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Air pollution is a contributor to approximately one in every nine deaths annually. Air quality
monitoring is being carried out extensively in urban environments. Currently, however, city
air quality stations are expensive to maintain resulting in sparse coverage and data is not
readily available to citizens. This can be resolved by city-wide participatory sensing of air
quality fluctuations using low-cost sensors. We introduce new concepts for participatory
sensing: a voluntary community-based monitoring data forum for stakeholders to manage
air pollution interventions; an automated system (cyber-physical system) for monitoring
outdoor air quality and indoor air quality; programmable platform for calibration and
generating virtual sensors using data from low-cost sensors and city monitoring
stations. To test our concepts, we developed a low-cost sensor to measure
particulate matter (PM2.5), nitrogen dioxide (NO2), carbon monoxide (CO), and ozone
(O3) with GPS. We validated our approach in Helsinki, Finland, with participants carrying
the sensor for 3 months during six data campaigns between 2019 and 2021. We
demonstrate good correspondence between the calibrated low-cost sensor data and
city’s monitoring station measurements. Data analysis of their personal exposure was
made available to the participants and stored as historical data for later use. Combining the
location of low cost sensor data with participants public profile, we generate proxy
concentrations for black carbon and lung deposition of particles between districts, by
age groups and by the weekday.

Keywords: air pollution, low cost sensors, virtual sensors, personal exposure, sensor calibration, participatory
sensing, community-based monitoring, cyber-physical system

1 INTRODUCTION

Outdoor and indoor air pollution is considered the biggest environmental risk to health, carrying
responsibility for about one in every nine deaths annually (Landrigan et al., 2018). In response, many
cities commit to a fixed network of stations thatmonitor outdoor air quality in real-time.However, the high
costs of installation and maintenance of these stations results in a sparse monitoring of outdoor ambient
air, satisfying the conventional legislative requirements for population exposure but not for personal health
protection. For example, in Europe, large cities tend to invest in one reference grade air quality PM2.5

monitor per 100,000–600,000 residents (Pinder et al., 2019) and in Africa, invest in one reference grade
monitor per 4.5 million residents (Carvalho, 2016). Conversely, there are no networks of reference grade
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stations monitoring indoor air quality even though most people
spend about 80–90% of their time indoors, 1–7% in a vehicle, and
only 2–7% outdoors (Dias and Tchepel, 2018).

The sparse coverage of air quality monitoring and
dissemination of personal exposure information can be
alleviated by massive deployment of low cost sensors (Motlagh
et al., 2020). Particularly, small sensor units that can be carried or
worn all day long by people, enabling robust 24/7 personal
exposure measurements (including indoor air). These sensor
units are relatively low cost (€300 to €400 each), which allows
large numbers of units to be purchased and enables simultaneous
monitoring of a large number of places (Mahajan and Kumar,
2020). However, there is a large literature questioning the
accuracy of low cost devices (Castell et al., 2017), and much
effort spent in applying calibration techniques improving the data
accuracy (Lin et al., 2018; Williams, 2019). Accepting the data
quality issues, portable low cost sensor units have many benefits
over fixed instruments such as be able to measure several air
pollutants closer to the emission source and nearer to the
individual’s inhaled air.

There is a mismatch between published city air quality index
and an individual’s exposure to air pollution. Every individual has
been exposed to air pollution during their life based on the
concentration of air pollutant breathed at a particular time
and place in both indoor and outdoor micro-environments.
To assess personal exposure to air pollution therefore requires
a full understanding of the individual’s mobility patterns (Dias
and Tchepel, 2018). Knowledge of individual’s exposure to air
pollution helps to reveal the links between pregnancy and low
birth rate (Bekkar et al., 2020); childhood and working memory
and attentiveness (Rivas et al., 2019), childhood and asthma
hospitalization (Kuo et al., 2018), and elderly and reduction in
memory and dementia (Peters et al., 2019). The duration of time
individual’s spend in different micro environments underlines
the associations between exposure and common health outcomes.
For example, short term elevated exposure to ultrafine black
carbon particles carrying toxic components along busy roads
incidences with cardiopulmonary and respiratory diseases
(Janssen et al., 2011). Variation in particulate matter and
gases, such as NO2 and O3, in micro-environments are
difficult to measure by stationary monitoring but can be
estimated using portable sensor units with GPS carried by
the users.

The dichotomy between individuals exposure to air pollution
and population health can be rectified through participatory
sensing of outdoor and indoor air quality data. There are four
alternatives to applying low costs sensors for public health
protection. The first is a citizen science project comprising
citizen engagement, awareness raising, and co-creation with
workshops to self-assemble their own sensors (Mahajan et al.,
2020). The second is crowd sourcing or participatory sensing
campaigns and asking citizens volunteering to carry sensors and
supply air quality measurements in exchange for useful
information that allow them to better understand and prevent
harmful exposures they face (Jerrett et al., 2017). The third is
deploy a voluntary community-based monitoring platform
gathering citizens to aid in collecting, archiving, sharing, and

using data for compulsory local or larger-scale assessment,
planning, and decision-making. With community-based
monitoring stakeholders “Do-it-Together” and use sensors and
mobile phones to address local air pollution (Mahajan et al.,
2021). The fourth is to allow citizens open access to an automated
system - a cyber-physical system - providing a feedback loop
between their sensor measurements, time activity patterns and
exposure to air pollution (Rebeiro-Hargrave et al., 2020). These
participatory sensing approaches help to influence local
government city planning investments (Van Brussel and
Huyse, 2019), sometimes through confrontation (Carton and
Ache, 2017), and other times triggering behavioral change.
However with these approaches there are sustainability issues.
Citizen science and participatory sensing require on ground
support and participation motivation is difficult to maintain
over the long term (Sauermann et al., 2020).

We identify the research gap as the lack of a comprehensive
computational framework to provide individuals personal
exposure to air pollution information for outdoor and indoor
micro-environments and calculate population health data at the
district level for a city in real time. There is a need for an
automated system enabling individuals from all age groups to
connect low-cost sensors and creates a feedback loop between
local air quality data and their time-space actions. This allows
residents to be the owners of their air quality data and plan their
own mitigation actions. In this paper, we present the design,
development and deployment of the community based
monitoring for participatory sensing air quality. Our
contributions are as follows: community-based monitoring
concept for low cost air quality monitoring. MegaSense, a
cyber-physical system design for city-wide air-quality sensing
using participatory sensed data. A battery-powered, portable low-
cost air quality sensor design, tested in Helsinki by 136
volunteers. Network programmability concept for improving
the data accuracy of attached low-cost sensors and creating
three new virtual sensors. Analysis and demonstration use case
of resulting air quality measurements.

