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Self-similarity and plane-filling are intrinsic structure properties of natural river networks.
Statistical data indicates that most natural river networks are Tokunaga trees. Researchers
have explored to use iterative binary tree networks (IBTNs) to simulate natural river
networks. However, the characteristics of natural rivers such as Tokunaga self-
similarity and plane-filling cannot be easily guaranteed by the configuration of the IBTN.
In this paper, the generator series and a quasi-uniform iteration rule are specified for the
generation of nonstochastic quasi-uniform iterative binary tree networks (QU-IBTNs). First,
we demonstrate that QU-IBTNs definitely satisfy self-similarity. Second, we show that the
constraint for a QU-IBTN to be a Tokunaga tree is that the exterior links must be replaced in
the generator series with a neighboring generator that is larger than the interior links during
the iterative process. Moreover, two natural river networks are examined to reveal the
inherent consistency with QU-IBTN at low Horton-Strahler orders.

Keywords: horton-strahler (H-S) order, tokunaga tree, generator series, side tributary distribution, self-similarity,
iterative binary tree network

INTRODUCTION

River networks are typically considered to be dendritic, self-similar, and plane-filling in plane shape
(Horton, 1945; Tokunaga, 1966; Mandelbrot, 1982; Peckham, 1995b). With this in mind, their
scalings have been comprehensively studied. The first method for quantifying the scale of streams in
a river network was given by Horton (1945), and then modified by Strahler (1952) to create what is
now known as the Horton-Strahler (H-S) ordering method. This method gives every stream an H-S
order according to its position in the confluencing structure of a river network. It has become one of
the most basic concepts in river network topology. Furthermore, the Horton ratios, which are the
bifurcation ratio RB, the length ratio RL, and the area ratio RA, have been well established and verified
(Horton, 1945; Strahler, 1952). These ratios reflect the self-similarity of a river network by
approximately formed geometric sequences.

Tokunaga (1966), Tokunaga (1978) introduced a bivariate stream ordering method based on the
H-S method. The Tokunaga ordering method quantifies different confluences by using the H-S order
in pairs to describe the flow of a tributary into its main stem. The mean ratio of the number of
streams with H-S order ω to the number of streams with H-S order ω+k, which are the streams that
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H-S order ω streams flow into, is defined as the side-branching
ratio Tk. Furthermore, Tokunaga (1978, 1984) recognized that the
side-branching ratio characterizes the self-similar structure of a
binary tree river network. Therefore, a strict constraint for a
binary tree network to be a Tokunaga tree is that Tk varies
geometrically with k but independently with ω. By using this
constraint of side-branching ratios, large natural river networks
have been proved to be Tokunaga trees (Tokunaga, 1978;
Peckham, 1995a; Mantilla et al., 2010; Zanardo et al., 2013;
Gupta and Mesa, 2014).

Additionally, studies on similarity and fractals have made the
synthetic generation of iterative networks an efficient tool for
simulating real systems with self-similarity. Some of these
synthetic iterative networks have been used for hydrological
simulations of their analogous natural river networks (Claps
et al., 1996; Menabde et al., 2001; Veitzer and Gupta, 2001;
Wang and Wang, 2002; Hung and Wang, 2005). Furthermore,
recursive replacement networks have been introduced to show
that the Horton laws are well predicted (Peckham, 1995a; Veitzer
and Gupta, 2000; Mcconnell and Gupta, 2008). Synthetic trees
generated by the Tokunaga model have been used to statistically
evaluate the Tokunaga self-similarity, and have been compared
with natural river networks (Zanardo et al., 2013). Besides the
iterative replacement networks, the diffusion-limited aggregation
(DLA) model using random walk as synthetic mechanism can
also be used for river network generation, and is similar to natural
river networks (Masek and Turcotte, 1993). However, none of
these synthetic networks have been proved to be self-similar or
Tokunaga trees, either mathematically or theoretically. Therefore,
it is unreasonable to use them to capture the properties of natural
river networks.

Using synthetic iterative networks to simulate natural river
networks has limitations that need to be overcome, mainly in two
aspects. First, a commonly accepted and rigorous mathematical
definition of generators for river networks is needed. The lack of a
rigorous definition of generators (Wang and Wang, 2002;
Troutman, 2005) results in an inability to guarantee the
basicness and completeness of the generator population. A
basic and complete binary generator series has been specially
and explicitly defined and graphed by Zhang et al. (2009), and has
been proved to be effective and fundamental by means of
comparison with data from China and the United States
(Zhang et al., 2009). Second, the constraints of Tokunaga trees
should be strictly added during the generation of synthetic
iterative networks.

Themain objectives of this paper involve specifying a common
mathematical framework so as to 1) reemphasize the standard
generator series for iterative networks; 2) generate an iterative
binary tree network using the generator series and iteration rules;
and 3) find the appropriate constraint that guarantees a synthetic
iterative network to be a Tokunaga tree.

This paper is organized as follows. Materials and Method
briefly reviews the rules and definitions of the H-S method,
Tokunaga ordering method, Tokunaga tree, Generators and
rules for the iterative binary tree networks (IBTNs). In Results,
the mathematical derivations of side tributary distribution are
shown recursively and graphically for quasi-uniform iterative

binary tree networks (QU-IBTNs). The sufficient and necessary
conditions for a QU-IBTN to be a Tokunaga tree are discussed in
Discussion. Two natural river networks are given as examples to
verify the feasibility of QU-IBTNs.

MATERIALS AND METHOD

Tokunaga Tree
Horton (1945) and Strahler (1952) defined the classification
method for the hierarchical structure of a river network by
means of stream order as follows:

1) every source channel has an H-S order 1;
2) two streams with the same order, ω, confluence to a stream

ordered ω + 1; and
3) two streams with different orders, u, v(u< v), confluence to a

stream with ordered v.

