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Increasing concentrations of dissolved organic carbon (DOC) have been observed in
coastal ecosystems worldwide over the past decade, and tight coupling of the carbon (C)
and phosphorus (P) biogeochemical cycle has been recognized in aquatic ecosystems.
However, there is still no consensus regarding the potential effects of DOC loading on
sediment P release. In a 2-month mesocosm experiment, we tested the effects of DOC
enrichment on sediment P release in six glass aquariums. Two treatments were set:
Control (without sodium acetate (Na(CH3COO)) addition) and Na(CH3COO) addition
(equivalent to 5 mg C L−1). The results showed the following: 1) DOC loading
stimulated sediment P mobilization and release, as indicated by increases in the labile
P recorded for 7-cm-deep sediment using diffusive gradients in thin films, the flux of P
across the sediment–water interface, and the total P concentrations in the overlying water;
and 2) stimulated alkaline phosphatase activity, increased P-solubilizing bacteria
proportion, and decreased dissolved oxygen concentration were likely the primary
mechanisms behind the DOC-stimulated sediment P mobilization and release. These
results provide insight into the promotion of sediment P release induced by C addition.
Further studies investigating the quantitative relationships between DOC loadings and P
release are needed to fully elucidate the coupled roles of C and P, especially those based
on large-scale field investigations with broader C forms and loadings.
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INTRODUCTION

Dissolved organic carbon (DOC) is the most active carbon pool in marine ecosystems. Notably, there
has been a massive rise in DOC loading in many coastal and marginal oceans (Sawicka et al., 2021;
Huntington and Wieczorek, 2021). For example, the flux of DOC from the rivers to the China Seas
increased from 4.3 Tg C year−1 in 2006 to 5.4 Tg C year−1 in 2016 (Liu et al., 2020). DOC enrichment,
which is well-known to augment oxygen depletion, ocean acidification, and CO2 emissions, may also
alter phosphorus (P) dynamics (Bauer et al., 2013; Deininger and Frigstad, 2019; Gnanadesikan et al.,
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2019; Jiao et al., 2021). Although a tight coupling of the C and P
biogeochemical cycle has been identified in aquatic ecosystems
(Anderson, 2018), results generated to date have been
preliminary, and there is no consensus on the conclusions. For
instance, P release was found to increase (Khoshmanesh et al.,
1999; Anderson, 2018), decrease (Stutter et al., 2020), or be
unaffected (Diana et al., 2013) after the input of DOC. These
conflicting results suggest that there is considerable uncertainty
regarding the impact of DOC loading on sediment P release.
Thus, there remains a need to more clearly elucidate the
responses of sediment P cycling to increasing DOC loading
and clarify the seemingly conflicting conclusions about the
trends in P release responses to C loading.

The East China Sea (ECS) is a hotspot for carbon burial that
receives high DOC influxes of up to 4.8 × 1012 g C year−1 from the
Yangtze River (Kim et al., 2020). Thus, it is an ideal area for
studying C–P interactions. DOC entering coastal water may affect
P cycling by altering dissolved oxygen (DO) and microbial
activities (Kaijser et al., 2021). For example, the decomposition
of organic matter (OM; rich in C) is an oxygen-consuming
process that creates low DO conditions, which could
potentially favor sediment P release (Li et al., 2016). It has
been reported that bacteria invest the added C in the
production of alkaline phosphatase (AP), which may
contribute to the mineralization of organic P and subsequently
induce P release (Anderson, 2018). Additionally, field surveys
conducted in 11 streams by Logue et al. (2004) suggested that
organic C content was related to the abundance of bacteria, which
directly affected the P-solubilizing efficiencies of enzymes
(Chhabra et al., 2013).

Therefore, we hypothesized that DOC enrichment may result
in coastal sediment P mobilization and release by 1) consuming
DO and creating anaerobic conditions; 2) increasing AP activity
(APA); and 3) reshaping the bacterial composition to one more
effective at using P. To investigate this, we conducted a 2-month
mesocosm experiment investigating DOC addition (60 L, holding
sediment and seawater). Acetate, which is a typical end product
resulting from the fermentation of more complex organic
compounds (Khoshmanesh et al., 1999), was selected to
represent DOC in this study.