2 METHODS

As part of the EU Urban Innovative Actions project called HOPE
(Healthy Outdoor Premises for Everyone), we developed a
community-based monitoring system to simultaneously
measure air quality from three districts in Helsinki, Finland
with various challenges using participatory sensing during
2019–2021. We asked citizens to carry sensor units and supply
outdoor and indoor air quality measurements during 3 month
data campaigns where their live (Figure 1). In Jätkäsaari, a district
with heavy port related traffic where the main air quality issue is
construction dust (PM10). Jätkäsaari is one of the largest
construction sites in Helsinki. Over a thousand new homes are
currently being built. In Vallila, a district with street canyons and
over 40,000 daily vehicles where the main air quality issues are
street dust (PM10) during the spring time and traffic (NO2 and
PM2.5). The spring-time street dust is mainly created through
road gravel dust and studded tyres grinding the tarmac. Studded
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winter tires wear the asphalt, creating dust, which rises into the air
as the roads dry. and in Pakila, a district affected by main roads
but the main air quality issue is small-scale wood burning at
homes contributing significantly to the emissions of PM2.5 and
black carbon. Wood is burnt in most detached houses for
supplementary heating, recreational purposes or in sauna stoves.

2.1 Community-Based Monitoring
To reach participants, we created a community based monitoring
data forum allowing multi-stakeholders to exchange air quality
measurements and receive air quality information (Figure 2). Led
by the City of Helsinki, the HOPE project stakeholders had a shared
objective to empower Helsinki residents to participate in the
management of reducing air pollution in their districts. Forum
Virium organized citizen volunteers for participatory sensing from
the three districts for six data campaigns. Helsinki Regional
Environmental Services (HSY) gave access to local city monitoring
stations data to calibrate the HOPE sensor units. The University of
Helsinki provided the citizen volunteers HOPE sensor units during to
monitor outdoor and indoor air quality and HOPEmobile phone app
to visualize their personal exposure. Finnish Meteorological Institute
upgraded their city-wide ENFUSER Air Quality Land Use Regression
service (Nurminen et al., 2020). Vaisala extended the fixed air quality
network (Petäjä et al., 2021). UseLess provided digital voting app for

city interventions. Private companies were invited to pitch new air
quality solutions through innovation competitions.

2.2 MegaSense Cyber-Physical System
To automate the receipt and processing of participatory sensing
data and provide users air quality information in real-time, we
developed the MegaSense cyber-physical system. We
implemented an architecture with a centralised cloud and
distributed edge layer (Figure 2). The edge layer is a network
of low-cost edge servers (€1000 to €2000 each) located nearer to
the source of sensor units air quality measurements and data
suppliers, such as in a shopping mall or in a city district. When
active, a HOPE sensor unit is connected to the edge server as
client secured by Hypertext Transfer Protocol Secure (HTTPS)
which is an extension of the Hypertext Transfer Protocol (HTTP)
and location data is encrypted using Transport Layer Security
(TLS). When transmitting, the sensor unit measurements are
received at the edge server’s input application programming
interface (API). The data is cleaned (filtered) and sent to the
centralized cloud for storage and analysis. The cloud service
converts the raw measurement data to processed measurement
data using analytical tools, stores the processed data, and makes
the processedmeasurement data available for the edge exposureAPI.
The cloud storage system is based on Lustre, a distributed

FIGURE 1 | HOPE project city districts and participatory sensing air quality monitoring volunteers in Helsinki, Finland.
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production-grade file system similar to Amazon S3. The raw data
and processed data are stored in buckets, representing different data
sets enabling project separation, access control, and privacy. In data
management, we adhere to General Data Protection Regulations
(GDPR, 2018) and protect the registered users identifiable
information. We share the HOPE sensor unit location only to
the user. We apply strict security measures to protect the
confidentiality, integrity, and availability of personal data when
transferring, storing, or processing it. We use physical,
administrative, and technical security measures to reduce the risk
of loss, misuse, or unauthorized access, disclosure, or modification of
stored personal data. All personal data is stored on secure servers
operated by University of Helsinki with access limited to authorized
personnel only. All administrative connections use Secure Shell
(SSH), applying public/private key encryption, a block cipher,
and a MAC to authenticate, validate, verify, and encrypt the
sessions to the databases. At the end of the HOPE project, the
research register is archived without identification data in the
information systems of the Department of Computer Science of
the University of Helsinki.

We applied an network programmability approach to automate
the network of attached HOPE sensor units and continuously
maximize network efficiency and functionality. We developed
platform software to pull external data to the edge rest input API
from open sources such as weather data from National
Meteorological institutions, city reference station air pollution
data from municipal bodies for sensor unit calibration and virtual
sensors (see Section 2.4.2), traffic behaviour from city info sharing
services, and geo-spatial applications such as OpenStreetMaps. Our

approach allows for Land-Use Regression modelling, as it integrates
different urban features to determining air quality patterns at
different scale (Weissert et al., 2019). The service relays the
processed measurement data and information to a web-based
exposure app allowing the registered users to view personal air
pollution exposure information aswell as local pollution information
in real time. We update network programmability component with
the latest artificial intelligence techniques therefore simultaneously
improving historical stored data and current data for the
registered users.

2.3 HOPE Sensor Unit
To operationalize the MegaSense cyber-physical system and
provide citizens a convenient and affordable method to
measure their exposure to air pollution, the University of
Helsinki designed a sensing unit based on a BMD-340 system
module andmobile phone app called HOPE sensor unit (Rebeiro-
Hargrave et al., 2020). The HOPE unit connects to Android and

FIGURE 2 | Community-based monitoring with cyber-physical system architecture for air quality monitoring.

TABLE 1 | Manufacturers of the sensors components, their measurements and
when they are used by the cycle timer.

Manufacturers Sensor Measurements Cycle

Bosch BME280 Temp, RH, and pressure 1
Silabs SI1133 UVA 320–400 and UVB 280–320 nm 2
SGX Sensortech MICS-4541 CO and NO2 3
Sensirion SPS30 PM1, PM2.5, PM4, PM10 4
Winsen MQ131 O3 5
Celltech Battery Voltage 6
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iOS smartphones over Bluetooth Low Energy, and the
smartphones report their readings further to the collecting server
and to the MegaSense system. The unit consists of low-cost sensing
components purchased from different manufactures (Table 1) and
we designed the connectivity between the components (Figure 3).
The sensing unit samples the surrounding air based on cycle timer
and writes the measurements to a data packet. The current cycle lasts
3 min in which the CO and NO2 sensor and O3 sensor heat up to
300–500°C before powering off for the next cycle. The reported
readings include the temperature Temp, relative humidity RH, air
pressure, battery level, UV, PM in different size ranges (PM1, PM2.5,
PM4, PM10), NO2, CO,O3, positioning information and a timestamp.
The unit is powered with a 3,500mAh battery and enclosed in a 3D-
printed case made of ESD-PETG filament. The form dimensions are:
width 75mm, depth 33mm, height 127mm, with weight 165 g. The
front is protected by an aluminium mesh. General battery life before
recharging viamicro USB interface: 26 h. Indicator LEDs are used for
communication and charging. Simple maintenance to clean away
dust can be performed using pressurised air. The users attaches the
HOPE sensor to backpack or a bag. The HOPE sensor unit is
managed by the HOPE app for smartphones. The HOPE app
from Android Smartphone was downloadable from Google play
store under the name of HOPE project https://play.google.com/store/
apps/details?id�com.loopshore.hope_app. For iOS the smartphones
app was downloadable from Apple Testflight.

