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Convolutional neural networks (CNNs) have been originally used for computer vision tasks,
such as image classification. While several digital soil mapping studies have been
assessing these deep learning algorithms for the prediction of soil properties, their
potential for soil classification has not been explored yet. Moreover, the use of deep
learning and neural networks in general has often raised concerns because of their
presumed low interpretability (i.e., the black box pitfall). However, a recent and fast-
developing sub-field of Artificial Intelligence (AI) called explainable AI (XAI) aims to clarify
complexmodels such as CNNs in a systematic and interpretable manner. For example, it is
possible to apply model-agnostic interpretation methods to extract interpretations from
any machine learning model. In particular, SHAP (SHapley Additive exPlanations) is a
method to explain individual predictions: SHAP values represent the contribution of a
covariate to the final model predictions. The present study aimed at, first, evaluating the
use of CNNs for the classification of potential acid sulfate soils located in the wetland areas
of Jutland, Denmark (c. 6,500 km2), and second and most importantly, applying a model-
agnostic interpretation method on the resulting CNNmodel. About 5,900 soil observations
and 14 environmental covariates, including a digital elevation model and derived terrain
attributes, were utilized as input data. The selected CNN model yielded slightly higher
prediction accuracy than the random forest models which were using original or scaled
covariates. These results can be explained by the use of a common variable selection
method, namely recursive feature elimination, which was based on random forest and thus
optimized the selection for this method. Notably, the SHAP method results enabled to
clarify the CNN model predictions, in particular through the spatial interpretation of the
most important covariates, which constitutes a crucial development for digital soil
mapping.

Keywords: convolutional neural network, XAI (eXplainable artificial intelligence), SHAP (SHapley Additive
exPlanations), interpretability, deep learning, classification, acid sulfate soils

1 INTRODUCTION

Digital soil mapping (DSM) techniques traditionally relate soil observations with point information
extracted from different environmental covariates at corresponding locations. This representation of
data as vectors at point location only partially describe a soil property or class. Taking into account
spatial contextual information from covariates thus represents a crucial step forward for DSM and
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can be referred to as contextual mapping. During the last
2 decades, various studies attempted to incorporate spatial
context through the preprocessing of environmental covariates.
These original contextual mapping studies have used: different
neighboring size to compute terrain attributes (Smith et al., 2006;
Behrens et al., 2010b), adaptative filters applied on elevation
data or derived attributes (Behrens et al., 2018b), covariates
spatially transformed with wavelet analysis (Lark and Webster,
2001; Sun et al., 2017), hypercovariates created from elevation
data (Behrens et al., 2010a; Behrens et al., 2014), and a multi-scale
approach using aggregated covariates (Miller et al., 2015). All
these studies relied on heavy preprocessing and/or subjective
decisions concerning the resolution of covariates. Furthermore,
Behrens et al. (2018a) compared different methods for
multi-scaling analysis of terrain attributes combined to
random forest with a deep neural network (DNN) algorithm
(for clay and zinc content mapping). Other DSM studies
investigated the use of DNNs for mapping soil moisture
content (Song et al., 2016) and soil organic carbon content
(Taghizadeh-Mehrjardi et al., 2020b; Emadi et al., 2020; Tao
et al., 2020), identifying and delineating soil master horizons
(Jiang et al., 2021), or spectral modelling (Singh and Kasana,
2019; Gholizadeh et al., 2020).

Within DNNs, convolutional neural networks (CNNs)
represent a powerful and promising method for contextual
mapping. CNNs have been originally used for computer vision
tasks, such as image classification (Krizhevsky et al., 2012) and
object detection. While the DNNs utilized in the aforementioned
soil mapping studies use vector data extracted from covariates as
input, CNNs use spatial contextual information extracted from
covariates around each soil observation as input images
(i.e., images or patches as xD arrays made of x covariates).
Several DSM studies have been assessing CNNs for the
mapping of soil organic carbon content (Padarian et al.,
2019b; Wadoux et al., 2019; Wadoux, 2019), particle size
fraction (Wadoux, 2019; Taghizadeh-Mehrjardi et al., 2020a),
pH and nitrogen content (Wadoux, 2019), or for spectral
modelling (Padarian et al., 2019c,a; Ng et al., 2019a,b; Xu
et al., 2019; Pyo et al., 2020; Tsakiridis et al., 2020; Yang et al.,
2020; Haghi et al., 2021; Zhong et al., 2021), but their potential for
soil classification has not been investigated yet.