The H-S order of the whole network, Ω, is defined as the
highest order of all streams. TheH-S ordering method is shown in
Figure 1.

Tokunaga (1966) proposed an extended ordering method
based on the H-S order. The Tokunaga ordering method
reflects the topological relation of a side-branching tributary
flowing into another stream with a higher order. His work

FIGURE 1 | H-S ordering method schematic diagram for the illustrated
river network with H-S order 4. There are 16 streams with H-S order 1, 6
streams with H-S order 2, 2 streams with H-S order 3, and 1 stream with H-S
order 4. The arrow at the bottom is the outlet of this river network.
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plays an important role in analyzing the topology of river
networks because it represents the inherent self-similarity of a
river network.

A stream with H-S order ω as a side-branching tributary
flowing into a stream ordered ω′ is assigned a Tokunaga order
(ω,ω′), for which ω<ω′. A pair of streams as sources of a stream
ordered ω + 1 is assigned a Tokunaga order (ω,ω). Figure 2
shows the Tokunaga ordering method applied to an example
binary tree.

For a binary tree network, the Tokunaga stream number
matrix N specifies the number of streams with Tokunaga
order (ω,ω′), Nω,ω′ , as:

N �
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

N1,1 N1,2 N1,3 . . . N1,(Ω−1) N1,Ω
N2,2 N2,3 . . . . . . N2,Ω

. . . . . . . . .
N(Ω−1),(Ω−1) N(Ω−1),Ω

NΩ,Ω

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (1)

For example, the Tokunaga stream number matrix of the
binary tree in Figure 2 is:

N � ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
22 11 6 4

6 3 2
2 1

1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (2)

Eq. 2 defines the ordering method in Figure 2, which shows 22
streams with Tokunaga order (1,1), 11 streams with Tokunaga
order (1,2), and so on.

The Tokunaga side-branching ratio Tω,ω+k (1≤ k≤Ω − ω),
which is determined in terms of the ratio of the number of
streams with the H-S order ω flowing into streams with the H-S
order ω + k to the number of streams with the H-S order ω + k, is
defined as:

Tω,ω+k � Nω,ω+k
Nω+k

� Nω,ω+k∑Ω
i�ω+k Nω+k,i

, 1≤ k≤Ω − ω (3)

An upper triangular matrix T, which is calculated in terms
of the Tokunaga stream number matrix N by Eq. 3, is defined
as the side-branching ratio matrix with a dimension of Ω − 1.
The side-branching ratio matrix of the binary tree in Figure 2
is:

T � ⎛⎜⎝ 1 2 4
1 2

1

⎞⎟⎠ (4)

The necessary condition for a network to be self-similar is that
the side-branching ratio Tk is independent of ω (Peckham,
1995a), that is:

Tω,ω+k � Tk (5)

For a network to be a Tokunaga tree in a statistical sense, the
side-branching ratio must satisfy the constraint (Peckham,
1995a):

Tk � ack−1 (6)

Here, a is the average number of streams of H-S order ω
flowing into streams of order ω + 1, and c is the average rate of
increase of the side-branching ratios of side tributaries with
different order.

In Figure 2, T1 � 1, T2 � 2, T3 � 4, and consequently
Tk � 2k−1, which means that the binary tree in Figure 2 is a
Tokunaga tree with a � 1 and c � 2 .

Iterative Binary Tree Networks
The basic elements of a synthetic iterative network are 1) the
generators, which are the smallest units of an iterative network,
and 2) the iteration rules, which specify the growth pattern of the
network using the generators. Different combinations of
generators and iteration rules result in different networks.
Iterative network models must be based on a series of
generators. Each generator should be unique, and the
generator series should be complete (Zhang et al., 2009;
Mantilla et al., 2010).

Generator Series
Self-similarity has been considered to be an inherent
characteristic of river networks since Mandelbrot first
described their fractal nature (Mandelbrot, 1982; Peckham,
1995b). Since then, various methods to create synthetic
networks have been proposed based on generator iteration
(Veitzer and Gupta, 2000; Wang and Wang, 2002; Hung and
Wang, 2005; Zhang et al., 2009; Mantilla et al., 2010). However,
generators are not sequential and complete until they are
cataloged by their topological structure (Zhang et al., 2009;

FIGURE 2 | Schematic diagram for the Tokunaga ordering method for a
binary tree (from Zhang et al., 2009).
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Mantilla et al., 2010). Figure 3 shows the first four generators in a
generator series. Each generator in the series can be denoted by an
index λ, which is a positive integer in sequential order. The
generator series in Figure 3 is the basis of the iterative networks
discussed in this paper.

Iteration Rule
The generation of a synthetic iterative network, specifically an
ITBN, is based on iteration definitions and rules. First, we give
some basic definitions for an iterative network. An exterior link is
an unbroken section of stream that extends from a source to the
first junction, and corresponds to a stream with H-S order 1,
whereas an interior link connects two successive junctions or the
last junction with the outlet (Shreve, 1966). The generators for the
replacement of interior and exterior links are chosen from the
series in Figure 3 and are denoted by λi and λo, respectively. Both
interior and exterior links are replaced by the interior generator λi
and exterior generator λo, respectively, in each step of the iterative
process. The length of each link is assumed to be 1 in this paper.
We use one link as the initial case (t � 0), and then the exterior
generator λo as the first iterative step (t � 1).

