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Sinkholes (or dolines) are an often-overlooked environmental hazard. The processes that
lead to their formation are slow and insidious, which encourage a lack of awareness or
concern for the potential danger, until the sudden, climactic formation leads to unexpected
property damage and possibly human casualties. This research identifies the risk to
residential properties to the sinkhole hazard, using Louisiana, United States as a case
study. Risk is defined as the product of the hazard intensity and the loss to structure and
contents within the building resulting from the hazard-related disaster. Results suggest
that risk is highly scale-dependent. Although the risk due to sinkholes is small on a per
capita basis statewide, especially when compared to the per capita risk of other natural
hazards, the property risk for census tracts or census blocks partially or completely
overlying a salt dome is substantial. At finer scales, Terrebonne Parish, in coastal
southeastern Louisiana, has the greatest concentration of salt domes, while Madison
Parish, which is east of Monroe, has the highest percentage of area at risk for sinkhole
formation, and St. Mary Parish—immediately west of Terrebonne—has the greatest risk of
property loss. An Acadia Parish census tract has the maximum annual property losses in
2050 projected at $40,047 (2010$), and the highest projected annual per building ($43)
and per capita ($18) property loss are in the same St. Mary Parish census tract. At the
census block level, maximum annual property loss ($7,040) is projected for a census block
within Cameron Parish, with maximum annual per building loss ($85 within West Baton
Rouge Parish), and maximum per capita annual property loss ($120 within Plaquemines
Parish). The method presented in this paper is developed generally, allowing application for
risk assessment in other locations. The results generated by the methodology are
important to local, state, and national emergency management efforts. Further, the
general public of Louisiana, and other areas where the developed method is applied,
may benefit by considering sinkhole risk when purchasing, remodeling, and insuring a
property, including as a basis of comparison to the risk from other types of hazard.
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INTRODUCTION

A sinkhole, also known as a doline, is a closed, circular surface
depression on the landscape with no natural external surface
drainage, caused by the abrupt or slow collapse of land by
solution weathering. Sinkholes vary in size from a few square
meters to hundreds of hectares, and extend from less than 1m to
over 30 m in depth. Sinkholes are most common in carbonate
(i.e., limestone composed of calcite and less-commonly, dolostone
composed of dolomite—karst environments), evaporite
(i.e., composed of gypsum or halite), or other soluble rocks
formed by the evaporation of water (Reynolds et al., 2021). Thus,
sinkholes are most common in areas of limestone or with abundant
salt domes (i.e., sedimentary rock structure caused by massive salt
uplift, often trapping oil and/or natural gas), with rainy or formerly
rainy climates, but humans can accelerate sinkhole formation. The
majority of archival publications document how sinkholes provide
unique niches for a wide array of bacteria (Wu et al., 2015), including
large sulfur bacteria (e.g., Sharrar et al., 2017) and cyanobacteria
(Biddanda et al., 2015), along with zooplankton (Montes-Ortiz and
Elias-Gutierrez, 2018), and marine meiofaunal (Brankovits et al.,
2021) communities, amphibians (Greenberg et al., 2015), and
fossilized evidence of much larger animals (e.g., Shunk et al.,
2009; Crowley and Godfrey, 2019), and form in interesting
biogeochemical environments (e.g., Haas et al., 2018; Fazi et al.,
2019). However, there is a dearth of research on economic losses due
to sinkholes.

In recent years, radar has become the primary tool for identifying
and understanding the evolution of sinkhole-caused surface
deformation (Paine et al., 2012; Conway and Cook, 2013; Nof
et al., 2013; Rucker et al., 2013; Caló et al., 2017; Szűcs et al.,

2021). While prediction of the next sinkhole to form is extremely
difficult even with many predictor variables (Orhan et al., 2020),
there are recent signs that the next generations of synthetic aperture
radar (Baer et al., 2018; Emil et al., 2021) and X-ray diffraction
(Ghrefat et al., 2021) may offer advances over earlier radar
technologies for early warning of sinkhole formation.