MATERIAL AND METHODS

Study Area and Experimental Setup
The experiment (Aug. 14 to Oct. 8, 2020) was conducted in 6
glass aquaria (45 cm × 30 cm × 45 cm), using seawater and
sediment from Xiangshan Bay of ECS (N 29°35´28.55″, E
121°54´54.55″). Sediment (TNSed, 0.66 ± 0.04 mg g−1 dw;
TPSed, 0.59 ± 0.00 mg g−1 dw; OMSed, 32.37 ± 2.68 mg g−1

dw) was collected from a depth of 0–10 cm below the
water–sediment interface and subsequently mixed and
added to the 6 aquaria to obtain a sediment layer of 10 cm.
The remaining 35 cm was filled with well-mixed seawater (TN,
0.5 mg L−1; TP, 0.04 mg L−1; salinity, 23.4‰) using an
immersion pump. Extra seawater was stored synchronously
in black tanks to compensate for the water loss during the

experiment due to evaporation and sampling. The experiment
was run in the glasshouse with a light intensity of 1,528–2,094
lux and an air temperature of 26°C–32°C. Circulating water
pumps (power, 15 W) were used to simulate the natural mixing
regime according to the method by Ma et al. (2021).

Experimental Design
Two treatments with three replicates were established: Control
without sodium acetate [Na(CH3COO)] addition (coded as
Control) and Na(CH3COO) addition treatment (+Carbon,
equivalent to 5 mg C L−1). DOC < 5 mg L−1 is one of the
threshold parameters for evaluating aquatic ecosystem quality
in the US National Lakes Assessment (NLA) program (NLA,
2012). The first Na(CH3COO) addition (0.75 g) was carried out
on day 3 (Aug. 16) to obtain the target C concentration. The
Na(CH3COO) was dissolved in water from the aquarium before
being injected evenly into the middle water layers by a sprayer
(0.5 L). To maintain the target level of C concentration, C source
was further added once a week on day 11 (Aug. 24), day 18 (Aug.
31), day 25 (Sep. 7), day 33 (Sep. 15), day 39 (Sep. 21), day 46
(Sep. 28), and day 52 (Oct. 4). Total doses of 1.7 g of
Na(CH3COO) were applied in +Carbon treatment. The
amount of C needed (F, mg) was calculated based on the
difference between the target concentrations and the mean
measured concentrations of the three replicates in each
treatment before C addition:

F � (T −M ) × V

where T is the target C concentration (mg L−1), M is the mean
measured C concentration of three replicates (mg L−1), and V is
the volume of aquarium seawater (L).

Sampling and Analysis
Water temperature (WT), DO, redox potential (Eh), and pH at
middle water depth were measured 7 times (1–2 weeks’ interval)
with a Horiba (U-52, Kyoto, Japan). Water samples were taken
7 times at the middle water layer (1–2 weeks’ interval) at three
randomly chosen locations within each aquarium using a 0.5-L
syringe. In total, 0.5 L of well-mixed water was collected for
chemical and biological analyses. All the chemical parameters
were determined according to standard methods (Administration
of Quality Supervision, Inspection and Quarantine (AQSIQ),
2007). Chl a and APA in the water samples were determined
by applying the method of Ma et al. (2018), in which total APA
(APATot) was separated into algal APA (APAAlg) and bacterial
APA (APABac).

Labile-P distribution (termed as easily changeable or mobile P
fractions, including phosphate and forms of P loosely adsorbed to
sediment solids) in sediment profiles was determined using Zr-
oxide diffusive gradients in thin films (DGT-labile P). Zr-oxide
DGT probes (Easysensor Co. Ltd, Nanjing, China) assembled
with standard DGT holders were inserted through the
sediment–water interface (SWI) on day 1 (pre-C addition,
Aug. 14) and day 56 (post-C addition, Oct. 8) by hand. The
probes were forced 10 cm into the sediment and kept 4 cm above
the water surface. After 24 h, the probes were retrieved and
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FIGURE 1 | Changes (mean ± SE) in TC (A), TIC (B), TOC (C), TP (D), and TDP% (E) for various treatments during the experiment. Single-headed arrows indicate
the time of carbon addition. TC, total carbon (mg L−1); TIC, total inorganic carbon (mg L−1); TOC, total organic carbon (mg L−1); TP, total phosphorus (mg L−1); TDP%,
total dissolved phosphorus contribution to TP; Control, control treatment without carbon addition; +Carbon, carbon addition treatment (equivalent to 5 mg C L−1).
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brought to the laboratory for analyses. Further details on the data
processing are given by Ding et al. (2015). The flux of P (Flux-P)
across the SWI was calculated as follows:

F � Fw + Fs � −Dw(δCDGT

δχw
)
(χ�0)

− φDs(δCDGT

δχs
)
(χ�0)

where Fw and Fs are the fluxes of P from the overlying water to the
SWI and from the sediment to the SWI, respectively. F is the flux
across the SWI. (δCDGT/δχw)(χ� 0) and (δCDGT/δχw)(χ� 0) are the
DGT-labile P concentration gradients (i.e., the slopes) in the
overlying water and sediment, respectively. φ is porosity in
sediment and was estimated at 0.9 in the top 5-mm layer. Dw

and Ds are the diffusion coefficients of H2PO4
− in water and

sediment, respectively. Ds was calculated from the diffusion
coefficient of H2PO4

− in water using φ3 for φ ≥ 0.7 (Ding
et al., 2015).