2.4 Network Programmability
To manage the networks of low cost sensors, verify sensor data
accuracy, deploy virtual sensors, and update sensors parameters, the
MegaSense cloud uses network programmability software tools.

2.4.1 Low Cost Sensor Calibration
To ensure acceptable data accuracy of the HOPE sensor units
during field operations, we developed a calibration procedure and
calibration function for all the devices. Following manufacturing,
four HOPE sensor units were calibrated for CO, NO2 and O3 at

the University of Helsinki laboratory and PM2.5 in FMI
laboratory in May 2019. Afterwards, four HOPE sensor units
were co-located at HSY monitoring site in Mäkelänkatu reference
station in Vallila for short-term field calibration. For long-term
in-field calibration, an additional four HOPE devices were co-
located against University of Helsinki Station for Measuring
Ecosystem Atmosphere relations (SMEAR III) reference
station between November 2019—February 2021, with several
maintenance breaks in between. To develop the calibration
function, we included two meteorological parameters Temp
and RH as input variables to account for the effects of the
ambient condition (Si et al., 2020). We applied a robust
multiple linear regression to the four LCS as a whole to get
the correction coefficients for all the four pollutant variables,
i.e., NO2, CO, O3 and PM2.5:

Cref � β0 + β1CLCS + β2Temp + β3RH (1)

where Cref and CLCS are concentration of the air pollutant of interest
(in μgm−3) measured by the reference devices and the Hope sensor,
respectively. β0 and the rest of the β values are the offset and the
coefficients of the corresponding input variables, respectively
(Table 2). The Pearson correlation coefficients (R) of the in-field
calibration range from 0.13 to 0.54. The coefficients were affected by
one HOPE sensor unit that performed poorly and the three other

FIGURE 3 | HOPE sensor unit developed for participatory sensing of air quality attached to a backpack.

TABLE 2 | Results showing the offsets and coefficients of the in-field calibration at
SMEAR III. The Pearson correlation coefficients (R) of the in-field calibration is
shown in the last column of the table.

β0 β1 β2 β3 R

NO2 -1.0010 0.0320 0.0042 0.0108 0.13
CO -58.5152 0.8007 -0.4574 0.9735 0.54
O3 61.3218 1.7355 -0.4868 0.0239 0.53
PM2.5 2.5645 0.4436 0.0088 0.0371 0.54
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sensors were stable for 2 years of continuous measurement Due to
the fair performance of calibration, the uncertainties of HOPE sensor
measurements can be high, but the measurements are able to show
the variability and relative difference when we make comparison in
the later part of the paper. The HOPE device data conversion limits
assumes an ambient pressure of 1 atm and a temperature of 25°C
and units are reported in μgm−3.

2.4.2 Virtual Sensors for Black Carbon and Lung
Deposited Surface Area
To maximize efficiency and functionality of the air quality
monitoring network we implemented virtual sensors in the
cloud utilising the Hope sensor unit measurements. We
developed black carbon (BC) and lung deposited surface area
(LDSA) virtual sensors to infer proxy estimations of their
concentrations based on measured parameters. Our rationale
was that low cost air quality monitoring typically measure
PM2.5 and PM10 and neglect ultra fine particles (diameter of
particles < 100 nm) which are important for estimating the
health effects of aerosol particles. We considered it is
impractical for citizens to measure BC (using filter-based
absorption photometers) and LDSA (using unipolar diffusion
chargers)and thus proxy sensing is an economic alternative. To
create the virtual sensors, statistical proxies were integrated with
the data measured by HOPE sensor units (Zaidan et al., 2020).
We used a multiple linear regression model to estimate statistical
proxies of BC (Fung et al., 2020) and LDSA concentrations (Fung
et al., 2021). We applied a feature selected algorithm that searched
for the best combination of input variables with a criterion-based
procedure from the six variables (NO2, O3, CO, PM2.5, PM10,
Temp and RH). Since air pollutants are mostly log-normally
distributed, we performed logarithm transformation to all the
aerosol and gas compounds. We trained (70%) and tested (30%)
the model against BC and LDSA data sets (2017–2018)collected
from the HSY Mäkelänkatu street canyon reference station in
Vallila. Following this, we inputted the best combination of
variables from the HOPE sensor units measurements to the
multiple linear regression model to estimate the two new
parameters as virtual sensors (Table 3). The virtual sensor
linear regression functions and coefficients are stored in the
cloud and enable all Hope sensor units to infer BC and LDSA
concentrations. Although the virtual sensors were not originally

designed for the HOPE sensors, they managed to give indicative
ambient levels of BC and LDSA.

2.4.3 Virtual Sensor for Inhaled Dose Rate
To assess health outcomes of aerosol particle exposure, we
developed a virtual sensor to estimate lung dose of submicron
particles in the human respiratory tract and called it inhaled
dosage rate (IDR). The IDR proxy is applied to the processed data
to give users an coarse indicative measurements on the amount of
aerosols deposited in the respiratory track during breathing. Since
the HOPE LCS only measures PM2.5 (mass concentration) as an
aerosol pollutants instead of number concentration with varying
particle sizes, the IDR can be computed as below. (Hussein et al.,
2019):

IDRPM2.5

μg
hr

( ) � IHR
m3

hr
( ) ·DF · PM2.5

μg
m3

( ) (2)

where IHR stands for the inhalation rate that depends on
individual’s gender, age and the individual’s activity, and DF is
the deposition fraction which illustrate how much particles
deposited onto lung surfaces. Here, we make two assumptions
for IHR and DF. First, we assume the HOPE device users are
walking. Based on Holmes. (1994), IHR (in m3/hr) are 1.38 and
1.2 for male and female, respectively. Second, we make an
assumption for the geometric mean diameter of ambient
urban size distribution in Helsinki based on the size
distribution data reported by Petäjä et al. (2021). DF for PM2.5

in this paper can then be assumed to have a range of
0.2–0.5 μgm−3, according to the size-dependent regional
deposition factor curves by ICRP model (e.g., Hussein et al.
(2013)).