As development and property value continue to increase,
sinkholes are a source of increasing property loss and human
inconvenience and danger. While Louisiana, United States, is not
usually considered to have a major sinkhole threat, from among
the 153 known terrestrial salt domes in Louisiana (Figure 1) that
have formed over the last 70 years, two sinkholes (Lake Peigneur
in Jefferson Island salt dome in 1980 (Autin, 1984; Figure 2A)
and Bayou Corne in the Napoleonville salt dome in 2012
(Louisiana Department of Natural Resources, 2012; Jones and
Blom, 2014; Figure 2B) have formed, for a 0.025 percent annual
probability of formation—a similar frequency as damaging
earthquakes in western North America. These sinkholes were
both precipitated by the human-influenced collapse of salt dome
caverns, and both caused significant local and regional disruption.
Other representative salt domes that have not yet produced
sinkholes are shown in Figures 2C,D.

A more detailed understanding of sinkhole formation in
Louisiana is needed to understand the threat more fully.
Sinkholes in Louisiana are caused by the collapse of natural
marine or terrestrial salt domes nearshore and offshore,
typically by perforation, filling with water, and dissolution of
the salts. The salt dome itself forms as a bed of evaporite rocks
protrudes vertically upward, with a bubble-shaped interruption of
other rock layers (Battelle Memorial Institute, 1981; Swann,
1989). These impermeable diapirs of salt are often sites of
trapped oil and natural gas, which is common in Louisiana, as
the state consistently ranks among the top U.S. states in
hydrocarbon-based energy production. Thus, the perforation is
often associated with oil/natural gas extraction.

In an early study, Johnson and Bredeson (1971) examined the
structural history of six salt domes of south-central and
southeastern Louisiana, suggesting that a core of salt or salt-
shale combination underlies a sandstone and shale sequence, with
folding and perhaps faulting playing a role in the emplacement of
the shale in the core. Autin (2002) described the geologic features
and evidence for uplift of the “Five Islands” salt domes of south-
central and southwestern Louisiana, which includes two of the
domes studied by Johnson and Bredeson (1971). Whyatt and
Varley (2008) also explained the formation process of the
sinkholes from the two domes in Louisiana. In light of this
threat, the purpose of this research is to develop a method for
estimating sinkhole risk, from statewide to the census-block
level—the smallest geographic unit identified in the U.S.
census—using Louisiana as an example.

METHODS AND MATERIALS

Data
Latitude and longitude coordinates for salt dome centroids in
Louisiana are gathered from Beckman and Williamson (1990),

FIGURE 1 | Terrestrial salt domes in Louisiana. Source: Derived from
Beckman and Williamson (1990).
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from which shapefiles are created. The human component of the
risk relies on Louisiana census-block shapefiles, which are
downloadable from the U.S. Census Bureau (2010), and
population projections based on data from U.S. Census Bureau
(2020).

Methods
Historical Hazard Intensity
Of the 153 terrestrial salt domes in Louisiana, only Lake Peigneur
and Bayou Corne became sinkholes from 1970 to present.
Sinkholes before 1970 may be less likely to have been
documented, particularly in rural areas. Thus, the probability
since 1970 that a salt dome creates a sinkhole is 2/153 over a

period of 52 years, for an annual formation probability of 2/
(153*52), or 0.000251 (0.025 percent). The historical hazard
intensity (annual probability that a salt dome will create a
sinkhole; Hhistorical is 0.00025. Offshore salt domes are not
considered here.

Future Hazard Intensity
All indications are that the bedrock and regolith underlying
Louisiana will not change on human timescales, and the
relatively small percentage of Louisiana’s land area composed
of carbonate bedrock points to a continuing small hazard related
to karst-induced sinkholes. Nevertheless, Autin (2002)
emphasized that uplift of the Five Islands of southwestern

FIGURE 2 | Examples of notable salt domes in Louisiana, including the two that produced sinkholes, with nearby infrastructure: (A) Jefferson Island, Louisiana, salt
dome with Lake Peigneur sinkhole designated; (B)Napoleonville, Louisiana, with Bayou Corne sinkhole located above a section of the Napoleonville salt dome; (C)Black
Bayou, Louisiana, area, showing approximate salt dome location; and (D) Winnfield, Louisiana, area, showing approximate salt dome location. Source: Modified from
Friedland et al. (2014).
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Louisiana is probably still active, leaving tectonic and geomorphic
instability possible in the future, creating a cause for concern.
Vulnerability to sinkholes could change much more rapidly with
land use change and the pressures of increased resource
extraction and population growth. Sinkhole risk could also
increase as a “side effect” to changes in the vulnerability to
other hazards. For example, sea level rise contributes to
saltwater intrusion, which contributes to the formation of salt
domes, which—when mined extensively—can form sinkholes.