The iteration rule discussed in this paper is taking λi as the
constant interior generator and λo as the constant exterior
generator in each step of the iterative process. This iteration
rule is quasi-uniform because of the consistent generators in
every iterative step. Therefore, the iterative network generated by
this rule is defined as a QU-IBTN. Figure 4 shows two examples
of how to generate QU-IBTNs using λi � 1, λo � 2 (Figures 4A–D)
and λi � 2, λo � 3 (Figures 4E–H), respectively.

The invariance of generators in each iterative step for QU-
IBTNs is strictly consistent with the definition of self-similarity.
However, although the relevant iterative processes must not only
have the sequentially and mathematically expressible generator
series, but must also agree with the explicit given iteration rule,
whether the QU-IBTN is a Tokunaga tree has never been
examined graphically and recursively using a mathematical
method.

Side Tributary Distribution of QU-IBTNs
The generation of a QU-IBTN begins with one link, the interior
generator λi, and the exterior generator λo (i.e. the QU-IBTN is λo
itself when t � 1). According to the iteration rule and Tokunaga

FIGURE 3 | Diagrammatic infinite generator series for the topological structure of iterative binary tree networks. Here, λ is the index of each generator [revised from
Zhang et al. (2009)].

FIGURE 4 |QU-IBTNs (A) and (E): initial cases (t � 0); (B–D): generator λi � 1 and λo � 2 after 1, 2, and 3 iteration steps; (F–H): generator λi � 2 and λo � 3 after 1, 2,
and 3 iteration steps.
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ordering method, there are five stream number generating laws
that must be obeyed during the iterative process.

The components of the generating law equations are defined as
follows:

Nt,ω is the number of streams with H-S order ω at the tth
iterative step;
Nt,(ω,ω′) is the number of streams (ω,ω′) at the tth iterative step;
Mo

t is the number of exterior links at the tth iterative step; and
Mi

t is the number of interior links at the tth iterative step.

Law 1: H-S Order Law
The H-S order of the QU-IBTN is Ω � t + 1 after the tth iterative
step, that is:

Nt,ω � ∑Ω
ω′�ω Nt,(ω,ω′) � ∑t+1

ω′�ω Nt,(ω,ω′) (7)

Law 1 serves to replace the upper bound of the H-S order with
the iterative step number in the calculations.

Law 2: Iteration Unchanging Law
TheH-Sorders of every streamand the entire network increaseby 1 from
the (t − 1)th iterative step to the tth iterative step. Therefore, the number
of streams (ω,ω′) in the tth iterative step (i.e., Nt,(ω,ω′)) equals the
number of streams (ω − 1,ω′ − 1) in the (t − 1)th iterative step, that is:

Nt,(ω,ω′) � Nt−1,(ω−1,ω′−1) (8)

By recursion from the (t − k)th iterative step to the tth iterative
step, the relationship between the numbers of streams is found to be:

Nt,(ω,ω′) � Nt−k,(ω−k,ω′−k) (9)

Law2 ensures that the corresponding equality relationship between
the number of streams in the different iterative steps is satisfied.

Law 3: The Source Stream Law
Every pair of source streams with order (1, 1) at the tth iterative step
comes fromoneexterior linkat the(t − 1)th iterative step,which is shown
as an example ofQU-IBTNs by the choices λi� 1, and λo� 2 inFigure 5.

Figure 5 shows the generation of sources in Figure 5B from
exterior links in Figure 5A. Consequently, the relationship
between the sources at the tth step and the exterior links in
the (t − 1)th step is found to be:

Nt,(1,1) � 2Nt−1,1 � 2∑t

ω′�1 Nt−1,(1,ω′) (10)

According to Eq. 9 in Law 2 and Eq. 10, the number of streams
with order (k, k) in the tth step can be determined by the number
of exterior links at the (t − k + 1)th step:

Nt,(k,k) � Nt−k+1,(1,1) (11)

Law 4: The Neighbor-Ordered Side-branch Law
In every iterative step, the relationship between the number of
streams with Tokunaga order (1,1) and order (1,2) that depend
on the exterior generator λo is:

Nt,(1,2) � λo − 1
2

Nt,(1,1) (12)

FIGURE 5 | Generation of sources in the iterative process. The sources
at the second step are generated by the exterior links at the first step. The red
dotted lines in both (A) and (B) are the exterior links of QU-IBTNs at the first
step in (A). The blue lines in (B) are the sources at the second step that
are generated by the red dotted lines.

FIGURE 6 | The QU-IBTN generated by λi � 1, λo � 2, t � 2 at the second
step. The red lines are the streamswith Tokunaga order (1,2) and the blue lines
are the sources, which are the streams with Tokunaga order (1,1).
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Figure 6 shows a ratio of 3/6 for the number of streams with the
order (1,2) and the number of streams with the order (1,1) in the QU-
IBTNgenerated by the choices λi� 1, λo� 2 at the second iterative step.

According to Eq. 9 in Law 2 and Eq. 12, the number of side
branches that flow into streams that are 1 order greater
(i.e., (k, k + 1)) is:

Nt,(k,k+1) � Nt−k+1,(1,2) � λo − 1
2

Nt−k+1,(1,1) (13)

Law 5: The Greater-Ordered Side-branch Law
1) The streams with Tokunaga order (1,3) at the tth iterative step

are generated by the λo
λo−1Nt−1,(1,2) interior links between the

streams with Tokunaga order (1,2) at the (t − 1)th iterative
step. Additionally, each interior link produces λi streams with
Tokunaga order (1,3). Therefore, the number of streams with
Tokunaga order (1,3) is:

Nt,(1,3) � ( λo
λo − 1

Nt−1,(1,2))λi � λiλo
λo − 1

Nt−1,(1,2) (14)

According to Equation 9 and 14, the number of side branches
that flow into streams that are 2 orders greater [i.e., (k, k + 2)] is:

Nt,(k,k+2) � Nt−k+1,(1,3) � λiλo
λo − 1

Nt−k,(1,2) (15)

Figure 7 shows the generation of streams with Tokunaga
order (1,3) in the QU-IBTNwith λi � 1, λo � 2, from the second to
third iterative step.

