forcing experiment in the subsequent sections.

Impact of Sulfate Forcing on Cloud
Radiative Forcing
Cloud radiative forcing (CRF hereafter) is defined as the
difference between the net radiation flux with and without all/
cloud and clear sky (Bennartz et al., 2013; Cox et al., 2016).

CRFLW � (LW↓ − LW↑)all sky − (LW↓ − LW↑)clear sky (1)

CRFSW � (SW↓ − SW↑)all sky − (SW↓ − SW↑)clear sky (2)

The LW and SW represent the shortwave and long-wave
radiation flux, respectively. The up/down arrows correspond to
the direction (outgoing/incoming) of radiation. The total CRF
can hence be written as

CRF � CRFSW + CRFLW (3)

The CRF can further be decomposed into Top of the
atmosphere (TOACRF) and Surface/Bottom of the atmosphere

FIGURE 5 | Zonal mean latitude-height plot of cloud fraction for summer (A–C) andwinter (D–F) for SULF5, SULFASIA10, SULFEUROPE10 experiments. Stippling
indicates statistical significance at 90% confidence level determined using student’s t-test for the difference of the mean. The black line indicates the climatological
tropopause (CTRL) for corresponding seasons.
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(BOACRF). We have demonstrated the change at CRF for the
top/bottom of the atmosphere for the summer and winter seasons
to evaluate the response of emission enhancements to radiation
through clouds. During the summer season, top of the
atmosphere cloud radiative forcing anomalies (Figures 6A–C,
top panel) show a widespread cooling for global and European
emission enhancements. Most of the polar region exhibits a

negative CRF (<−5Wm−2) for these emission scenarios. On
the other hand, for the Asian emission experiments, there is a
mixed response observed for TOACRF. In this case, there is both
cooling and warming, with the warming effect (positive CRF)
mostly at higher latitudes. The ∼10–15% reduction in TOACRF
(when averaged over the polar region) is seen in the summer
season for European emission and global emission enhancements

FIGURE 6 | Cloud radiative forcing anomalies (EXPT-CTRL) at top of the atmosphere for (A–C) summer season and (D–F) winter, (G–I) same as (A–C) but for the
bottom of the atmosphere, (J–L) same as (D–F) but for the winter season. Stippling indicates statistical significance at 90% confidence level determined using student’s
t-test for the difference of the mean.
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(also see Figure 7). The overall effect of Asian emissions to
TOACRF is negative when averaged over the area 60–80°N (see
Figure 7). Additionally, the CRF anomalies in BOACRF are
negative irrespective of emission sources (Figure 6G–I).
Though there is varying spatial distribution, the area-averaged
values show a maximum reduction of radiative forcing for

European emissions. During summer, low cloud enhancement
(Impacts of Sulfate Forcing on Clouds) could be the reason behind
these anomalous negative TOACRF and BOACRE values caused
by the cloud induced higher reflection of shortwave insolation to
space compared to the reflection in CTRL. During winter,
TOACRF and BOACRF anomalies show positive radiative
forcing values (i.e., long-wave absorption). Interestingly, the
magnitude of the TOACRF is more distinct than that of
BOACRF, which could be due to the enhancement of high
clouds (Figure 5D–F). Please note that negative cloud
radiative forcing during summer and positive during winter at
Arctic sites are also reported (Dong et al., 2010; Ebell et al., 2020)
in the past which is in agreement with our study. Long-term
satellite observation revealed that in general, Arctic ocean clouds
warm the surface and cool the TOA with a tendency of shortwave
TOA cooling and longwave TOA warming (Kay and L’Ecuyer
2013). Recently, the negative cloud radiative effect during
northern summer and warming during winter was also
reported over the Arctic from the Clouds and the Earth’s
Radiant Energy System (CERES) Energy Balanced and Filled
(EBAF) observations by L’Ecuyer et al. (2019) in line with our
findings.

It is important to note that there is no shortwave insolation in
the Arctic region during winter, and thus the terrestrial radiation
is the dominant component of the energy budget (Ebell et al.,
2020). The positive CRF warming anomalies at the top and
bottom are due to the LW radiation trap in the atmospheric
column. Further, during winter, there is a significant increase in
the high cloud fractions over the polar latitudes, which is seen in
all emission experiments (Figure 5). The high clouds absorb the
terrestrial radiation that would otherwise escape to space and re-
radiate back, while the absorption and the re-radiation are not
independent. This further enhances the warming in the
atmosphere (Figure 4).