2.5 Participatory Sensing Data Campaigns
Following the development of the cyber-physical system and the
production of the HOPE sensor units, Forum Virium engaged a
community of registered air quality activists across Helsinki (500
members) via social media. They announced the need for
participatory sensing in three district and arranged the venues,
including open spaces and libraries, for HOPE sensor unit
handouts (Table 4). A total of 132 citizen volunteers took part
in the data campaigns (27% of the air quality activist pool) and in
total made 1,147,649 air quality measurements. The involvement
of citizens to conduct co-design workshop was heavily impaired
by the COVID-19 lockdown rules enforcing homeworking and
limited contact between 2020–2021, as observed by other citizen
science projects (Basile et al., 2021). Citizen workshops and
feedback session were held online. The University of Helsinki
managed the data operations. Prior to receiving a HOPE sensor
unit, each citizen signed and kept a copy of privacy policy
agreement outlining what personal data we were collecting
(location and age group), how the data is collected (GPS), how
we intend to use their information (scientific purposes), and
whether we will disclose some or all of that information to any
third parties (no). The participants were informed how to access
their personal exposure data and their respective location vis-a-
vis the pollutants from a personal web user page accessible with a

TABLE 3 | Results showing the coefficients of the developed black carbon (BC,
μg m−3) and lung deposited surface area (LDSA, μm2 cm−3) proxy using the
referencemeasurements at Mäkelänkatu street canyon site. Asterisk (*) represents
a natural logarithm of the input variable.

Virtual sensing variable Input variables Coefficients

BC Intercept -3.1171
*NO2 0.4489
*PM2.5 0.3153
Temp 0.0141

LDSA Intercept 1.4245
*NO2 0.2532
*PM2.5 0.1944
*O3 -0.0287
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unique password. Instructions for using for downloading the
HOPE App and using the HOPE sensor unit were also made
available as two YouTube videos. The participants were
encouraged to carry the HOPE devices as they wanted to and
make measurements in any environments.

To sustain and improve the participatory monitoring, we invited
the same users to partake in subsequent data campaigns. However,
most were new users. As common in citizen science projects, the
motivation of participants to measure decreased after a few weeks
(Sauermann and Franzoni, 2013). Accordingly, new motivation
strategies implemented for each data campaign, including
improving the look and feel of the personal exposure user web
page, district gamification with an online leader board, and
rewarding super users and active participates with electronic
5 €vouchers to local kiosks. To solicit feedback from the
participants, feedback sessions were organized and online surveys
created. Citizen volunteers response were varied: concerns about
local outdoor air quality and pollution sources, concerns about their
indoor air quality exposure. Some participants carried the devices
when walking outside, others made measurements from their
balconies or outside the window. Some were motivated by being
able to contribute in making science.

3 RESULTS WITH DISCUSSION

To evaluate the results of the participatory sensing campaigns we
query the MegaSense database and compare the data accuracy of
Hope sensor units as a group against nearest official reference
stations. We show examples of personal exposure profiles to air
pollution in different micro environments. We demonstrate how
Network programmability creates new insights into population
exposure to air pollution.

3.1 Participatory Sensing Data Accuracy
Against One Reference Station
To verify long-term HOPE sensor data accuracy, we compared the
participants measurements to the nearest reference station for each
district throughout the data campaigns in 2020. The mean distance
between the HOPE sensor unit and reference station was 1–2 km.
For Jätkäsaari campaign we compared the average of 22 sensors to
HSY mobile monitoring station at Länsisatama. For Vallila
campaign we compared the average of 24 sensors to SMEAR III
station (a 31-m-high tower) at Kumpula. For Vallila, we compared
the average of 24 sensors to HSY mobile monitoring station at
Pirkkola. The results of the comparisons shows reference stations

hourly PM2.5 concentrations were approximately 3 μgm−3 higher
than HOPE sensors for the three districts (Figure 4). However, we
can see different diurnal patterns and the PM2.5 values were in the
same magnitude. The hourly PM2.5 concentrations in Pakila were
2 μgm−3 higher than Jätkäsaari and Vallila, perhaps reflecting
residential wood burning. The average hourly PM2.5

concentrations in Vallila show diurnal variability. The spread of
PM2.5 from HOPE sensors is higher during daytime probably
because citizens carried the sensor units outdoors with all sorts of
activities, for example walking dogs, transporting to work, etc.
Activity to carry the sensor units was lower during nighttime, as
most citizens left the sensors on indoors at home, which led to much
lower PM2.5 compared to the outdoor reference station. The HOPE
sensor data from Jätkäsaari did not show much variability.

3.2 Participatory Sensing Data Accuracy
Against Two Reference Stations
To verify HOPE sensor data accuracy at a more granular level we
compared the participants measurements to the two nearest
reference stations for Christmas week in Pakila 2019. We
compared the average of 36 HOPE sensors against HSY
mobile monitoring station at Pirkkola (1 km distance) and
SMEAR III at Kumpula (5 km distance) and the results show
good correspondence (Figure 5). To explore the dataset further,
we defined that HOPE sensor measurements were made indoors
when the sensor temperature measurements was greater than
19°C. The dataset reveals an interesting patterns for the last week
of 2019 in Pakila when outdoor temperature fell from 6°C to
−11°C. The hourly PM2.5 concentrations peaked three times
during the week: 1) December 24th, indoor PM2.5 rose early in
the afternoon and in the evening, corresponding to traditional
Christmas cooking and candles; 2) December 28th, a cold
Saturday with temperature of −11°C, the average sensor
measurements were in good correspondence with SMEAR III,
inferring a large-scale background event; and 3) December 31st,
corresponding with celebrations, indoor PM2.5 increased with
cooking aerosols and outdoor PM2.5 increased due to firework
particles. The HOPE sensor outdoor PM2.5 measurements were in
general higher than the HSY reference stations, as the
measurements were taken nearer to the emission sources.

3.3 Personal Exposure to Air Pollution
Utilizing the HOPE sensor calibrated data, participants viewed
their personal exposure to air pollution. When queried, the
MegaSense system created a time-activity profile against the
pollutant concentration in μg m−3 and displayed as a graph.

TABLE 4 | Participant age grouping and distribution in%, district campaign dates, the number of volunteers per district, and number of HOPE sensor device measurements.

Age Groups Age % Campaign Dates Pakila Vallila Jätkäsaari Measurements

18–24 8 Nov2019-Jan2020 39 0 0 281784
25–34 29 Nov2020-Jan2021 9 0 0 154487
35–44 28 Jun2020-Aug2020 0 24 22 255977
45–64 28 Apr2020-Sep2020 0 20 19 299722
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Using the smartphone GPS locations, the exposure app overlayed
the time activity onto Open Street Map and the participant can
see where the exposure event (peaks) occurred and when. An
example of personal exposure to air pollution for New Year’s Eve

(December 31, 2020) is shown in Figure 6. The personal exposure
profile depicts minor fluctuations for PM2.5 NO2, O3 exposure in
enclosed indoor environments, residential address and inside a
car, and marked exposure fluctuations when walking outside. The

FIGURE 4 |Hourly PM2.5 concentrations from HOPE sensors in comparison with that measured at reference stations in the districts of (A) Jätkäsaari (red bars), (B)
Valilla (green bars) and (C) Pakila (blue bars), in the campaigns in 2020. The grey bars represent the hourly PM2.5 concentrations at the corresponding nearest reference
stations.