Despite the fact that geological changes are unlikely, other
environmental modifications are connected with changes in
sinkhole formation, including, according to Demir and Keskin
(2020), anthropogenic effects. Nevertheless, it is important to
note that geological factors such as groundwater leakage rates
(i.e., Xiao and Li, 2020) may also be important indicators of
sinkhole formation, independent of climate change
considerations. Sedimentation in sinkholes has also been used
as an indicator of climate and sea level change (Hodell et al., 2005;
van Hengstum et al., 2011; Kovacs et al., 2013; Gregory et al.,
2017; Peros et al., 2017; Farley et al., 2018). Taminskas and
Marcinkevicius (2002) pointed out that climate change may
drive karstification that then in turn affects sinkhole
formation. Panno et al. (2012) noticed that cave formation
was affected by climate change in the Pleistocene. Linares
et al. (2017) found that drought facilitates sinkhole formation
in some karst settings, including northeastern Spain. Most
recently, biological manifestations of climate change in
sinkholes have been shown for vascular plants (Bátori et al.,
2014; Kiss et al., 2020), bryophytes (Liu et al., 2019), and forests
(Yang et al., 2019).

In light of the above factors, the annual probability estimate
[i.e., future hazard intensity (H2050)] for areas overlying a salt
dome is likely to increase somewhat by 2050. This is because likely
increasing population (and therefore, it is assumed, groundwater
pumping) and human activities (including resource extraction,
possibly from hydraulic fracture drilling), along with the
destabilizing effects of global and regional sea level rise on
coastal salt domes, are increasingly likely to generate
additional accidental events. In light of these considerations,
the hazard intensity (i.e., a sinkhole forms from a salt dome)
is assumed here to increase by 50 percent by 2050 fromHhistorical,
for a multiplication factor (F2050) of 1.5 for the sinkhole hazard
(i.e.,H2050 � Hhistorialx F2050). Yet there is wide uncertainty in the
precise increase in exposure to the hazard. Thus, a sensitivity
analysis is undertaken here to ascertain the property risk under
scenarios of F2050 of sinkholes in Louisiana by 2050, with H2050

ranging from 0.0250 (low scenario; equal to Hhistorical) to 0.0375
(medium scenario) to 0.0500 percent (high scenario, i.e. F2050 �
1.00, 1.50, and 2.00).

Population Projection
Because property risk requires knowledge of not only Hhistorical

and F2050, but also the exposure to the hazard, population (P)
projection is necessary. The technique for P projection follows
that of Mostafiz et al. (2020a). Specifically, annual P growth rate is
calculated here at the county (or “parish” in Louisiana; j) scale
because the U.S. Census Bureau does not estimate annual P by

census tract or census block (i). Themean of the annual (i.e., from
1 year to the next) P growth rate (rj) for the n-year period
(i.e., from 1980–2020 in this analysis) is computed, beginning in
year y (i.e., 1980 here) as described by Eq. 1:

rj �
∑y+n

y [(Pj,y+1−Pj,y)
Pj,y

]
n

(1)

After rj is calculated for each of Louisiana’s 64 parishes, future
P change is downscaled to the census block (i), assuming that rj
remains constant for each census block in a given parish. Next,
future P is estimated by census block, assuming that unpopulated
census blocks in 2010 remain unpopulated through 2050. This
projection is done by using the 2010 P for each i as the base
(i.e., P0, i � P2010,i). In this manner, future (f) P is estimated to
2050 (i.e., Pf,i � P2050,i), given a n (or t)- year period of P change,
as depicted by the continuously compounding growth equation in
Eq. 2:

Pf,i � P0,ie
rj t (2)

Other methods for estimating P change in similar research
have been considered (Mostafiz et al., 2020a). For example,
projection of a regression-based trendline for each parish P to
2050 and extrapolation of the growth rate trendline for P
projection in 2050 are both inappropriate, owing to small
explained variance and insignificance of the trendlines in
some cases. It is likely that one or both of these approaches
failed because of large, abrupt, and temporary P changes
within and beyond Louisiana in the aftermath of hurricanes
(most notably Katrina in 2005, and perhaps Laura in 2020 and
Ida in 2021). By contrast, the technique undertaken herein has
been found to be optimal in the absence of official
demographic projections, as it was found to be least
sensitive to these issues (Mostafiz et al., 2021a; Mostafiz
et al., 2021b).