Linkages Between Surface Temperature,
Cloud Fraction, and Radiative Forcing
Here, we show linkages of the fast response of clouds and Arctic
surface temperature due to regional and global enhancement of
sulfate emissions. Figures 7A,B depicts the seasonal mean area-
averaged values (60–80°N, zonal mean) for surface temperature
anomalies and low cloud fractions. It shows that cooling in
summer is associated with an enhancement in low cloud
fractions and a reduction in high cloud fractions for all
emission scenarios. In the summer season, the maximum
enhancement in low cloud fraction (∼7%) has been found for
global sulfate emission enhancements followed by enhancements
of European emissions (>5%). The winter warming shows
association with a reduction in low could fraction and
enhancement in high cloud fraction for all emission scenarios
(Figures 7B–C). During winter, the impact of Asian and
European emission enhancements is higher than the global
emissions in enhancing the high clouds.

During the summer season, an increase (decrease) in low
(high) clouds is favourable to the solar dimming effect that
reduces the downwelling radiation to the surface. Further,

FIGURE 7 | Area averaged (60–80°N, all longitudes) for key parameters.
Panel (A) shows surface temperature anomalies for summer and winter. Panel
(B–C) shows cloud fraction changes for low and high clouds (in percentage)
where error bars represent the standard error of the percentage change.
The bottom panel (D) depicts the cloud radiative forcing (SW + LW) anomalies
for the top of the atmosphere. The black dots are assigned where the mean
differences are statistically significant (p < 0.1) determined using the student’s
t-test for the difference of the mean.
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these conditions help to allow more terrestrial long-wave
radiation to escape to space, which accelerates the surface and
atmospheric cooling. On the other hand, during the winter
season, the Arctic energy balance is dominated by long-wave
radiation (due to the absence of sunlight). The presence of
anomalous high clouds cover for all emission enhancements
will result in absorbing and reradiating the outgoing long-
wave radiation back to the surface.

To find the association of seasonal mean cloud change with
radiation, we calculated the area-averaged top of the atmosphere
cloud radiative forcing anomalies for summer and winter
(Figure 7D). There is a negative cloud radiative forcing at the
top of the atmosphere for the summer season. It is 10 times higher
than clear sky (aerosols) radiative forcing at the top of the
atmosphere for the summer season (Supplementary Figure
S4). The negative radiative forcing is an indication of net
cooling. Though our findings are in phase with the change in
high and low clouds and associated changes in surface
temperature, this generalization may not always be true in the
Polar Regions. The warming or cooling caused by the low clouds
depends on the cloud phase, water path, and the albedo of the
underlying surface (Kravitz et al., 2014). A few studies reported
that low clouds over bright surfaces induce warming even in the
summer months (Bennartz et al., 2013; Van Tricht et al., 2016).
However, a detailed analysis of the cloud phase, water path, and
surface albedo is beyond the scope of the present study.

Additionally, there exists an anomalous positive CRF during
winter; however, the net percentage change in TOACRF exceeds
BOACRF in both seasons (Figure 6). This cloud-radiation
change is consistent with the simulated surface temperature
changes as a response to sulfate emission enhancements.
Figure 7 also shows that the seasonal mean cloud fraction
and CRF are more sensitive to European emissions and
global emissions than Asian emissions in summer. In winter,
Asian and global emissions show higher impacts on CRF than
European emissions. This is consistent with summer (winter)
surface temperature cooling (warming) showing a dominant
impact by global and European (Asian and global) emission
changes (also see Figure 1). Note that there is a slight increase in
summertime high clouds for the Asian emission enhancement
scenario (Figure 7C, blue). Additionally, the low cloud
enhancement for the Asian emission scenario is
comparatively smaller than the rest of the cases (Figure 7B,
blue). This might be one of the reasons for the comparative
smaller Arctic summer temperature response to the Asian
emissions experiment. Cloud phase and, specifically, the
presence of super-cooled water play a significant role in the
net radiative effects of clouds at the surface. It is to be noted that
there are substantial biases in liquid holding clouds over the
Arctic in the CESM1 (Cesana et al., 2012) and the associated
cloud microphysical processes (Tan and Storelvmo 2016) that
might affect the downwelling longwave radiation and, in turn to
the surface temperature (McIlhattan et al., 2017). In addition, it
is worth mentioning that Arctic cloud characteristics and
representation have substantially improved from CESM1 to
CESM2 that has impacted their effects on the surface
radiation budget (McIlhattan et al., 2020).