FIGURE 5 | Hourly PM2.5 concentrations from HOPE sensors outdoors (green) and LCS indoors (pink) in comparison with that measured at reference stations in
Pirkkola (blue) and SMEAR III (yellow) in Pakila Christmas week (2019).
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HOPE sensor PM2.5 compared well with SMEAR III readings
(not shown) but sensor NO2 and O3 were almost as twice the
corresponding SMEAR III measurements. The personal exposure
profile captured three elevated peaks during New Year’s Eve
fireworks celebrations which occurred throughout Helsinki
(Petäjä et al., 2021). Not only did PM2.5 peak late in the
evening when the participant went for a walk, the was a
general indoor air increase of PM2.5 starting from 17:00
onward showing the effects of ambient air pollution inside the
residence.

3.4 Personal Exposure History to Air
Pollution
The personal exposure history allowed participants to review
their past time-activity profiles across the week and assess
significant exposure events going back in time. The

participant’s data is stored as processed data and is enriched
by the latest AI algorithms meaning that system can produce new
health-related information from the historical data. This is
important for registered users wanting to correlate periodic
illness such as previous asthma attacks (lung function and
increased inflammation episodes) against short-exposure
exposure in traffic and transit micro environments (Brokamp
et al., 2019). An example of historical data, Figure 7 shows
exposure profile for the first week in Helsinki (January 04,
2021–January 09, 2021) when outside temperatures dropped
from −2 °C to −9°C. The weekly trend shows the short
exposure periods in PM2.5 concentration exceeding the WHO
limit values. The sensor was turned off or not charged during two
afternoons indicating the importance of continuous
measurements. The system superimposes the virtual sensor for
IDR using the participant’s measurements. The top line based on
male breathing rate the bottom line based on female breathing

FIGURE 6 | Hourly PM2.5, NO2. O2.5 concentrations measured by HOPE sensors unit (December 31, 2020). Time activity personal exposure profile for user
travelling from Kiuruvesi to Helsinki and walking outdoor during firework displays.

FIGURE 7 | Hourly PM2.5, NO2. O2.5 concentrations measured by HOPE sensor unitincluding offline periods (January 04, 2021–10.01.2021). The grey envelope
represents hourly inhaled dosage rate proxy. The top line of the grey area based on male breathing rate the bottom line based on female breathing rate.
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rate. The virtual sensors proxy concentration are affected when
the sensor is off.

3.5 Population Exposure to Air Pollution
The aggregation of personal exposure profiles give insights into
population exposure to air pollution. Population exposure
profiles of different districts leads to insights in the spatial and
temporal characteristics of urban air quality. The data patterns
that emerged from the participatory sensing campaigns support
HOPE project objective to compare the three districts in terms of
who are active participants, who are the most exposed
participants and when is it best to intervene.

3.5.1 Participants Activity Behaviour
To determine who on were the most active in carrying the HOPE
sensor unit we examined the average time-activity data across the
participants age groups (Figure 8). In the MegaSense system, we
associate the participant’s public profile with the HOPE sensor
MAC address. To place the participants within the geographical
boundaries of each district, we described the campaign areas and
location information and the MegaSense system filtered all the
data points (GPS locations of the participants measurements)
using a defined GeoJSON polygon. Once we associated the HOPE
sensors to their district, we estimated the distance carried by the
participant using GPS information and the haversine formula.
This performance indicator reveals the portability of HOPE
sensors and gives insight to the users motivation to measure
outdoor air quality throughout the week and per age group.
The results show the total distance the participants carried the
HOPE sensor throughout the data campaign per day was quite
small (Figure 8). In Vallila, 24 residents carried the sensor unit
an average of 0.68 km per day and there was little variability
throughout the week. In Jätkäsaari, 22 residents carried the
sensor unit an average of 0.80 km per day with a marked
increase of distance every Friday’s. In Pakila, which is
surrounded by parks, 9 residents, average distance was
2.23 km per day and greatest distance covered every
Tuesday. In terms of motivations, it appears that age group
(35–44) were the most active for making outdoor

measurements in Jätkäsaari and age group (45–64) were
most active. From the distance data, we can infer that many
participants used the sensor unit for very short trips in their
districts. The Pakila data was skewed by super users, a few
active volunteers who travelled more than 5 km a day. Overall
the data shows that many HOPE sensor measurements are
made in the individuals houses reflecting that the participants
spent most of their time indoors.

3.5.2 Participants Exposure Black Carbon and Lung
Deposited Surface Area
To establish who are the most exposed between the three districts,
we examined the BC and LDSA exposure (see Section 2.4.2)
across the participants age groups (Figure 9). To verify the
reliability of the BC proxy, we compared the virtual sensor
results against typical BC concentrations in Helsinki as per
Luoma et al. (2021): regional background areas 0.3 μg m−3,
detached housing area 0.4–0.6 μg m−3, and traffic conditions
ranging up to 0.6 between 1.4 μg m−3. We compared the
LDSA proxy estimates against typical LDSA in Helsinki
findings as per Kuula et al. (2020): regional background site
10 μm2 cm−3, detached housing area 12 μm2 cm−3, and traffic
environment up to 22 μm2 cm−3. The virtual sensing results
were surprisingly near to actual BC and LDSA measured
values: Jätkäsaari represented typical traffic conditions in line
with heavy port traffic and many construction vehicles. Vallila
represented a typical regional urban background. Pakila
represented a typical low-rise residential area with wood
combustion emissions. Assessing the age group distribution, in
Jätkäsaari, the youngest age group (24–34) were exposed to
highest BC concentration and LDSA level even though they
did not carry the sensor units very far, inferring, for example,
that participants from this group could be living near busy roads
and make very short outdoor trips during heavy traffic
conditions. In Pakila, the age group (45–64) participant were
exposed to lower LDSA level than the other age groups.
Interestingly, this group was very active in carrying the HOPE
LCS, and were probably outside their residence for longer than
the other participants. Querying the MegaSense system database

FIGURE 8 | Total distance HOPE sensors units were carried for Valilla and Jätkäsaari citizens summer campaign and Pakila winter campaign against days of week
and age cohort per district during data campaigns.
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provides opportunities descriptive epidemiology and hypothesis
generation.

3.5.3 Planning Interventions
To ascertain when is it best to intervene and reduced air pollution
in the three districts we examined the participants BC and LDSA
proxy exposure for across the week days (Figure 10). This type of
approach is useful for useful for city planners who have amandate
to improve air quality using a broad range of interventions that
should lead to reductions in source emissions, followed by
reduced ambient pollutant concentrations, reduced exposure/
dose for the individual Burns et al. (2020). Taking this
approach, the results revealed that Jätkäsaari had the highest
BC and LDSA proxy levels throughout the week compared to the
other districts with increased BC concentrations on Saturday and
Wednesday (Figure 10). Pakila had highest LDSA on Sundays.
Based on these findings, the city authorities could introduce
traffic calming interventions for Jätkäsaari on Saturday and
Wednesday leading to lower BC concentrations (Amato et al.,
2010). The authorities could disseminate reminders to residents
of Pakila to reduce wood burning on Sundays (Patel et al., 2018).