Assessing Building/Structure and Content Value
Similar to Mostafiz et al. (2021a), Mostafiz et al. (2021b), current
and future building/structure value (SV) are evaluated by census
block, assuming that only the inhabited areas have residential or
commercial property value. U.S. Census Bureau (2010) is used to
count the buildings by census block in 2010 (N2010,i) by summing
the existing buildings listed in the shapefiles as having been
completed during each time interval. Then, N in 2010 is
multiplied by the mean SV in 2010, by census block
(AV2010, i), to approximate the total SV by census block
(SV2010,i), as shown in Eq. 3:

SV2010,i � N2010,i × AV2010,i (3)

The building count in 2050 by census block (N2050,i) is
assumed to change in proportion to population of the parish
in which that census block is located. Thus, the P projection
methodology described in the previous subsection is used to
estimate SV in 2050. Total SV by census block in 2050 (SV2050,i) is
computed as the product of the total SV in 2010 and the ratio of P
in 2050 vs. 2010 by census block, as described in Eq. 4:
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SV2050,i � SV2010,i × P2050,i

P2010,i
(4)

In addition to these methods used by Mostafiz et al. (2021a),
Mostafiz et al. (2021b), here not onlymust SV be considered, but also
the content value (CV), which includes the goods, but not services,
included on the damaged property. In National Structure Inventory
(NSI) 2.0 (United States Army Corps of Engineers, 2019), CV is
calculated by multiplying S by an occupancy-type-specific structure-
to-content value ratio. Residential structures in NSI 2.0 (USACE,
2019) are assumed to haveCV equal to SV, andCV is assumed to be
half of SV in cases for which the USACE economic guidance
memorandum depth-damage functions are not used. Moreover,
NSI 2.0 (USACE 2019) recommends the assumption thatCV equals
SV for commercial and industrial facilities, which are more likely to
contain expensive and abundant equipment and merchandise. By
contrast, Hazus (FEMA 2013, pp. 6–9) recommends assuming that
CV is half of SV for residential structures. Despite the fact that this
research includes only residential buildings and most Louisianians
do not live an opulent lifestyle that includes expensive jewelry and
other such possessions, the nature of the sinkhole hazard is such that
vehicles, boats, tool sheds, and other outdoor possessions over a
forming sinkhole would be lost in addition to indoor possessions.
For all these reasons, as shown in Eq. 5, it is assumed that:

CV � 0.75 SV (5)

The property value (PV) is the sum of SV and CV.

Projecting Future Property Loss
Estimation of future property loss begins with estimating surface
areas on or near salt domes. Although the centroids and
diameters of 78 of the 153 terrestrial Louisiana salt domes are
known and range from 0.13 to 2 mi (Beckman and Williamson,
1990), salt dome areas are unavailable and areas must be derived
by assuming circularity of all salt domes. Where salt dome
diameters are unknown, the diameter is assumed to equal that
of the largest known salt dome diameter. Although it provides a
conservative estimate of loss, this assumption is justified because
it is likely that some terrestrial Louisiana salt domes may not have
beenmapped completely to date. The largest terrestrial salt domes
in the state with known dimensions (i.e., Bayou Choctaw,
Chacahoula, Napoleonville, South Tigre Lagoon, and Stella; in
Iberville, Lafourche, Assumption, Iberia, and Plaquemines
parishes, respectively) each have an estimated diameter of 2 mi
(i.e., no additional significant digits provided; surface area of
3.14 mi2; Beckman and Williamson, 1990). To derive salt dome
areas, a circle is drawn from the salt dome centroid to its radius.

The next step in estimating future property loss is to derive
estimates of the sinkhole areas. The two sinkholes (Lake Peigneur and
Bayou Corne) have known surface areas of 1.76 (FTN Associates,
Ltd., 2002) and only 0.06mi2 (Clapp, 2018), respectively. Again, a
conservative estimate is used, as it is assumed that future sinkholes
will be of the area of the larger of the two known sinkholes. This
procedure is justified by the assumption that human impacts on salt
domes will increase over time.