SUMMARY

Despite various observational and modelling studies, the
underlying mechanisms of Arctic amplification are still
unclear. In particular, the impact of aerosols compared to the
GHGs is yet to be accounted for precisely. Using an atmospheric
global climate model, we estimate the impact of global and
regional sulfate emissions on the temperature response over
the Arctic region. We found different Arctic temperature
changes for summer (colder summers) and winter (warmer
winters). Our analysis shows that sulfate emission
enhancements, both regionally and globally, produce a clear
seasonal shift in the temperature from colder summer to
warmer winter. The anomalous cooling/warming in summer/
winter induced by the sulfate aerosol extends from the surface to
the lower stratosphere. The warming in winter is pronounced due
to Asian and global emissions on the contrary cooling in summer
is due to European and global emissions. The European emissions
show a higher impact on cooling in the summer season (with a
low of ∼ –0.7 K in July), while Asian emissions show the strongest
impact on warming in the winter season (with a peak of ∼0.6 K in
January).

Further, our analysis shows that in summer, in all emission
(sulfate aerosol) enhancement scenarios, there is an increase in
low clouds causing a solar dimming effect that reduces the
downwelling shortwave radiation to the surface. Additionally,
as the low clouds are near the surface, they do not significantly
affect the terrestrial radiation emitted to space (https://
earthobservatory.nasa.gov/features/Clouds/clouds4.php). On
the contrary, during the winter, anomalous high clouds
induced by sulfate aerosols (in all emission enhancement
scenarios) absorb and re-radiate the outgoing long-wave
radiation back to the surface, producing warming over the
surface and in the troposphere.

The enhancement on low/high clouds in summer/winter
(Figure 5) is associated with the layer of the atmosphere
through which transport of sulfate aerosols to the Arctic
occurs. In summer, the transport of sulfate aerosol from
Europe and the globe occurs through the low-mid
troposphere. These sulfate aerosols increase low clouds in the
Arctic. The prevailing meteorological condition in summer, e.g.,
increase in solar radiation, melting of surface ice, warm-air
advection from adjacent open water or land over the melting
ice, increase in cloud liquid water path and surface evaporation
rate, upward heat fluxes, further enhances the low-mid cloud
formation (Sotiropoulou et al., 2016; Yu et al., 2019). During
winter, the transport of European and Asian sulfate aerosols are
dominant in the upper troposphere in the Arctic (Shindell et al.,
2008; Fadnavis et al., 2019; Ren et al., 2020). The enhanced
aerosols in the UTLS are associated with an increase in high
clouds.

During summer, low cloud enhancement produces a negative
TOACRF and BOACRE due to a cloud induced higher reflection
of solar insolation to space compared to that of the CTRL. During
winter, TOACRF and BOACRF anomalies show positive values
(more absorption by clouds). CRF is more sensitive to European
emissions and global emissions than to Asian emissions in
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summer. In winter, Asian and global emission enhancements
show a higher impact than European emission enhancements on
CRF. This result is consistent with summer (winter) surface
temperature cooling (warming) that indicates a dominant
influence of global and European (European and Asian)
emission enhancements.

Thus, our analysis shows that during summer, sulfate aerosol
transport (dominated by global emissions and from Europe)
occurs through the lower-mid troposphere, thus increasing low
clouds, which produce a negative cloud radiative forcing and an
anomalous cooling at the surface. In contrast, in the winter
season, the transport of sulfate aerosols occurs through the
upper troposphere that increases high cloud occurrence, leading
to a positive radiative forcing and warming at the surface over
the Arctic region. It is noteworthy that there are uncertainties in
aerosol direct radiative effect due to relative placement of
aerosols above the cloud and bright surface that might
influence the results presented here. For example, recent
findings (Matus et al., 2019) show that the aerosol direct
radiative forcing is very sensitive to the albedo of the
underlying surface or cloud cover. Additionally, CESM1
produced larger than observed aerosol radiative forcing over
both the Poles which may lead to significant regional biases
(Matus et al., 2015). Also, there are substantial biases in liquid
holding clouds over the Arctic in the CESM1 (Cesana et al.,
2012) and the associated cloud microphysical processes (Tan
and Storelvmo 2016) that might affect the downwelling
longwave radiation and, in turn to the surface temperature
(McIlhattan et al., 2017). However, biases are the same in
CTRL and sensitivity simulations; hence they are almost
nullified in the estimated anomalies/changes.

It is known that clouds play an important role in controlling
the Earth’s atmospheric radiation balance and thereby produce
a measurable impact in regulating regional climate. While
summer cooling and winter warming is an intrinsic nature of
polar clouds (Ebell et al., 2020), our study highlights that
sulfate aerosols from Europe and Asia play an important
role in modulating seasonal temperature via cloud radiative
forcing. Since climate mitigation policies suggest different
sulfate emission projections in Representative Concentration

Pathways and Shared Socioeconomic Pathways (RCPs/SSPs), it
is necessary to quantify the effects of regionally resolved sulfate
emission changes to polar climate. It would help to design
sustainable policies for the Arctic region.
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