These measures could be refined by allowing citizens to digitally
vote on the magnitude of the intervention. We expected greater
variability between week day and weekend, however show due to
shift to COVID-19 related homeworking there are no clear
pattern across the week apart from minor increases on Fridays
and Wednesdays.

4 CONCLUSION

We introduced a novel community-based monitoring system for
air quality monitoring making full use of the portability of low
cost sensors, and supporting next generation of low cost sensors
as they evolve and improve in accuracy. For the first time, this
research suggests that non regulatory air quality management and
reduction of air pollution in urban environments is best served
with a voluntary participatory sensing. Involving citizens in
measuring the pollution on their own district can lead to the
reduction of personal exposure to air pollution. At the same time,
multiple stakeholders are guided in implementing public sector
and scientific interventions to reduced air pollution at the district

FIGURE 9 | Hourly black carbon and lung deposited surface area (LDSA) proxy concentrations derived from HOPE sensors measurements compared to
participants age groups for campaigns 2019–2020.

FIGURE 10 | Hourly black carbon and lung deposited surface area proxy concentrations derived from HOPE sensors measurements compared to time of
measurement across the week for campaigns 2019–2020.
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level. We piloted application of a cyber-physical system with
distributed edge computation to synthesise city monitoring
station’s measurements with low-cost sensors measurements and
convert to more accurate processed data. We created innovative
virtual sensors which assist citizens to understand their indoor and
outdoor exposure into black carbon and lung deposited surface area
proxy-based exposure and inhaled dosage. We allow citizens to see
their personal exposure to multiple air pollutants in real-time and to
download past measurements for historical analysis of their time-
activity exposure patterns of the past 2 years, whilst protecting their
privacy. The cyber-physical system creates district air quality profiles
that informs multiple stakeholders on the feasibility of participatory
sensing, low cost sensor performance, epidemiologicalmodelling, and
city-led intervention management.

There are many challenges that require further research.
Regarding governance, community based monitoring requires a
clear owner, and this may not be the local authority due to
departmental crossovers. On the technical design, in the current
MegaSense cyber-physical system, the cloud layer and edge layer are
in the same infrastructure. However, the edge server will be tested in
other cities in the future. The calibration and virtual sensors’
functions are developed in fixed outdoor environments and would
benefit from evaluation on impact of the indoor environment. The
indicative black carbon, lung deposited surface area and inhaled
dosage proxies require validation against regulatory city monitoring.
In terms of the participatory method of sensing, the observed ad-hoc
pattern how citizens use the low cost sensors leads to data gaps. This
highlights the need for continuous and long-termmeasurements, and
the need to motivate participants towards more active lifestyles that
would also lead to carrying the device for longer distances.

DATA AVAILABILITY STATEMENT

The datasets presented in this study can be found in online
repositories. The names of the repository/repositories and

accession number(s) can be found below: https://megasense-server.
cs.helsinki.fi.

ETHICS STATEMENT

The studies involving human participants were reviewed and
approved by University of Helsinki Ethical Review Board,
University of Helsinki. The patients/participants provided their
written informed consent to participate in this study. Written
informed consent was obtained from the individual(s) for the
publication of any potentially identifiable images or data included
in this article.

AUTHOR CONTRIBUTIONS

All authors listed have made a substantial, direct, and intellectual
contribution to the work and approved it for publication.

FUNDING

This work is supported by the European Union through the
Urban Innovative Action Healthy Outdoor Premises for
Everyone (project number UIA03-240) and
Business Finland Project 6884/31/2018 MegaSense
Smart City.

ACKNOWLEDGMENTS

We acknowledge the contributions of Jarkko Niemi of Helsinki
Region Environmental Services HSY providing access and data
and the HSY reference stations.

REFERENCES

Amato, F., Querol, X., Johansson, C., Nagl, C., and Alastuey, A. (2010). A Review
on the Effectiveness of Street Sweeping, Washing and Dust Suppressants as
Urban Pm Control Methods. Sci. total Environ. 408, 3070–3084. doi:10.1016/
j.scitotenv.2010.04.025

Basile, M., Russo, L. F., Russo, V. G., Senese, A., and Bernardo, N. (2021). Birds
Seen and Not Seen during the Covid-19 Pandemic: The Impact of Lockdown
Measures on Citizen Science Bird Observations. Biol. Conservation 256, 109079.
doi:10.1016/j.biocon.2021.109079

Bekkar, B., Pacheco, S., Basu, R., and DeNicola, N. (2020). Association of Air
Pollution and Heat Exposure with Preterm Birth, Low Birth Weight, and
Stillbirth in the US. JAMA Netw. Open 3, e208243. doi:10.1001/
jamanetworkopen.2020.8243

Brokamp, C., Brandt, E. B., and Ryan, P. H. (2019). Assessing Exposure to Outdoor Air
Pollution forEpidemiological Studies:Model-Based andPersonal Sampling Strategies.
J. Allergy Clin. Immunol. 143, 2002–2006. doi:10.1016/j.jaci.2019.04.019

Burns, J., Boogaard, H., Polus, S., Pfadenhauer, L. M., Rohwer, A. C., Van Erp, A.
M., et al. (2020). Interventions to Reduce Ambient Air Pollution and Their
Effects on Health: an Abridged cochrane Systematic Review. Environ. Int. 135,
105400. doi:10.1016/j.envint.2019.105400

Carton, L., and Ache, P. (2017). Citizen-sensor-networks to Confront Government
Decision-Makers: Two Lessons from the netherlands. J. Environ. Manag. 196,
234–251. doi:10.1016/j.jenvman.2017.02.044

Carvalho, H. (2016). The Air We Breathe: Differentials in Global Air Quality
Monitoring. Lancet Respir. Med. 4, 603–605. doi:10.1016/s2213-2600(16)
30180-1

Castell, N., Dauge, F. R., Schneider, P., Vogt, M., Lerner, U., Fishbain, B., et al.
(2017). Can Commercial Low-Cost Sensor Platforms Contribute to Air Quality
Monitoring and Exposure Estimates? Environ. Int. 99, 293–302. doi:10.1016/
j.envint.2016.12.007

Dias, D., and Tchepel, O. (2018). Spatial and Temporal Dynamics in Air Pollution
Exposure Assessment. Int. J. Environ. Res. Public. Health. 15, 558. doi:10.3390/
ijerph15030558

Fung, P. L., Zaidan, M. A., Sillanpää, S., Kousa, A., Niemi, J. V., Timonen, H., et al.
(2020). Input-adaptive Proxy for Black Carbon as a Virtual Sensor. Sensors
(Basel) 20, 182. doi:10.3390/s20010182

Fung, P. L., Zaidan, M. A., Niemi, J. V., Saukko, E., Timonen, H., Kousa, A., et al.
(2021). Input-adaptive Linear Mixed-Effects Model for Estimating Alveolar
Lung Deposited Surface Area (LDSA) Using Multipollutant Datasets. Atmos.
Chem. Phys. Discuss., 1–33. doi:10.5194/acp-2021-427

GDPR (2018). General Data protection Regulation (GDPR). Available at: https://
gdpr-info.eu/ (Accessed 10 12, 2021).