Future property loss estimates must then be treated separately
for property located on top of the sinkhole vs. property on a salt

dome but not in a sinkhole. To estimate loss for property located
atop a sinkhole, the ratio of the area of the larger sinkhole to the
largest salt dome (R) is 1.76/3.14, or 0.56. A 100 percent loss
(i.e., LA� 1.00) of SV and CV is assumed to occur across the 56
percent of the area of a salt dome that produces a sinkhole. In the
remaining 44 percent of the salt dome surface area (i.e., property
on the salt dome but not the sinkhole—the periphery of the
sinkhole), a loss of 50 percent (i.e., LB� 0.50) of SV and no loss of
CV is assumed. The rationale for a 50 percent loss of SV is based
on the assumption that structures on the salt dome but not the
sinkhole will only suffer partial damage. The neglected loss of CV
is based on the assumption that homeowners will have been
alerted of an imminent sinkhole hazard and will have moved their
valuable possessions, including vehicles, immediately upon
formation of the core of the sinkhole, and/or the unmoved
contents will not fall into the sinkhole. The map of Louisiana
census blocks, is then overlaid upon the salt dome areas. The
“tabulate intersection” tool in ArcGIS® is used to compute the
proportion (percent) of a census block that lies over the salt dome
for each census block (Ai).

The estimated structure loss by 2050 in a census block
(SL2050,i) over a salt dome (i.e., over or near a sinkhole) is
shown by Eq. 6:

SL2050,i � (SV2050, i × Ai ×Hhistorical × F2050)[R × LA + (1 − R)
× LB]

(6)

Equation 6 quantifies the two components of structure loss in
a given census block: for locations in which the sinkhole overlaps
a salt dome, and for locations within a salt dome but not a
sinkhole. Census blocks that overlie neither a salt dome nor a
sinkhole will have Ai � 0 and therefore are assigned zero SL and
zero risk.

Likewise, the estimated content loss (CL2050,i) is calculated as
shown in Eq. 7:

CL2050,i � CV2050, i × Ai ×Hhistorical × F2050 × R × LA (7)

Equation 7 verifies that there is no CL for parts of the census
track that overlie a salt dome but are not in a sinkhole (i.e., there is
no LB term). All losses are expressed in 2010$. Historical
(present) structure loss (SL2021,i) is calculated using
SV2010, i,Ai, Hhistorical, R, LA, and LB. Similarly, the historical
(present) content loss (CL2021,i) is computed from CV2010, i,Ai,
Hhistorical R, and LA. Property loss (PL) is the sum of SL and CL.

RESULTS

Hazard Intensity
A total of 0.55 percent of Louisiana’s area is over a terrestrial salt
dome, with 36 of Louisiana’s 64 parishes (56.25 percent) partially
over a salt dome and 28 (43.75 percent) totally unassociated with
a salt dome. Terrebonne Parish, which includes Houma
(Figure 1), has the most terrestrial salt domes (16), with 1.36
percent of its area lying over a salt dome. Madison, which is east
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of Monroe along the Mississippi River, is the most vulnerable
parish in terms of formation of future sinkholes, where 2.73
percent of the area overlies salt domes.

At a finer scale, a total of 93 of the state’s 1,148 census tracts
(8.10 percent) are partially over a salt dome and 1,055 (91.90
percent) are totally unassociated with a salt dome. Census tract
22101041500 in St. Mary Parish, which lies immediately to the
west of Terrebonne, is the most vulnerable in terms of formation
of future sinkholes, where 86.57 percent of its area overlies a salt
dome. At an even finer scale, 1,064 (0.52 percent) of the state’s
census blocks completely overlie a salt dome, with 1,138 (0.56
percent) partially and 201,245 (98.92 percent) totally
unassociated with a salt dome. Thus, only 2,202 census blocks
(1.08 percent in the state) lie completely or partially on a
salt dome.

Population Projection
The population rate values identified in Eqs 1, 2 allow for the
projection of P and its change since 2010. It is assumed that the
102,781 unpopulated census blocks in 2010 from among the
203,447 total in Louisiana remain uninhabited along with 37
census blocks that were so sparsely populated in 2010 that they
are projected to be unpopulated (i.e., have a P less than 1) by
2050. Thus, 100,629 census blocks are projected to be
populated and 102,818 are projected to be unpopulated
by 2050.