The top 5-cm sediment pH (pHSed) was measured with a soil
pH meter (pH400 and pH600, USA). Sediment samples of the top
5 cm from three random locations in each aquariumwere collected
twice on day 1 (Aug. 14) and day 56 (Oct. 8) using a core sampler
(XDB0204, New Landmark, Beijing, China). The sediment samples
were mixed and partitioned into three subsamples: one was stored
at −80°C for total microbial DNA extractions and bacterial
community composition analyses; the second was partially air-
dried and passed through a 2-mm sieve for total nitrogen (TNSed),
total phosphorus (TPSed), and organic matter (OMSed) analyses;
and the third was stored at 4°C for analyses of chlorophyll a of
benthic algae (Chl aBen) within 24 h. TNSed, TPSed, andOMSed were
measured following the standard methods (Lu, 1999). Chl aBen was
analyzed according to Boer et al. (2009).

DNA in water and sediment was extracted using the FastDNA
spin kit for soil (Q-BIOgene, Carlsbad, CA, USA). The genomic
DNA concentration and purity were measured using an
Eppendorf Biophotometer plus (Eppendorf, Hamburg,
Germany). The bacterial community composition was assessed
by sequencing the V3–V4 region of the 16S rRNA gene using the
PCR primers 338F (5′-ACTCCTACGGGAGGCAGCA-3′) and
806R (5′-GGACTACHVGGGTWTCTAAT-3′). High-
throughput sequencing was carried out on the Illumina MiSeq
platform (BioMarker Technologies Co. Ltd, Chuangyeyuan,
China). The results were processed according to established
methods (Han et al., 2019).

Statistical Analyses
Origin 9.0 and SPSS 20 software were used for data processing,
and the results were expressed as means and standard errors.
Repeated-measures ANOVA was used for statistical
comparisons, and statistical significance was accepted at p < 0.05.

RESULTS

Variations in Carbon and Phosphorus
The initial conditions before C addition were comparable. After C
addition, total carbon concentration (TC) was significantly higher
in the +Carbon treatment than the Control (p < 0.001)

(Figure 1A). Similarly, the total inorganic carbon (TIC) levels
were significantly higher in the +Carbon treatment than in the
Control (p < 0.001). However, no significant difference in total
organic carbon (TOC) was observed between treatments (p �
0.06), indicating a rapid conversion of TOC to TIC
(Figures 1B,C).

After C addition, TP was significantly higher in the +Carbon
treatment than the Control (p � 0.03) (Figure 1D). TDP% did not
differ significantly between treatments (p � 0.06), although it tended
to be decreased in the +Carbon treatment (Figure 1E). For DGT-
labile P in 7-cm-deep sediment, there were notable increases after C
addition relative to the initial condition in the +Carbon treatment
(p � 0.01), while minor increases were observed after C addition in
the Control (p � 0.22) (Figure 2). The DGT-labile P values recorded
for overlyingwater 3 cm above the sediment decreased clearly after C
addition in both the Control (p < 0.001) and +Carbon treatments
(p< 0.001) (Figure 2). In terms of Flux-P across the SWI, no obvious
difference appeared between pre-C (0.01 μg cm2 s−1) and post-C
addition (0.01 μg cm2 s−1) for the Control, while a noticeable
increase from 0.01 to 0.02 μg cm2 s−1 was traced for + Carbon
treatment (Figure 2).

Variations in Other Associated Influencing
Variables
DO was significantly lower in the +Carbon treatment than in the
Control (p � 0.006) (Figure 3A). Similarly, the Eh levels were
significantly lower in the +Carbon treatment than in the Control
(p � 0.006) (Figure 3B). No significant difference was found
between treatments for pH (p � 0.06), although it tended to be
higher with C addition (Figure 3C).