Frontiers in Environmental Science | www.frontiersin.org December 2021 | Volume 9 | Article 77377812

Rebeiro-Hargrave et al. Participatory Sensing of Air Quality

https://megasense-server.cs.helsinki.fi
https://megasense-server.cs.helsinki.fi
https://doi.org/10.1016/j.scitotenv.2010.04.025
https://doi.org/10.1016/j.scitotenv.2010.04.025
https://doi.org/10.1016/j.biocon.2021.109079
https://doi.org/10.1001/jamanetworkopen.2020.8243
https://doi.org/10.1001/jamanetworkopen.2020.8243
https://doi.org/10.1016/j.jaci.2019.04.019
https://doi.org/10.1016/j.envint.2019.105400
https://doi.org/10.1016/j.jenvman.2017.02.044
https://doi.org/10.1016/s2213-2600(16)30180-1
https://doi.org/10.1016/s2213-2600(16)30180-1
https://doi.org/10.1016/j.envint.2016.12.007
https://doi.org/10.1016/j.envint.2016.12.007
https://doi.org/10.3390/ijerph15030558
https://doi.org/10.3390/ijerph15030558
https://doi.org/10.3390/s20010182
https://doi.org/10.5194/acp-2021-427
https://gdpr-info.eu/
https://gdpr-info.eu/
https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


Holmes, J. (1994). “How Much Air Do We Breath?,” in Research Note 94–11 (CA,
USA: California Environmental Protection Agency), 201–213.

Hussein, T., Löndahl, J., Paasonen, P., Koivisto, A. J., Petäjä, T., Hämeri, K., et al.
(2013). Modeling Regional Deposited Dose of Submicron Aerosol Particles. Sci.
total Environ. 458-460, 140–149. doi:10.1016/j.scitotenv.2013.04.022

Hussein, T., Saleh, S., dos Santos, V., Boor, B., Koivisto, A., and Löndahl, J. (2019).
Regional Inhaled Deposited Dose of Urban Aerosols in an Eastern
Mediterranean City. Atmosphere 10, 530. doi:10.3390/atmos10090530

Janssen, N. A. H., Hoek, G., Simic-Lawson, M., Fischer, P., Van Bree, L., Ten Brink,
H., et al. (2011). Black Carbon as an Additional Indicator of the Adverse Health
Effects of Airborne Particles Compared with PM10and PM2.5. Environ. Health
Perspect. 119, 1691–1699. doi:10.1289/ehp.1003369

Jerrett, M., Donaire-Gonzalez, D., Popoola, O., Jones, R., Cohen, R. C., Almanza, E.,
et al. (2017). Validating Novel Air Pollution Sensors to Improve Exposure
Estimates for Epidemiological Analyses and Citizen Science. Environ. Res. 158,
286–294. doi:10.1016/j.envres.2017.04.023

Kuo, C.-Y., Pan, R.-H., Chan, C.-K., Wu, C.-Y., Phan, D.-V., and Chan, C.-L.
(2018). Application of a Time-Stratified Case-Crossover Design to Explore the
Effects of Air Pollution and Season on Childhood Asthma Hospitalization in
Cities of Differing Urban Patterns: Big Data Analytics of Government Open
Data. Int. J. Environ. Res. Public Health 15, 647. doi:10.3390/ijerph15040647

Kuula, J., Kuuluvainen, H., Niemi, J. V., Saukko, E., Portin, H., Kousa, A., et al.
(2020). Long-term Sensor Measurements of Lung Deposited Surface Area of
Particulate Matter Emitted from Local Vehicular and Residential wood
Combustion Sources. Aerosol Sci. Technol. 54, 190–202. doi:10.1080/
02786826.2019.1668909

Landrigan, P. J., Fuller, R., Acosta, N. J. R., Adeyi, O., Arnold, R., Basu, N. N., et al.
(2018). The Lancet Commission on Pollution and Health. Lancet 391, 462–512.
doi:10.1016/S0140-6736(17)32345-0

Lin, Y., Dong, W., and Chen, Y. (2018). Calibrating Low-Cost Sensors by a Two-
phase Learning Approach for Urban Air Quality Measurement. Proc. ACM
Interact. Mob. Wearable Ubiquitous Technol. 2, 1–18. doi:10.1145/3191750

Luoma, K., Niemi, J. V., Aurela, M., Fung, P. L., Helin, A., Hussein, T., et al. (2021).
Spatiotemporal Variation and Trends in Equivalent Black Carbon in the
Helsinki Metropolitan Area in Finland. Atmos. Chem. Phys. 21, 1173–1189.
doi:10.5194/acp-21-1173-2021

Mahajan, S., and Kumar, P. (2020). Evaluation of Low-Cost Sensors for
Quantitative Personal Exposure Monitoring. Sustain. Cities Soc. 57, 102076.
doi:10.1016/j.scs.2020.102076

Mahajan, S., Kumar, P., Pinto, J. A., Riccetti, A., Schaaf, K., Camprodon, G., et al.
(2020). A Citizen Science Approach for Enhancing Public Understanding of Air
Pollution. Sustain. Cities Soc. 52, 101800. doi:10.1016/j.scs.2019.101800

Mahajan, S., Luo, C.-H., Wu, D.-Y., and Chen, L.-J. (2021). From Do-it-yourself
(Diy) to Do-it-together (Dit): Reflections on Designing a Citizen-Driven Air
Quality Monitoring Framework in Taiwan. Sustain. Cities Soc. 66, 102628.
doi:10.1016/j.scs.2020.102628

Motlagh, N. H., Lagerspetz, E., Nurmi, P., Li, X., Varjonen, S., Mineraud, J., et al.
(2020). TowardMassive Scale Air Quality Monitoring. IEEE Commun. Mag. 58,
54–59. doi:10.1109/mcom.001.1900515

Nurminen, A., Malhi, A., Johansson, L., and Främling, K. (2020). “A Clean Air
Journey Planner for Pedestrians Using High Resolution Near Real Time Air
Quality Data,” in 2020 16th International Conference on Intelligent
Environments (IE) (Madrid, Spain: IEEE), 44–51. doi:10.1109/
ie49459.2020.9155068

Patel, S., Leavey, A., Sheshadri, A., Kumar, P., Kandikuppa, S., Tarsi, J., et al. (2018).
Associations between Household Air Pollution and Reduced Lung Function in
Women and Children in Rural Southern india. J. Appl. Toxicol. 38, 1405–1415.
doi:10.1002/jat.3659

Petäjä, T., Ovaska, A., Fung, P. L., Poutanen, P., Yli-Ojanperä, J., Suikkola, J., et al.
(2021). Added Value of Vaisala AQT530 Sensors as a Part of a Sensor Network
for Comprehensive Air Quality Monitoring. Front. Environ. Sci. 9, 719567.
doi:10.3389/fenvs.2021.719567