Louisiana’s population in 2010 is greatest around the four
largest metropolitan areas of New Orleans, Baton Rouge,
Shreveport-Bossier City, and Lafayette (Figure 3A). Increases
by 2050 will be greatest in the same general areas, but with
particularly strong increases near Lafayette, Baton Rouge, and in
the “Florida” parishes of east-central Louisiana, east of Baton
Rouge (Figure 3B). Decreased population by 2050 is projected in
northeastern Louisiana, along the Red River Valley from
Shreveport to the area southeast of Alexandria, the New
Orleans area, east of Lake Charles, and various other scattered
locations (Figure 3B). Supplementary Appendix SA shows these
values by parish.

Of the 2,202 census blocks under risk of sinkhole formation
(i.e., overlying or partially overlying a salt dome), only 900 were
populated in 2010; all of these are projected to be populated in
2050. Of these 900, 222 (0.11 percent) lie completely over and 678
(0.33 percent) partially overlap a salt dome. The remaining
202,547 (99.56 percent) are totally unassociated with a salt dome.

Structure and Content Value
The SV identified in Eqs 3, 4, and the CV calculated in Eq. 5
allow for the projected SV2050, CV2050, and their change since
2010. Not surprisingly, property value is concentrated
around the largest metropolitan areas of New Orleans,
Baton Rouge, Shreveport-Bossier City, and Lafayette
(Figure 4A). By 2050, property value will be greatest in
the same general areas, but with particularly strong
increases near Lafayette, Baton Rouge, and in the Florida
parishes of east-central Louisiana, east of Baton Rouge
(Figure 4B). Areas of decreased property values in 2050
generally overlap with areas of projected decreases in

population by 2050 (compare Figure 4B to Figure 3B).
Supplementary Appendix SA shows these values by parish.

At the statewide level, the historical (present) average annual
property (structure + content) loss due to sinkhole is $211,283
(2010$), while the historical average annual per building property
loss was $0.11 and the historical average annual per capita
property loss due to sinkhole is only $0.047 (2010$;
Supplementary Appendix SB) for this localized hazard.
Expanding oil and natural gas exploration may potentially
increase the sinkhole risk by 2050 as population, development,
and the pressures of climate change, and therefore annual
property loss (structure + content) due to sinkhole, increase.
The 2050-projected annual property loss is $310,734 (2010$), an
increase of 47.07 percent (Table 1 and Supplementary Appendix
SB). Even though CV is assumed to be 75 percent of SV over the
salt dome, the totals in Table 1 reflect a smaller percentage of CL
relative to SL because no content is assumed to be lost in areas on
the fringes of the salt dome. Annual per building and per capita
property losses are projected to remain small by 2050, though
larger than the historical (present) values. The projected per
building loss is estimated as $0.13 (Supplementary Appendix
SB), an increase by 20 percent. Projected per capita property loss
is $0.055 by 2050, an increase of 18 percent (Supplementary
Appendix SB). Still, however, per capita losses are projected to be
very small when viewed on a statewide basis.

The distribution of losses is expected to remain similar to
present dominant areas (Figures 5A,B). The coastal and
northeastern Louisiana parishes where salt domes are most
concentrated are the areas with the most risk. At the parish
level, St. Mary has the highest historical (present) overall sinkhole
annual property risk ($58,782), while sparsely-populated
Cameron Parish in extreme southwestern Louisiana has the
highest present annual per building property loss ($4.06) and
per capita property loss ($2.14) due to the sinkhole hazard
(Supplementary Appendix SB). Despite the fact that changes
in the sinkhole probability and expansion of population are
projected to change the sinkhole risk by 2050, the greatest
annual sinkhole property loss ($66,199) is expected to remain
in St. Mary Parish. Likewise, annual per building property loss
($6.22) and per capita property loss ($3.20) are expected to
remain in Cameron Parish (Supplementary Appendix SB).

Census tract 22101041500 in St. Mary Parish has the highest
historical (present) mean annual property (structure +
content) loss ($24,545), the largest historical mean annual
per building property loss ($28.74), and the greatest historical
annual per capita property loss ($12.33) in the state due to the
sinkhole hazard. By 2050, the highest annual mean property
loss (structure + content) due to a sinkhole ($40,047) is
projected to be in census tract 22,001,960,700, in Acadia
Parish of southwestern Louisiana, immediately west of
Lafayette Parish. However, the greatest annual per building
property loss ($43.08) and the highest annual per capita
property loss ($18.34) will remain in the same St. Mary
census tract described above.