While DNNs provide high predictive power, their use almost
systematically raise concerns because of their presumed low
interpretability (i.e. the black box pitfall; Samek et al. (2019);
Khaledian and Miller (2020)). However, a recent sub-field of
Artificial Intelligence (AI) called explainable AI (XAI) focuses on
clarifying complex AI models, such as DNNs, in a systematic and
interpretable manner (Samek et al., 2019). For instance, it is
possible to apply model-agnostic interpretation methods
(Molnar, 2021) to enable extracting interpretations from any
machine learning model. In particular, SHapley Additive
exPlanations (SHAP) developed by Lundberg and Lee (2017)
constitute a method to explain individual predictions, SHAP
values representing the contribution of a covariate to the final
model predictions. As of today, one DSM study (Padarian et al.,
2020) evaluated the use of SHAP for interpreting the predictions
of a CNN model, in particular in the geographical space, while

two other DSM studies used SHAP to interpret spectral models
(Haghi et al., 2021; Zhong et al., 2021).

During the last decade, a few classical DSM methods were
evaluated for mapping acid sulfate (AS) soils at different extents.
Clustering through fuzzy k-means was tested to map coastal AS
soils on a field extent in Australia (Huang et al., 2014a,b). Fuzzy
logic was used to generate a preliminary map for AS soil
occurrence at regional extent in Finland (Beucher et al., 2014).
Artificial Neural Networks (ANNs) were assessed to map AS soil
occurrence and several soil properties characterising the related
environmental risks at catchment extent in southwestern Finland
(Beucher et al., 2013, 2015). ANNs were also evaluated to map
potential AS soils in the wetland areas of Jutland, Denmark
(Beucher et al., 2017).

The present study will evaluate the use of CNNs for the
classification of potential AS located in the wetland areas of
Jutland, Denmark (c. 6,500 km2). The two main objectives are,
firstly, to assess the use of CNNs in comparison with random
forest for AS soil classification, and secondly and most
importantly, to apply a model-agnostic interpretation method
to clarify the final model predictions.

2 MATERIAL AND METHODS

2.1 Study Area
The wetlands located over Jutland, the continental part of
Denmark, constitute the study area (Figure 1). They cover
about 6,500 km2 and represent approximately 20% of the
Jutland peninsula (Madsen et al., 1985). Wetlands are
saturated soils, such as histosols, fluvisols and gleysols (IUSS

FIGURE 1 | Distribution of the soil observations in the study area.
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Working Group WRB, 2006). These areas were mainly used for
hay production until the second half of the 19th century when tile
drainage was introduced (Greve et al., 2014). Most of the wetlands
(c. 5,100 km2) have been artificially drained and intensively
farmed, the main crop being cereals and grass (Bou Kheir
et al., 2010). Low-relief sandy glaciofluvial outwash plains
from the Weichselian glaciation (i.e., Last Glacial Maximum)
dominate in the western part of the study area (c. 1,200 km2).
These plains area surrounded by slightly protruding islands of
older and strongly eroded moraine landforms from the Saalian
glaciation (c. 700 km2) (Madsen et al., 1985; Madsen and Jensen,
1988). The eastern part of the study area consists of Weichselian
moraine landforms (c. 900 km2) while the northern part is
composed of late- and post-glacial marine sediments (c.
2,400 km2) (Madsen and Jensen, 1988). Cretaceous limestone
dominates in northern Jutland and Djursland. Tertiary mica-rich
sand and clay prevail in the rest of Jutland (Madsen and Jensen,
1988). The study area has a temperate climate. The mean
temperature is 0°C in the winter and 16°C in the summer. The
average annual precipitation is about 800 mm in central Jutland
(Danmarks Meteorologiske Institut, 1998).

2.2 Soil Observations
Soil observations were extracted from the Ochre Classification
database which resulted from the potential AS soil mapping
conducted in the 1980s (Madsen et al., 1985). Soils in wetland
areas were targeted and surveyed through conventional mapping.
Field work was carried out from May to October over a 3-year
period (1981–83). The original selection of about 8,000 sampling
sites was based on historical topographic maps, geological maps,
soil maps and maps from previous moorland studies, representing
an even distribution in wetlands and soil types (Madsen et al.,
1985). The carbonate-free samples were considered as potential AS
soils if their pH dropped below 3.0 within 16 weeks of incubation at
room temperature (Madsen et al., 1985). For samples containing
calcium carbonates, the acid-neutralizing capacity (ANC) was
calculated from calcium and magnesium concentrations. The
samples were classified as potential AS soils if the calculated
ANC was smaller than the amount of sulfuric acid potentially
produced by the oxidation of the pyrite contained in the sample
(Madsen et al., 1985). A subset of 5,885 points was selected to be
used in the present study as the original set included points which
were incorrectly classified. The main misclassification concerned
points displaying a minimum incubation pH between 3.1 and 4.0
and wrongly classified as potential AS soils. For more details
concerning the soil observations and their classification, we
refer the reader to Beucher et al. (2017). A binary classification
was used within the present study: potential AS soil occurrences
(n � 2,309) and non-potential AS soil sites (i.e. soils which are not
and will not become AS soils; n � 3,576) (Figure 1).