APATot tended to increase with C addition and reached its
peak (1.9 μg P L−1 h−1), although there was no statistical
difference between treatments (p � 0.07) (Figure 3D). There
was no significant difference in Chl a between treatments (p �
0.70), although Chl a tended to be higher in the +Carbon
treatment (on average 1.65 times higher than the Control)
(Figure 3E). No significant differences in APAAlg, APABac, and
DOSWI were observed between before or after C addition (p �
0.06–0.88), although the values tended to be higher (APAAlg and
APABac) or lower (DOSWI) in the +Carbon treatment (Figures
4A–C). pHSed was significantly lower in the +Carbon group than
the Control after C addition (p < 0.001) (Figure 4D).

Bacteria in Water and Sediment
The most abundant classes of the bacteria in water were
Oxyphotobacteria (22%–43%), Alphaproteobacteria (17%–31%),
Gammaproteobacteria (9%–18%), Bacteroidia (7%–12%), and
Acidimicrobiia (0.7%–15%) (Figure 5A). At the genus level,
7%–30% of the bacteria in water were unculturable (Figure 5A),
while 45%–59% were classified as “others” (<1% in relative
abundance). The most abundant genera of bacteria shifted from
Cyanobium (22%) to Leptolyngbya (14%) after C addition
(Figure 5B).

The most abundant classes of bacteria in sediment were
Gammaproteobacteria (16%–25%), Bacteroidia (9%–16%),
Actinobacteria (8%–14%), Alphaproteobacteria (8%–13%), and
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FIGURE 2 | Two-dimensional distribution images of DGT-labile phosphorus concentration (the mean values of three replicates) at a spatial resolution of 0.45 mm in
sediment and overlying water profiles before (day 1, coded as pre-C addition) and after C addition (day 56, post-C addition). The location of the sediment–water interface
is represented by zero. The black solid dots on the image represent the mean value of DGT-labile phosphorus at the same depth. The values of Flux-P represent the flux
of phosphorus across the sediment–water interface (the negative and positive values represent the flux to the sediment and water, respectively).
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FIGURE 3 | Changes (mean ± SE) in DO (A), Eh (B), pH (C), APATot (D), and Chl a (E) for the various treatments during the experiment. Single-headed arrows
indicate the time of carbon addition. DO, dissolved oxygen (mg L−1); Eh, redox potential (mV); APATot, total alkaline phosphatase activity in water (µg P L−1 h−1); Chl a,
phytoplankton chlorophyll a (µg L−1); Control, control treatment without carbon addition; +Carbon, carbon addition treatment (equivalent to 5 mg C L−1).
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Clostridia (4%–15%) (Figure 5C). At the genus level, three
distinct genera (with a relative abundance >1% in at least one
sample) were detected before C addition, Candidatus sulcia sp.
(6.7%), Candidatus vidania sp. (5.4%), and Woeseia sp. (2.5%).
After C addition, C. sulcia sp. (6.3%), C. vidania sp. (5.9%), and
Bacteroides sp. (3.2%) were detected. A noticeable increase in
abundance of 2.3% was observed from pre- to post-C addition for
Bacteroides sp. (increased by 2.3% in +Carbon) (Figure 5D).

DISCUSSION

In our 2-month mesocosm experiment with carbon addition,
significant P increases were found in the +Carbon treatment
compared with that in the Control. Significant and minor
increases in DGT-labile P values were observed in the
+Carbon and Control treatment, respectively. Additionally,
obvious increases in Flux-P across the SWI during post-
compared with pre-C addition were traced for the +Carbon
treatments. The combined changes in TP, DGT-labile P, and
Flux-P supported our hypothesis that DOC loading can stimulate
P mobilization and release from sediment. This C-induced P
release may be a result of 1) decreased DO; 2) elevated APA; and
3) increased proportion of P-solubilizing bacteria.

It is well known that a significant release of P can occur from
sediments under anoxic conditions (Nürnberg, 1995; Wang et al.,
2008; Ma et al., 2018). For example, augmented P release was

recorded when the DO concentration at medium water depth
decreased from 9.2 to 6.6 mg L−1 in a mesocosm study (Ma et al.,
2018). In our study, DO in the middle water decreased from 7.1 to
5.3 mg L−1 after C addition, which may have contributed to the
observed increase in sediment P release. DOC compounds can be
adsorbed via the complexation of carboxylic functional groups to
metals (such as Fe3+ and Al3+); therefore, they compete with the
adsorption of phosphates (Filius et al., 2003; Li et al., 2021), which
may be one of the reasons for the observed increase in DGT-
labile P.