At the finer census-block level, the greatest historical (present)
mean annual property loss ($6,140) is in census block
220,239,701,005,040 of Cameron Parish. The highest historical
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mean annual per building property loss ($56.37) is in census
block 221,210,203,001,115, in West Baton Rouge Parish
(immediately west of Baton Rouge). The greatest historical
annual per capita property loss in the state is $80.19 in census
block 220,750,501,002,010, in Plaquemines Parish (at the birdfoot
delta of the Mississippi River). By 2050, the highest annual

property loss (structure + content) due to a sinkhole ($7,050)
is projected to remain in the same Cameron Parish census block.
The largest annual per building property loss ($84.56) will remain
in the same West Baton Rouge census block. And likewise, the
greatest annual per capita property loss ($120.29) is projected to
continue to be the same Plaquemines Parish census block.

FIGURE 3 | Population by census block: (A) 2010, and (B) change in population from 2010 to 2050. Source: Mostafiz et al. (2021a), Mostafiz et al. (2021b).

FIGURE 4 | Estimated property value by census block (structure + content, 2010$): (A) 2010, and (B) 2050. Historical (Present) and Projected Property Loss.
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Sensitivity Analysis
The sensitivity analysis demonstrates the impact of model
assumptions regarding F2050, SV to CV ratio, and R (Table 2).
If the assumption that the hazard does not change from the
present (i.e., F2050 �1, for a zero percent change) or the hazard
intensity doubles (i.e., F2050 � 2, for a 100 percent increase) by
2050, rather than the 50 percent increase (i.e., F2050 �1.5)
currently assumed, the result changes by 33 percent (Table 2).

IfCVwould be taken to be only half of SV or equal to SV, instead
of three-quarters of SV, the sensitivity is below 12 percent (Table 2).
However, the greatest sensitivity in model assumptions is that for R,
which is derived as the ratio of the larger sinkhole to the largest salt
dome (0.56). If R would have instead been derived such that the
sinkhole is equal in area to the salt dome, then R would have been
1.0, or 0.44 larger than the modeled assumption. Taking ±0.44 from
this 0.56 in the low and high scenarios would cause the annual loss in
2050 to change by almost 46 percent (Table 2).

DISCUSSION

Although the total loss from the sinkhole hazard is small
compared to losses due to other Louisiana hazards, such as

extreme heat and cold (Mostafiz et al., 2020a; 2020b), expansive
soils (Mostafiz et al., 2021a), wildfire (Mostafiz et al., 2021b),
and flood (Mostafiz et al., 2021c; 2021d), these losses are
nevertheless important to document as part of a complete
hazard mitigation plan. Furthermore, the localized nature of
this hazard, in contrast to others, which are statewide problems,
causes the calculation of a statewide mean per capita loss to
appear small. However, mean loss reveals little for the sinkhole
hazard because losses are likely to be exorbitant for those
affected while others remain unaffected. In that respect, these
results resemble those for hail, lightning, and tornadoes in
Louisiana (Mostafiz et al., 2020a; 2020b), although the risk
for sinkholes is even lower than that for these hazards.
Additionally, sinkhole is different from the other hazards
analyzed because homeowners near or over a salt dome
know the risk, and others need not consider the risk. By
contrast, losses from other natural hazards in Louisiana are
more random and widespread across the state. The results for
sinkholes are perhaps even more highly dependent on scale than
the results for other hazards, which is unfortunate because often
the scale of analysis does not match the scale of the hazard being
analyzed. This is an important point because mitigation
planning efforts are often focused on the parishwide or even
statewide scale, yet the hazard exists only at the much more
localized scale.

Future changes to the sinkhole hazard in Louisiana will be
influenced by the spatial relationship between population
growth and salt domes. Future population and property
value are projected to increase in the Florida parishes where
there are no salt domes (Figures 1, 3B, 4B). Most salt domes are
in coastal areas where population and property value are
decreasing at the census block level. These results are

TABLE 1 | Comparison of Louisiana statewide property loss: Historical (present)
vs. 2050-projected; All represent a 47.07 percent increase by 2050.

Property Historical (present) average
annual loss (2010$)

Projected average annual
loss in 2050

(2010$)

Structure $137,334 $201,977
Content $73,949 $108,757
Total $211,283 $310,734

FIGURE 5 | Estimated annual property loss (2010$) due to sinkhole by census block: (A) historical (present), and (B) 2050.
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important not only as part of a disaster preparation and
mitigation program, but also for actuarial and real estate
interests. This information also assists in evaluating
comprehensively the benefits vs. cost of human activities in
the environment.