2.3 Environmental Data and Variable
Selection
For the present study, the available 23 gridded environmental
data can be divided into three groups: topography (21 covariates),
soil (1 covariates) and climate (1 covariate). Danish variables

typically have a 30.4-m resolution because the digital elevation
model (DEM) was originally derived from the 1.6-m resolution
national airborne LiDAR (Light Detection and Ranging) data and
resampled to 30.4-m resolution (Adhikari et al., 2014). Variable
selection was employed in order to follow the principle of
parsimony (i.e., Occam’s razor) which indicates that a better
model can explain the same phenomena from fewer variables
(Batty and Torrens, 2001). Moreover, using fewer covariates may
ease result interpretation and enable faster computer processing
(Brungard et al., 2015). Recursive feature elimination (RFE) was
applied using the R package caret (Kuhn, 2021) to select the
optimal set of covariates for modelling based on the random
forest (RF) algorithm (R Core Team, 2021; Cai et al., 2018). First,
a RF model was trained on all 23 gridded environmental data,
yielding the importance of each covariate. Then, the least
important covariates were removed. This was recursively done
until the optimal number of covariates is reached. The optimal
number of covariates is defined through cross-validation. RFE
analysis was carried out with the following tuning parameters: the
number of tested environmental covariates (mtry) at each split as
default and the number of trees (ntree) at 1,000. Finally, 14
environmental covariates were selected and utilized as input
data for further modelling (Table 1). Among them, 10 terrain
attributes were derived from the DEM within ArcGIS (ESRI,
2020) or SAGA (System of Automated Geoscientific Analyses)
GIS (Conrad et al., 2015).

2.4 Random Forest and Scaled
Environmental Data
Random forest (RF) is used as a reference modelling technique for
comparison with the CNN approach. RF is a tree-based ensemble
method which has been widely used in digital soil mapping
studies to carry out classification and regression predictions
(Hengl et al., 2018). In this study, RF tuning parameters such
as ntree (the number of trees) and mtry (the number of input
environmental covariates in each random subset), were
determined using a Bayesian optimization procedure within R
with packages ranger (Wright and Ziegler, 2017) and
rBayesianOptimization (Yan, 2021). Bayesian optimization
constitutes a sequential model-based optimization procedure
that enables the identification of the optimum internal
parameters of models in a more efficient way than grid,
random or manual (i.e., trial-and-error) search (Hinz et al.,
2018). Within Bayesian optimization, the unknown objective
function is considered as a random function defined by a
prior probability distribution. Using function evaluations as
data, the prior is updated to form the objective function
posterior distribution. The posterior distribution is in turn
used to determines the next evaluation point. Both CNN and
RF models utilized this optimization procedure, as well as the
same calibration and test sets. Smoothing mean filters with
different neighbourhood sizes (i.e., 1, 3, 5, 7, 9, 15, 21, and 29
pixels) were used to provide the RFmodels with scaled versions of
the original environmental covariates, in an attempt to achieve a
fairer comparison between CNN and RF (Taghizadeh-Mehrjardi
et al., 2020a). RF models were thus trained both with the original
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14 selected environmental covariates and the scaled versions of this
selection (i.e., 112 covariates in total). Smoothing mean filters
constitute a common technique to derive scaled versions of
environmental data in digital soil mapping studies (Grinand
et al., 2008; Behrens et al., 2010a; Behrens et al., 2010b). Mean
filtering consists in replacing each pixel value in an image with the
mean (i.e., average) value of its neighbours, including itself (Shapiro,
1970; Boyle and Thomas, 1988). The R package raster (Hijmans,
2021) was used for filtering the original environmental covariates.