In contrast to abiotic factors, biotic factors play critical roles in
P cycling, especially for algae and bacteria (Qian et al., 2011;
Rashid et al., 2016). In our study, C-induced algal growth
stimulated the assimilation of DIP from the surrounding water
(as suggested by the decrease of DIP% from 40 to 23%), which
might then trigger P deficiency of further growth of algae. As a
result, algae upregulated APA (from 0.06 to 1.3 μg P L−1 h−1),
which accelerated organic P decomposition accompanied by P
release. Additionally, the proportion of Bacteroides sp. in sediment
increased from 0.9 to 3.2% in the +Carbon treatment. Members
of this genus have been identified as P-solubilizing bacteria
(Wexler, 2007), which may contribute to P mobilization and
release from sediment. Moreover, the increase in P-solubilizing
bacteria implied that the bacterial assemblage tended to more
effectively use P under C enrichment conditions, which was in
line with the stoichiometric theory (Sterner and Elser, 2002;
Stutter et al., 2020).

FIGURE 4 | Changes (mean ± SE) in APAAlg (A), APABac (B), DOSWI (C), and pHSed (D) in the various treatments before (day 1, coded as pre-C addition) and after
carbon addition (day 56, post-C addition). APAAlg, alkaline phosphatase activity of algae fraction (µg P L−1 h−1); APABac, alkaline phosphatase activity of bacterial fraction
(µg P L−1 h−1); DOSWI, dissolved oxygen concentration (mg L−1) at the sediment–water interface; pHSed, pH of sediment.
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In summary, Na(CH3COO) loading was found to stimulate
sediment P release, which was consistent with previous DOC
addition tests conducted in bottles (<5 L) (Khoshmanesh et al.,
1999; Liptzin and Silver, 2009; Lehtoranta et al., 2015; Anderson,
2018) as well as field investigations (Li et al., 2016), but differed
from studies that showed that glucose-C enrichment had no effect
or an uptake effect on sediment P (Khoshmanesh et al., 1999;
Stutter et al., 2020). For example, in a large-scale field investigation
covering 29 subtropical shallow lakes (n � 116), Li et al. (2016)
found that TOC can stimulate P release by accelerating anaerobic
status formation and extracellular enzymes production. A recent

field survey conducted in 4 seawater ponds (n � 27) also stated a
significant positive correlation between TOC and TP (R2 � 0.75,
p < 0.001) (Dong, unpublished data). In contrast, P uptake or no
changes were observed in microcosm glucose-C addition
experiments conducted in the River Dee, in Scotland
(8 mg C L−1) and the Monash University Research Wetland
(100mg C L−1) (Khoshmanesh et al., 1999; Stutter et al., 2020).
These conflicting observations may be attributed to the different
forms of C used. For example, bacteria may store some P as
polyphosphate (poly-P) when acetate is available. This poly-P is
then subsequently released, especially under anaerobic conditions.

FIGURE 5 | The relative abundance of the top 10 classified bacterial classes (A) and genera (B) in overlying water, and bacterial classes (C) and genera (D) in
sediment for the various treatments before (day 1, coded as pre-C addition) and after carbon addition (day 56, post-C addition). Only the classes and genera with relative
abundance higher than 1% in at least one sample were included for analysis. The abundance is presented in terms of an average percentage of the four replicates,
classified by the RDP Classifier at a confidence threshold of 97%. “Other” refers to the sum of the unclassified sequences in each sample.
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In contrast, P only tends to be used for cell growth under glucose
enrichment conditions, which may increase P uptake
(Khoshmanesh et al., 1999; Khoshmanesh et al., 2002). The
higher number of bacteria and P retention observed in glucose
treatments (8.9 × 105 cells mg−1 dry wt) than in acetate treatments
(5.3 × 105 cells mg−1 dry wt) at the same C dose may also support
the abovementioned point (Khoshmanesh et al., 1999). Overall, the
influences of C on sediment P cycling have been linked to the C
forms, which indicates that future studies should involve mixtures
or gradients of C forms comprising a diverse array of complex
simple-to-macromolecules. Considering the gap between artificial
and natural coastal ecosystems, our study may not reveal the whole
processes of DOC affecting sediment P release. Therefore, further
larger-scale field experiments are needed to fully clarify the role of
C in the P cycle.

CONCLUSION

The combined increases of total P concentrations in overlying water,
DGT-labile P in sediment, and Flux-P across the SWI suggested that
DOC loading may promote sediment P mobilization and release.
Stimulated APA, increased P-solubilizing bacteria proportion, and
decreased DO are likely to be the primary mechanisms underlying
the promotion effect of carbon loading on sediment P release. The
integrated analysis of this and previous C addition experiments
suggested that the influences of DOC on sediment P cycling may
depend on its forms, exhibiting P release when C occurred as acetate,
while P uptake when C occurred as glucose.
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