LIMITATIONS

The results rest on the three major assumptions described in
Table 2. Specifically, these include estimates of the changing
hazard intensity, theCV/SV ratio, and the geometry of salt domes
and the percentage of salt domes that become sinkholes, albeit
based on only two historical sinkhole occurrences. Caution
should also be exercised in the interpretation of results
because identification of which portion/part of salt domes will
turn into sinkholes is highly uncertain. The sensitivity analysis is
performed to provide a range of outputs in light of these
uncertainties, so that future users can benefit from this
research after the future hazard becomes more certain, more
accurate estimates of CV/SV become available for this area, and/
or the accurate dimension or areal extent of salt domes and
sinkholes are mapped.

SUMMARY AND CONCLUSION

This research represents a first attempt to assess the historical
(present) and future (i.e., 2050) economic risk to property due to
the sinkhole hazard in Louisiana, using a set of basic assumptions.
For instance, an increase in hazard intensity of 50 percent from
present levels is assumed, based on expected increases in
population, development, mineral extraction, and the pressures
of climate change. The ratio of content value to structure value in
the hazard area is assumed to be 0.75, with adjustments made for
locations above vs. near the salt dome. It is also assumed here that
salt domes and sinkholes are both circular, and that losses are
concentrated over the sinkhole itself, with the ratio of the largest
sinkhole incident area in Louisiana to the largest salt dome area
used to calculate the losses. Despite the assumptions, the results
are valuable and represent an important component of a
comprehensive hazard planning, mitigation, and management
program, and to serve actuarial and real estate interests. The
generalized nature of the method presented here allows for
application of risk assessment in other locations.

In general, results suggest that the risk of sinkholes is small
on a per building and capita basis statewide, especially when
compared to the per capita risk of other natural hazards.
However, the property risk for census tracts and (especially)
census blocks partially or completely overlying a salt dome is
substantial. Terrebonne Parish, in coastal southeastern
Louisiana, has the greatest concentration of salt domes,
while Madison Parish, which is east of Monroe along the
Mississippi River in northeastern Louisiana, has the highest
percentage of area under sinkhole risk, and St. Mary
Parish—immediately west of Terrebonne—has the greatest
risk of property loss. Current and future risk to annual
property loss, per building loss, and per capita property loss
are maximum in a St. Mary Parish census tract, excepting that
a census tract in Acadia Parish is projected to have the highest
mean annual property loss by 2050, from among Louisiana’s
1,148 census tracts. At an even finer scale, one particular
census block in each of Cameron, West Baton Rouge, and
Plaquemines parishes presently have and are projected to
continue to have the maximum annual property losses, per
building property losses, and per capita property losses,
respectively, from among Louisiana’s 203,447 census blocks
by 2050.

Inasmuch as the increasing pressures of increased population
appear to be inevitable, vulnerability to sinkholes appears to be
increasing. Therefore, future research is needed to better identify
the precise location of both the salt domes and sinkholes, so that a
more precise and accurate overlay on the demographic variables
(i.e., population and projected population) can be used to assign
risk. Moreover, more elaborate population and other
demographic projections, such as average income or poverty
quotients, in the affected areas would improve estimates of the
extent of loss for those affected, especially at finer spatial
resolutions. Research on the losses incurred on property
adjacent to sinkholes is also needed to improve loss
projections. Finally, technological advancements may allow
future prediction of sinkholes, which would minimize not only
economic losses, but also losses to human life.
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TABLE 2 | Sensitivity analysis of 2050 projections of Louisiana statewide annual property loss (i.e., risk) due to sinkhole, by parameter (2010$).

Parameter Low Scenario Modeled (Eqs 6 + 7) High Scenario Difference from Eqs
6 + 7 (%)

Future Condition (F2050) $207,155 (+0%) $310,734 (+50%) $414,311 (+100%) ±33.3
Content to Structure Value Ratio (CV /SV ) $274,481 (CV � 0.5 SV ) $310,734 (CV � 0.75 SV ) $346,986 CV � SV ±11.7
Sinkhole to Salt Dome Ratio (R) $168,314 (R � 0.12) $310,734 (R � 0.56) $453,152 (R � 1.00) ±45.8
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