2) The streams with Tokunaga order (1,ω′ + 1),ω′ ≥ 3 at the tth
iterative step are generated by the (λi+1λi

Nt−1,(1,ω’)) interior links
between streams with Tokunaga order (1,ω′) at the (t − 1)th
iterative step. Each interior link produces λi streams with
Tokunaga order (1,ω′ + 1). Therefore, the number of streams
with Tokunaga order (1,ω′ + 1) is:

Nt,(1,ω′+1) � (λi + 1
λi

Nt−1,(1,ω′))λi � (λi + 1)Nt−1,(1,ω′),ω′ ≥ 3

(16)

Figure 8 shows the generation of streams with Tokunaga
order (1,4) in the QU-IBTN with λi � 1, λo � 2 from the second to
third iterative step.

According to Equation 9 and 16, the number of side branches
that flow into streams that areω’ orders greater (i.e. (k, k + ω′)) is:

Nt,(k,k+ω′) � Nt−k+1,(1,ω′+1) � (λi + 1)Nt−k,(1,ω′), ω′ ≥ 3 (17)

Tokunaga Matrix Nt of IBTNs
During the tth iterative step, (λo + 1) exterior links grow from the
Mo

t−1 exterior links and λi exterior links grow from the Mi
t−1

interior links. Additionally, λo interior links grow from the Mo
t−1

exterior links and (λi + 1) interior links grow from the Mi
t−1

interior links. Figure 9 shows the numerical relationship of the
exterior and interior links between the (t − 1)th step and tth step.

Eq. 18 describes the relationship for increase of exterior and
interior links between the (t − 1)th and tth iterative step,
illustrated in Figure 9, as:

⎧⎪⎨⎪⎩
Mo

t � (λo + 1)Mo
t−1 + λiM

i
t−1

Mi
t � λoM

o
t−1 + (λi + 1)Mi

t−1
Mo

t � Mi
t + 1

, t≥ 2 (18)

For the initial condition t � 1, we haveMo
1 � λo + 1, andMi

1 � λo.
From Eqs 10, Eqs 18, it is clear that the number of exterior

links at the (t − 1)th step Mo
t−1 and the number of streams with

order (1,1) at the tth step Nt,(1,1) are:

Nt,(1,1) � 2Mo
t−1 � (2λo + 1 + λo − λi

λo + λi
)(λo + λi + 1)t−1 + 2λi

λo + λi

(19)

The Tokunaga matrix Nt of the QU-IBTN, which is generated
by the interior generator λi and the exterior generator λo at the
tth step, follows Law 1 through Law 5. Its diagonal elements,
Nt(k, k), are calculated using Eqs 11, 18 in Law 3. The elements
Nt(k, k + 1) next to the diagonal elements come from Eq. 13 in
Law 4. The farther elements Nt(k, k + 2) and Nt(k, k + ω’), in
which ω’ ≥ 3, are from Eqs 15, 17 in Law 5. The initial conditions
areN1,(1,1) � 2,N1,(1,2) � λo − 1, andN1,(2,2) � 1. The dimension
of the matrix Nt is Ω ×Ω (i.e., (t + 1) × (t + 1)).

FIGURE 7 | Streams with Tokunaga order (1,3) in QU-IBTNs are generated using λi � 1, λo � 2 from the second step in (A) to third iterative step in (B).
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Using the first row of Nt as an example, we find that:

(Nt,(1,1) Nt,(1,2) Nt,(1,3) Nt,(1,4) Nt,(1,5)/)
� (Nt,(1,1)

λo − 1
2

Nt,(1,1)
λiλo
λo − 1

Nt−1,(1,2)

× (λi + 1)Nt−1,(1,3) (λi + 1)Nt−1,(1,4) /)
� (Nt,(1,1)

λo − 1
2

Nt,(1,1)
λiλo
2

Nt−1,(1,1)

× (λi + 1) λiλo
λo − 1

Nt−2,(1,2) (λi + 1)2Nt−2,(1,3) /)
� (Nt,(1,1)

λo − 1
2

Nt,(1,1)
λiλo
2

Nt−1,(1,1)

× (λi + 1) λiλo
2

Nt−2,(1,1)(λi + 1)2λiλo
2

Nt−3,(1,1)/)

(20)

In the following equations, â � λo−1
2 , b̂ � λiλo

λo−1, and ĉ � λi + 1.
The matrix Nt is in the form of the general terms
mi,j (1≤ i, j≤ t + 1 � Ω) as follows:

In the first column of Nt :

m1,1 � Nt,(1,1) (21)

In the second column of Nt :

m1,2 � âm1,1, m2,2 � Nt−1,(1,1) (22)

In the third column of Nt :

m1,3 � b̂âm2,2, m2,3 � âm2,2, m3,3 � Nt−2,(1,1) (23)

In the jth column (4≤ j≤ t), the parameter ĉ appears in the
terms shown below:

mj,j � Nt−j+1,(1,1), mj−1,j � âmj−1,j−1,
mi,j � ĉj−i−2b̂âmj−1,j−1, 1≤ i≤ j − 2 (24)

In the (t + 1)th column, the exterior generator λo affects the
elements as follows:

mt+1,t+1 � 1, mt,t+1 � âmt,t � λo − 1,
mi,t+1 � ĉt−1−ib̂âmt,t � λoλiĉt−1−i, 1≤ i≤ t − 1 (25)

FIGURE 8 | Streams with Tokunaga order (1,4) in QU-IBTNs are generated using λi � 1, λo � 2 from the second step in (A) to third iterative step in (B).