Peters, R., Ee, N., Peters, J., Booth, A., Mudway, I., and Anstey, K. J. (2019). Air
Pollution and Dementia: a Systematic Review. J. Alzheimers Dis. 70, S145–S163.
doi:10.3233/jad-180631

Pinder, R. W., Klopp, J. M., Kleiman, G., Hagler, G. S. W., Awe, Y., and Terry, S.
(2019). Opportunities and Challenges for Filling the Air Quality Data gap in
Low- andMiddle-Income Countries. Atmos. Environ. 215, 116794. doi:10.1016/
j.atmosenv.2019.06.032

Rebeiro-Hargrave, A., Motlagh, N. H., Varjonen, S., Lagerspetz, E., Nurmi, P., and
Tarkoma, S. (2020). “Megasense: Cyber-Physical System for Real-Time Urban
Air Quality Monitoring,” in 2020 15th IEEE Conference on Industrial
Electronics and Applications (ICIEA) (Kristiansand, Norway: IEEE), 1–6.
doi:10.1109/iciea48937.2020.9248143

Rivas, I., Basagaña, X., Cirach, M., López-Vicente, M., Suades-González, E., Garcia-
Esteban, R., et al. (2019). Association between Early Life Exposure to Air
Pollution and Working Memory and Attention. Environ. Health Perspect. 127,
057002. doi:10.1289/ehp3169

Sauermann, H., and Franzoni, C. (2013). Participation Dynamics in Crowd-Based
Knowledge Production: The Scope and Sustainability of Interest-Based
Motivation. SSRN Electron. J. doi:10.2139/ssrn.2360957

Sauermann, H., Vohland, K., Antoniou, V., Balázs, B., Göbel, C., Karatzas, K., et al.
(2020). Citizen Science and Sustainability Transitions. Res. Pol. 49, 103978.
doi:10.1016/j.respol.2020.103978

Si, M., Xiong, Y., Du, S., and Du, K. (2020). Evaluation and Calibration of a
Low-Cost Particle Sensor in Ambient Conditions Using Machine-Learning
Methods. Atmos. Meas. Tech. 13, 1693–1707. doi:10.5194/amt-13-1693-
2020

Van Brussel, S., and Huyse, H. (2019). Citizen Science on Speed? Realising the
Triple Objective of Scientific Rigour, Policy Influence and Deep Citizen
Engagement in a Large-Scale Citizen Science Project on Ambient Air
Quality in Antwerp. J. Environ. Plann. Manage. 62, 534–551.
doi:10.1080/09640568.2018.1428183

Weissert, L. F., Alberti, K., Miskell, G., Pattinson, W., Salmond, J. A., Henshaw, G.,
et al. (2019). Low-cost Sensors and Microscale Land Use Regression: Data
Fusion to Resolve Air Quality Variations with High Spatial and Temporal
Resolution. Atmos. Environ. 213, 285–295. doi:10.1016/j.atmosenv.2019.06.019

Williams, D. E. (2019). Low Cost Sensor Networks: How Do We Know the Data
Are Reliable? ACS Sens. 4, 2558–2565. doi:10.1021/acssensors.9b01455

Zaidan, M. A., Hossein Motlagh, N., Fung, P. L., Lu, D., Timonen, H., Kuula, J.,
et al. (2020). Intelligent Calibration and Virtual Sensing for Integrated Low-
Cost Air Quality Sensors. IEEE Sensors J. 20, 13638–13652. doi:10.1109/
jsen.2020.3010316

Conflict of Interest: Author VN was employed by the company Forum Virium.

The remaining authors declare that the research was conducted in the absence of
any commercial or financial relationships that could be construed as a potential
conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2021 Rebeiro-Hargrave, Fung, Varjonen, Huertas, Sillanpää, Luoma,
Hussein, Petäjä, Timonen, Limo, Nousiainen and Tarkoma. This is an open-access
article distributed under the terms of the Creative Commons Attribution License (CC
BY). The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice.
No use, distribution or reproduction is permitted which does not comply with
these terms.

Frontiers in Environmental Science | www.frontiersin.org December 2021 | Volume 9 | Article 77377813

Rebeiro-Hargrave et al. Participatory Sensing of Air Quality

https://doi.org/10.1016/j.scitotenv.2013.04.022
https://doi.org/10.3390/atmos10090530
https://doi.org/10.1289/ehp.1003369
https://doi.org/10.1016/j.envres.2017.04.023
https://doi.org/10.3390/ijerph15040647
https://doi.org/10.1080/02786826.2019.1668909
https://doi.org/10.1080/02786826.2019.1668909
https://doi.org/10.1016/S0140-6736(17)32345-0
https://doi.org/10.1145/3191750
https://doi.org/10.5194/acp-21-1173-2021
https://doi.org/10.1016/j.scs.2020.102076
https://doi.org/10.1016/j.scs.2019.101800
https://doi.org/10.1016/j.scs.2020.102628
https://doi.org/10.1109/mcom.001.1900515
https://doi.org/10.1109/ie49459.2020.9155068
https://doi.org/10.1109/ie49459.2020.9155068
https://doi.org/10.1002/jat.3659
https://doi.org/10.3389/fenvs.2021.719567
https://doi.org/10.3233/jad-180631
https://doi.org/10.1016/j.atmosenv.2019.06.032
https://doi.org/10.1016/j.atmosenv.2019.06.032
https://doi.org/10.1109/iciea48937.2020.9248143
https://doi.org/10.1289/ehp3169
https://doi.org/10.2139/ssrn.2360957
https://doi.org/10.1016/j.respol.2020.103978
https://doi.org/10.5194/amt-13-1693-2020
https://doi.org/10.5194/amt-13-1693-2020
https://doi.org/10.1080/09640568.2018.1428183
https://doi.org/10.1016/j.atmosenv.2019.06.019
https://doi.org/10.1021/acssensors.9b01455
https://doi.org/10.1109/jsen.2020.3010316
https://doi.org/10.1109/jsen.2020.3010316
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles

	City Wide Participatory Sensing of Air Quality
	1 Introduction
	2 Methods
	2.1 Community-Based Monitoring
	2.2 MegaSense Cyber-Physical System
	2.3 HOPE Sensor Unit
	2.4 Network Programmability
	2.4.1 Low Cost Sensor Calibration
	2.4.2 Virtual Sensors for Black Carbon and Lung Deposited Surface Area
	2.4.3 Virtual Sensor for Inhaled Dose Rate

	2.5 Participatory Sensing Data Campaigns

	3 Results With Discussion
	3.1 Participatory Sensing Data Accuracy Against One Reference Station
	3.2 Participatory Sensing Data Accuracy Against Two Reference Stations
	3.3 Personal Exposure to Air Pollution
	3.4 Personal Exposure History to Air Pollution
	3.5 Population Exposure to Air Pollution
	3.5.1 Participants Activity Behaviour
	3.5.2 Participants Exposure Black Carbon and Lung Deposited Surface Area
	3.5.3 Planning Interventions


	4 Conclusion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Acknowledgments
	References