2.5 Convolutional Neural Networks
2.5.1 General
A Convolutional Neural Network (CNN) used for classification or
regressions tasks can be divided in two parts: the first part consists in
convolutional filtering for hierarchical feature extraction and the
second part comprises fully-connected layers of neurons which
calculate an output value, finalising the classification or regression
task. This second part is equivalent to a classical ANN. Feature
extraction by convolutional filtering is carried out through different
convolution and pooling steps or layers that can be repeated several
times. The objective of this first step is to extract the most relevant
features and themultiple representations of the spatial scales from the x
environmental covariates fed as an input xD array or patch (equivalent
to an image) to the CNN (Taghizadeh-Mehrjardi et al., 2020a). The
first convolutional layers extract low-level features or small local
patterns (i.e., edges and corners) while the last convolutional layers
extract high-level features, such as image structures (Mahdianpari et al.,
2018). CNNs can also be more complex and include additional parts
for more complex tasks, such as object detection.

A convolution layer consists in a filtering stage and the
application of an activation function. This layer is defined by
the convolutional filter size and the number of filters which
represents the depth of the output feature map produced by the
convolutional layer (Mahdianpari et al., 2018). A filter or moving
windowwith typical sizes of 3× 3 or 5× 5 pixels progresses over the
input xD array or patch (from left to right and from top to bottom).

The values of the filter represent the weights for each pixel. These
filter weights are randomly initialised and adjusted by
backpropagation which is a common algorithm in the training
of feed-forward neural networks. Typically, an optimizer, such as
stochastic gradient descent or ADAM, supports backpropagation.
Specifically, this algorithm computes the gradient of the loss
function using the weights of the model for a particular input
and output. The filter weights are first multiplied by the
overlapping pixel values of the input patch. Then, they are all
summed up to a new output value which is assigned to the center
location of the filter. The area of input patch which is overlaid by
the filter is called receptive field. As the filter progressively moves
over the input image, a new feature map is formed, constituting a
combination of all environmental covariates. For comparison, the
filter weights for all pixels of a feature map are the same in a CNN
while each neuron has its own set of weights in a classical ANN.
Applying different filter weights enables the identification of
distinct specific spatial properties within the input data.

A convolution step can be carried out several times. While the
first convolution is applied to the original input patch (i.e., made
from the original set of environmental covariates), the following
convolution steps are applied to the previously generated feature
maps, creating more generalized and spatially coarser levels of
information. The size of the convolution filter and the stride
control the generation of convoluted feature maps in a CNN. A
stride is the step width used by the filter to progress over the input
image. For example, a stride of 2 implies that only every second pixel
is considered and every other is skipped, which results in a reduced
size of the feature maps. A convolution step is followed by a
transformation or calculation step through the use of an
activation function. This activation function represents a
mathematical non-linear transformation function which
determines the relationship between input values and output
value. It calculates the output value of a neuron by non-linearly
transforming the weighted sum of the input value, and passes this
output to the next layer in the network. The rectified linear unit (i.e.

TABLE 1 | Environmental covariates selected for the modelling.

Predictor variables (clarification name) Range Description (source)

Soil

Depth to pre-Quaternary deposits (dpth2prek) 0–294 m Derived using the DEM and the pre-Quaternary surface topography Binzer and Stockmarr (1994)

Climate

Precipitation (precip61_90) 520–960 mm Mean precipitation measured from april to October for the years 1961–1990 Scharling (2000)

Topography

Elevation (elev) 0–161 m LiDAR-based elevation of land surface (Adhikari et al.,2014)
Detrended DEM (demdetrd) −58–82 m Elevation minus the mean elevation within a 4 km radius
Bluespot (bluespot) 0–21 m Depth of sinks
Direct sunlight insolation (dirinsola) 610–1,611 Direct sunlight insolation Böhner and Antonić (2009)
Mid-slope position (midslppos) 0–1 Relative vertical distance to mid-slope position Bendix (2004)
Multi-resolution valley bottom flatness (mrvbf) 0–10 Calculates depositional areas to identify flat valley bottoms Gallant and Dowling (2003)
Profile curvature (curv_prof) −2.4–2.3 Curvature parallel to the maximum slope
SAGA wetness index (sagawi) 8.1–19.1 Topographic wetness index with modified catchment area Böhner et al. (2002)
Slope (slope) 0–29° Slope gradient
Valley depth (valldepth) 0–79 m Relative height difference to adjacent channel
Vertical distance to channel network (vdtochn) 0–10 m Vertical distance to nearest waterbody
Distance to former Littorina sea coastline (dist2lit) 0–47.5 km Distance to former Littorina sea coastline
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ReLU) constitutes a commonly used nonlinear activation function
for deep learning.

A pooling layer constitutes a resampling or filtering step where
kernel sizes of 2 × 2 pixels and a stride of 2 are generally used. By
reducing the number of pixels in feature maps, the spatial
dimensions and computation costs are also minimised in
order to avoid overfitting and further generalize the
information. The maximum value within the kernel is selected
when using the max-pooling operator.