FIGURE 9 | The generation of each interior and exterior link from the (t − 1)th to the tth iterative step.
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The recursion of elements in Eqs 21–25 form the matrix Ntas:

Nt �

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

m1,1 âm1,1 b̂âm2,2 ĉ b̂âm3,3 . . . . . . ĉt−3b̂âmt−1,t−1 ĉt−2 b̂âmt,t

m2,2 âm2,2 b̂âm3,3 . . . . . . ĉt−4b̂âmt−1,t−1 ĉt−3 b̂âmt,t

m3,3 âm3,3 . . . . . . . . . . . .
. . . . . . . . . . . . . . .

mt−2,t−2 âmt−2,t−2 b̂âmt−1,t−1 ĉb̂âmt,t

mt−1,t−1 âmt−1,t−1 b̂âmt,t

mt,t âmt,t

1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(26)

The sum of the (k + 1)th row in the matrixNt is the number of
streams with H-S order 1at the (t − k)th iterative step, which is
also essentially the number of the exterior links. The number of
exterior links at the (t − k)th iterative step is:

Mo
t−k � ∑t+1

j�k+1 Nt(k + 1, j) (27)

Furthermore, the number of streams (1,1) at the (t − k + 1)th
iterative step (i.e.,Nt−k+1,(1,1)) is twice the number of the exterior
links at the (t − k)th iterative step (i.e.,Mo

t−k) for any 1≤ k≤ t − 1
according to Eq. 10 in Law 3. Therefore:

Nt−k+1,(1,1)
Mo

t−k
� mk,k

Mo
t−k

� mk,k∑t+1
j�k+1 Nt(k + 1, j) � 2, 1≤ k≤ t − 1 (28)

Side-Branching Ratio Matrix Tt of IBTNs
The side-branching ratio matrix Tt is composed of the side-
branching ratio Ti,k+1 as its element Tt(i, k). According to the
definition of Ti,k+1 in Eq. 3, the expression for Ti,k+1 is:

Tt(i, k) � Ti,k+1 � Nt(i, k + 1)∑t+1
j�k+1 Nt(k + 1, j) � Nt(i, k + 1)

mk,k/2
(29)

We can get the expression for Nt(i, k + 1) in Nt as:

Nt(i, k + 1) � { âmk,k, i � k
ĉk−i−1b̂âmk,k, i≤ k − 1

(30)

We modify the form of Nt(i, k + 1) in Eq. 29 using Eq. 30;
therefore, the final form for Tt(i, k) is:

Tt(i, k) � { 2â, i � k
2ĉk−i−1b̂â, i≤ k − 1

(31)

By combining Eq. 3 and the condition Nt(t + 1, t + 1) � 1 in
the tth column of the matrix Tt , we get:

Tt(i, t) � Ti,t+1 � Nt(i, t + 1)
Nt(t + 1, t + 1) � Nt(i, t + 1) (32)

Using Eqs 31, 32, we get the matrix Tt as follows:

Tt �

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

λo −1 λiλo λiλo(λi +1) . . . λiλo(λi +1)t−3 λoλi(λi +1)t−2
λo −1 λiλo . . . λiλo(λi +1)t−4 λoλi(λi +1)t−3

. . . . . . . . . . . .
λo −1 λiλo λoλi(λi +1)
· λo −1 λoλi
. λo −1
.

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(33)

The efficient and necessary condition to be a self-similar
network is that Tt must to be a Toeplitz matrix according to
Eq. 5. The QU-IBTNs with the interior generator λi and exterior
generator λo are definitely self-similar because the elements on
the diagonal are equal in Eq. 33, which is a Toeplitz matrix. This
is also shown in terms of the results for side-branching ratios:

T1 � λo − 1, Tk � λiλo(λi + 1)k−2, 2≤ k≤ t (34)

For strict Tokunaga self-similarity, the elements in Tt must
satisfy Eq. 6. Therefore, the necessary condition for a QU-IBTN
to be a Tokunaga tree is:

λo � λi + 1 (35)

No matter which values of λo and λi are selected to generate a
QU-IBTN, this QU-IBTN must be self-similar. However, a QU-
IBTN is a Tokunaga tree only when λo � λi + 1. This means that
when we use QU-IBTNs to simulate natural river networks,
which are Tokunaga trees, we need to generate a QU-IBTN
with the special condition that λo � λi + 1.

To demonstrate the constraints on self-similarity versus
Tokunaga self-similarity, we provide the following two examples.

Example 1: λo � λi

When the generators λo � λi, the side-branching ratios given
by Eq. 34 are:

T1 � λo − 1, Tk � λ2o(λo + 1)k−2, 2≤ k≤ t (36)

The side-branching ratio Tk (1≤ k) contains different constants, but
does not define a geometric series. Therefore, the QU-IBTNwith λo � λi
is self-similar but not aTokunaga tree, as pointed out byPeckham(1995a).

Example 2: λo � λi + 1

When the exterior link generator and the interior link
generator satisfy the condition λi � λo − 1, the side-branching
ratios given by Eq. 34 are:

Tk � (λo − 1)λk−1o , k≥ 1 (37)

According to Eq. 37, this QU-IBTN is a Tokunaga tree with
a � λo − 1 and c � λo. Based on statistics, the necessary condition
for a QU-IBTN to be a Tokunaga tree in Eq. 37 is consistent with
the result presented by Veitzer and Gupta (2000).

RESULTS

Natural River Networks
In the following, we use the Yellow River in China (H-S order 11)
and the Amazon River in South America (H-S order 12) as
examples to verify whether or not they follow the rules of QU-
IBTNs and the constraint of a Tokunaga tree. Figure 10 shows
the river networks extracted from digital elevation model (DEM)
data with a 30 m resolution (Li et al., 2018; Li et al., 2020).

Supplementary Table S1 (shown in Supplementary Material)
shows the Tokunaga matrices of the stream numbers Nω,ω′ for
both the Yellow River and the Amazon River.
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FIGURE 10 | River networks of the Yellow River and the Amazon River with streams of no less than an H-S order 7 are shown in the figure.
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The similarities Between Natural River
Networks and Tokunaga Trees
Supplementary Table S2 (shown in Supplementary Material)
shows the side-branching ratio matrices for the side-branching
ratios Ti,j based on Eq. 3 for the two rivers.

Supplementary Table S2 also shows that the branching ratio
values have large fluctuations for main stems with large H-S
orders, as shown in Figure 11.

The statistical side-branching ratio matrices of the two rivers in
Supplementary Table S2 and Figure 11 show that the statistical
results of Tk vary greatly compared with the theoretic self-similarity
derivation, which is uniform for a fixed k. The black circles in
Figure 11 denote the Tk data in the shaded sections of
Supplementary Table S2 that are less affected by local
geomorphology and terrain, and therefore are more concentrated
in their distribution. The red circles in Figure 11 are the Tk data
excluding the shaded sections of Supplementary Table S2; these are
seen to scatter far away from each other. We now use streams with
H-S orders 1 to 7 (i.e., the shaded sections of Supplementary Table S2
and the black circles in Figure 11) to analyze the Tokunaga self-
similarity of the two natural river networks. The values of the black
points in Figure 11, which are the statistical average values, Tk, of Tk

for each k (1≤ k≤ 6), are (1.11, 3.19, 7.76, 16.91, 33.53, 67.09) for the
Yellow River and (1.11, 2.93, 6.90, 14.97, 30.86, 62.41) for the
Amazon River.

The side-branching ratio series in Figure 11 were verified to
satisfy as 1.34 × 2.25k−1 and 1.26 × 2.23k−1 using the least squares
method, as shown in Figure 11 in terms of the dotted black lines
with coefficients of determination R2 > 0.99.

Therefore, the Tokunaga parameters can be evaluated using
aYellow � 1.34, cYellow � 2.25 and aAmazon � 1.26, cAmazon � 2.23.

The Similarities Between Natural River
Networks and QU-IBTNs
We construct N Rt matrices with the same dimension of Nt in
Supplementary Table S1 in terms of:

N Rt(k, k + 1) � Nt (k, k + 1)
Nt (k, k) , 1≤ k≤Ω − 1 (38)

N Rt(k, k + 2) � Nt (k, k + 2)
Nt (k + 1, k + 2), 1≤ k≤Ω − 2 (39)

and

N Rt(i, k) � Nt (i, k)
Nt (i + 1, k), 1≤ i≤ k − 3, 4≤ k≤Ω (40)

TheN Rt matrices for the Yellow River and the Amazon River
using Eqs 38–40 are listed in Supplementary Table S3 (shown in
Supplementary Material).

According to the standard form of the Tokunaga matrix Nt in
Eq. 26, â values are expressed in Eq. 38 by the ratios of
Nt (k, k + 1) to Nt (k, k) (1≤ k≤Ω − 1); b̂ values are expressed
in Eq. 39 by the ratios of Nt (k, k + 2) to Nt (k + 1, k + 2)
(1≤ k≤Ω − 2); and ĉ values are expressed in Eq. 40 by the
ratios of Nt(i, k) to Nt(i + 1, k) (1≤ i≤ k − 3, 4≤ k≤Ω).

We calculate λo and λi for each iterative step from every row of
the matrix N Rt in Supplementary Table S3, as shown in the
Methods section. The matrices of the λo and λi values are defined
as N λt in Supplementary Table S4 (shown in Supplementary
Material).

In the N λt matrices in Supplementary Table S4, the first
element in each row is the value of the exterior generator λo for
each iterative step, and the following elements in the row are the
interior generators λi for each corresponding iterative step.
Figure 12 shows the values of the generators λo and λi for
each iterative step in Supplementary Table S4 for both the
Yellow River and the Amazon River.

1) The exterior generators λo (i.e., the gray solid points) vary
slightly for the higher iterative steps (greater than 6) in
Supplementary Table S4 and Figure 12. At the higher
iterative steps, the streams are closer to the source streams,
which allows them to evolve freely according to the same
formative mechanism because they have enough space to

FIGURE 11 | Branching ratios, Tk , of the Yellow River and theAmazon River for every k. The black circles are the branching ratios shown in the shaded sections of
the matrices of Supplementary Table S2. The red circles are the remaining data in the matrices. The black points are the average values of the black circles. The dotted
black line is the fit of the black points using the least squares regression method.
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grow. Freedom and space allows streams between different
iterative steps in a river network, and even for different river
networks, to be uniform and similar, which can be seen in
terms of the uniformity of the generators λo.

2) The interior generators λi (i.e., the black circles) are
concentrated and approaching uniform for the higher
iterative steps in Supplementary Table S4 and Figure 12.
The last column in the Yellow River N λt matrix in
Supplementary Table S4 shows the interior generators for
the main stem of the Yellow River basin. The changes in this
column are results from the geomorphology and terrain,
which constrain the generators on the main stems. The
Amazon River N λt matrix also shows the same changes in
this column. For the lower iterative steps, the generators
shown in Supplementary Table S4 are generators for
streams with high H-S orders, which are also influenced by
the geomorphology and terrain. To satisfy the conditions of
uniformity of generators and similarity of the river networks,
we need to exclude the streams that are heavily constrained by
the geomorphology and terrain.

3) The interior generators λi (i.e., the black circles) vary slightly
at iterative steps 7 to 11 for the Yellow River, and steps 8 to 12
for the Amazon River, as shown in Supplementary Table S4
and Figure 12. The average values for each iterative step
(i.e., the dotted black line) are almost stable between iterative
steps 7 and 11 for the Yellow River and steps 8 and 12 for the
Amazon River. The exterior generators λo are consistent at
these iterative steps. The stability and consistency of the
generators λo and λi at high iterative steps confirms that
the two natural river networks follow the rules of QU-
IBTNs in a statistical sense. We use the average values of
λo and λi in the shaded section in Supplementary Table S4
from iterative steps 7–11 and 8–12 separately to evaluate the
generator of the Yellow River and the Amazon River. The
calculations for the generators are provided in the Methods
section. The statistical averages for the exterior generator and

the interior generator are evaluated using λo−Yellow �
2.11, λi−Yellow � 1.34 for the Yellow River and
λo−Amazon � 2.10, λi−Amazon � 1.26 for the Amazon River.

Table 1 lists the generators and Tokunaga parameters for the
Yellow River and the Amazon River.

Analysis and conclusions for Table 1:

1) In our analysis, we have removed the main stems with high
H-S orders at the low iterative steps, as these are controlled by
the local geomorphology and terrain. The QU-IBTN rules and
Tokunaga self-similarity are well demonstrated using the
Yellow River and the Amazon River in terms of the
uniformity and equality of the generators and branching
ratios for streams with low H-S orders at high iterative steps.

2) According to the sufficient and necessary condition for a QU-
IBTN to be a Tokunaga tree in Eq. 35, we should have a �
λi, c � λo and λo − λi � c − a � 1. However, from Table 1,
there is a difference between c and λo because of the different
data and methods used for calculation.

DISCUSSION

The QU-IBTNs proposed above illustrate how to generate
iterative binary tree networks simulating natural river
networks. The complete mathematic iterative steps with
graphic deduction are demonstrated in iterative orders. The

FIGURE 12 |Generators of the Yellow River and the Amazon River for each iterative step. The gray solid points are the exterior generators λo. The black circles are
the interior generators λi . The dotted black line corresponds to the average value of the interior generators λi for each row, excluding those in the last column of
Supplementary Table S4. Analysis and Conclusions for Supplementary Table S4 and Figure 12.

TABLE 1 | The generators (λi , λo) and Tokunaga parameters (a,c) for the Yellow
River and the Amazon River.

Rivers (λi , λo) (a,c) λo − λi c − a

Yellow River (1.34, 2.11) (1.33, 2.25) 0.77 0.91
Amazon River (1.26, 2.10) (1.26, 2.23) 0.84 0.97
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iterative process is sustained by the self-similarity theory. The
synthetic QU-IBTNs are close to the natural river networks in
similarity characteristics parameters by two examples.

When generated by exterior generator λo � 2 and interior
generator λi � 1, the QU-IBTN is equivalent to the Shreve model
(Shreve, 1966), for which the bifurcation ratio is RB � 4 and the
Tokunaga parameters are a � 1, c � 2 (Peckham, 1995a). This is
the only case of a plane-filling IBTN (Zhang et al., 2009).
Therefore, only the Shreve model can generate a plane-filling
Tokunaga tree, and only the IBTN plane-filling Tokunaga tree fits
the Shreve model.

Although in theory the Shreve model should be the most
ideal topology network that approaches natural river networks
because it is a Tokunaga tree and plane-filling, there is an
obvious contradiction that topological parameters such as
RB � 4, a � 1, and c � 2 of the Shreve model are far from
those of natural river networks [Average values of RB, a and
c are around 4.4, 1.1 and 2.5 (Peckham, 1995a; Dodds and
Rothman, 1999; Dodds, 2000; Pelletier and Turcotte, 2000;
Mantilla et al., 2010; Zanardo et al., 2013; Wang et al.,
2016)]. Furthermore, the entire natural river network is
determined not only by topological characteristics (such as
stream number, RB and Tokunaga parameters), but also
geometrical characteristics (such as stream length and
confluence angle) that depend on the energy conservation
and the relation between sediment and water discharge.
Consequently, the Shreve model is an ideal model to
simulate the topology of river networks, but it is an
unsatisfactory model for simulating the geometrical
properties of natural river networks. Furthermore, a layout
for an ideal plane-filling Tokunaga tree is still needed.

We have supposed that the hypothesis of the uniformity of
link length in the IBTN may lead to differences in the
bifurcation ratio as compared with natural river networks
under the condition of plane-filling. The link length and
confluence angles of IBTNs should be redefined according to
the values of the stream length ratios of natural river networks
when considering plane-filling.

Some aspects of the linkages between the structure of river
networks and the processes that shape them remain somewhat
unclear and difficult to understand (Abrahams, 1984;
Montgomery and Dietrich, 1992; Perron et al., 2012; Seybold
et al., 2017). A considerable body of research is available on the
topologic structure associated with stream numbers and self-
similarity of river networks (Peckham, 1995a; Dodds, 2000;
Pelletier and Turcotte, 2000; Veitzer and Gupta, 2000;
Mcconnell and Gupta, 2008; Mantilla et al., 2010; Zanardo
et al., 2013). Recently, confluence angles (also referred to as
junction angles) of a number of natural river networks, which
represent a geometric component of river network structure, have
been statistically evaluated and shown to depend on the climatic
setting (Devauchelle et al., 2012; Seybold et al., 2017). These
treatments of confluence angles may provide important clues in
further studies to explore the following two questions: 1) where
does a stream emerge from an unchannelized region? and 2) how
far downstream does this stream extend until it merges into
another stream?

CONCLUSION

In this paper we provide a complete mathematical and graphical
deduction of QU-IBTNs with specified generator series and
iteration rule. Our conclusions are as follows:

1) For the QU-IBTN generated by the generator series and
iteration rule in this paper, five intrinsic stream number
laws—which determine the distribution of source streams
and side-branches following into streams of greater
orders—are graphically and recursively analyzed and satisfied.

2) As defined in this paper, the QU-IBTN are demonstrated to be
self-similar.

3) The sufficient and necessary constraint for a QU-IBTN to be a
Tokunaga tree is that the exterior linksmust be replaced with a
neighboring generator in the generator series that is larger
than the interior links during the iterative process. This
defines a generation method for a simulated network that
is identical to a natural river network in topology.

4) Two natural river networks, i.e. the Yellow River, China and the
Amazon River, South America, are shown to be Tokunaga trees
and QU-IBTNs within specified H-S order scales.

The self-similarity of river networks is a classical topic, and
there are many researchers working on this topic using varied
methods, including mathematicians who are good at fractal
theory (Kovchegov and Zaliapin, 2020). Other researchers
might use random and mathematical foundations in their own
research. Our manuscript here is an intuitive, accessible and
understandable initial tool to measure the self-similarity of river
networks. The advance of generator series, the integer iterative
rules showing directly by graphs, and the corresponding
mathematical derivations are new and different from others’
methods. The QU-IBTNs are built just in a few finite iterative
steps as shown in the figures. QU-IBTNs in random scales will be
generated by coding in the future. However, to some extent we are
doing the same thing as other researchers-just find a way to
demonstrate the self-similarity and Tokunaga property of river
networks. This is what we think we can share with other
researchers, and help make progress in river network
simulations in the future.

METHODS

The Method for Calculating λo and λi From
the Matrix N Rt
For the kth row in matrix N Rt , Ω − k + 1 is the corresponding
iterative step. The matrix N λt expresses the generators λo
and λi. The exterior generator at the (Ω − k + 1)th iterative
step is:

λo(Ω − k + 1) � N λt(k, k + 1)
� 2 × N Rt(k, k + 1) + 1, 1≤ k≤Ω − 1 (M1)

The interior generators in the kth row (i.e., the (Ω − k + 1)th
iterative step) are:
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λi 1(Ω − k + 1) � N λt(k, k + 2)
� λo(k) − 1

λo(k) × N Rt(k, k + 2), 1≤ k≤Ω − 2 (M2)

and

N λt(k, i) � λi 1(Ω−k+1)
λi 1(Ω−k) ×N Rt(k, i), 1≤k≤ i−3, 4≤ i≤Ω (M3)

In the matrix N Rt , the elements N λt(k, k + 1)
(1≤ k≤Ω − 1) in Equation (M1) correspond to the exterior
generator at the (Ω − k + 1)th iterative step. The elements
N λt(k, k + 2) and N λt(k, i) (k + 3≤ i≤Ω) are the interior
generators at the (Ω − k + 1)th iterative step.

For the Yellow River and the Amazon River, the statistically
averaged values for λo−Yellow and λo−Amazon are:

λo−Yellow � ∑5
k�1 λo(12 − k)

5
� ∑5

k�1 Nλt(k, k + 1)
5

� 2.11 (M4)

and

λo−Amazon � ∑5
k�1 λo(13 − k)

5
� ∑5

k�1 Nλt(k, k + 1)
5

� 1.34 (M5)

For the Yellow River and the Amazon River, the statistically
averaged values for λi−Yellow and λi−Amazon are:

λi−Yellow � ∑5
k�1∑10

i�k+2Nλt(k, i)
5

� 2.10 (M6)

and

λi−Amazon � ∑5
k�1∑11

i�k+2Nλt(k, i)
5

� 1.26 (M7)
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GLOSSARY

ω H-S order [-]

Nω the number of streams with H-S order ω [-]

RB bifurcation ratio (i.e. the ratio of the number of streams [-])

(ω,ω9) a stream as a side-branching tributary with H-S order ω that flows
into a stream ordered ω′, assigned by a Tokunaga order (ω,ω′) [-]
Nω,ω9 the number of streams with Tokunaga order (ω,ω′) [-]
N Tokunaga stream number matrix composed by Nω,ω′ [-]

Tω,ω+ k the ratio of the number of streams with the H-S order ω that flow
into streams with the order (ω + k) to the number of streams with the H-S
order (ω + k) [-]

T Tokunaga side-branching ratio matrix composed by Tω,ω+k [-]

Tk the side-branching ratio [-]

a the average number of streams with the H-S order ω that flow into
streams ordered ω + 1[-]

c the average increasing rate of the side-branching ratio of side tributaries
with a different order [-]

λ, λo, λi generator, exterior generator, interior generator [-]

t iterative steps [-]

Mo
t ,M

i
t the number of exterior links and interior links at the tth iteration

step [-]

Nt,(ω,ω9), Nt,ω the number of streams with Tokunaga order (ω,ω′) andH-S
order ω at the tth iterative step [-]

Nt , Tt Tokunaga matrix and side-branching ratio matrix of the QU-IBTN,
which is generated by the interior generator λi and the exterior generator λo
at the tth step [-]

N Rt, N λt a transformation of Nt ; a transformation of N Rt and
represents the λo and λi values [-]
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