Convolution and pooling steps constitute the shared layers in a
CNN and are followed by the fully-connected network layers. A
flattening step enables the transition from the shared layers into a
fully-connected network (i.e., single-pixel feature maps transformed
into feature vectors to be used as input within the fully-connected
network). Within the second part of a CNN, the extracted spatially
local features from the shared layers are basically combined. Amain
difference between the shared layers and the fully-connected layers
is that the neurons in a convolution layer are only connected to the
neurons in the receptive field and not to all the neurons in the
previous layer. In order to avoid or reduce overfitting, a technique
called dropout can be used within the shared layers and the fully-
connected network (Krizhevsky et al., 2012). Dropout randomly
mutes neurons during the training phase.

2.5.2 Input Data Augmentation
In addition to dropout, data augmentation enables to further avoid
overfitting problems (Krizhevsky et al., 2012). Data augmentation
generates more training samples from the available training data
using a number of possible transformations without changing its
meaning (Simard et al., 2003). For example, the original training
data can be rotated by 90°, 180°and 270°, increasing the number of
training samples. The main goal is to enable the model to explore
more aspects of the training samples and, thus to increase the
generalization ability of the CNN. This is crucial as the prediction
ability of a CNN greatly depends on the amount of the existing
training samples (Krizhevsky et al., 2012).

2.5.3 CNN Architecture Selection and Parameter
Optimization
The architecture of the CNNmodel used in the present study and its
specifications are represented in Figure 2. All environmental

covariates were preprocessed through standardization
(i.e., centred on 0 and scaled to a standard deviation of 1). An
optimal window size for model training was determined by testing
various sizes of 3, 5, 7, 9, 15, 21, and 29 pixels for the prediction of
potential AS soil occurrence. Importantly, Bayesian optimization
was used to identify the optimal network hyperparameters (Hinz
et al., 2018). In this study, the number of filters and neurons, filter
size, max-pooling kernel size, learning rate (i.e., how many weights
are updated during training), dropout rate, activation function and
optimizer were determined using Bayesian optimization with 60
iterations. This optimization algorithm employs an objective
function (in our case, the overall accuracy) to train a model
through a Gaussian process using training samples as input.
Different network depths (i.e., number of layers within the CNN
model) were also tested. The simple architecture presented in
Figure 2 was selected as the increase in accuracy yielded by
more complex models was not substantial. The selected model
includes a sequence of shared layers: first, a convolutional layer with
a filter size of 3 × 3 and a ReLu activation function, second, a max-
pooling layer with a size of 2 × 2, third, a dropout layer which
randomly disconnects 15% of the connections in order to prevent
overfitting, and fourth, a flatten layer. The flatten layer enables the
connection between the shared layers and the succeeding fully-
connected layers by converting matrices into vectors. The fully-
connected layers performs the classification part of the CNN,
receiving information from the previous layers to generate
predictions (Taghizadeh-Mehrjardi et al., 2020b).

CNNs were implemented in Python (v3.8) (Python Software
Foundation, 2021) using Tensorflow/Keras (v2.6) (Abadi et al.,
2016; Keras, 2021) and Tensorboard (v2.6). The experiments
were carried out on an Intel CPU i7-8,700 machine with 3.2 GHz
6-core CPU and 32 GB RAM memory with a Nvidia GeForce
RTX 2070 GPU under CUDA version 11.4.

2.5.4 Training, Validation and Test Datasets
In order to evaluate the performance of our CNN models to
predict potential AS soils, 75 and 25% were randomly selected as
training and test dataset, respectively. On the remaining 75%,
data augmentation was carried out to increase the amount of the
training samples. Additionally, to find the optimal
hyperparameters and to avoid overfitting, we used a random

FIGURE 2 | Architecture of the selected CNN.
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subset (80 and 20%) of the augmented data for training and
validation of the CNN. The test dataset (25%), which is
independent of the training and validation samples, is used to
estimate the generalisation error of the proposed CNN and used
for the final model comparison (i.e., between RF and CNN). The
relationship between observed and predicted points for the
training and validation data sets was evaluated with the overall
prediction accuracy (OA) which represents the number of
correctly classified points divided by the total number of points.

2.6 Interpretability With SHAP
SHAP (SHapley Additive exPlanations) constitutes a method based
on Shapley values that enables explaining individual predictions
(Lundberg and Lee, 2017). Within a game theory context, each
feature (or covariate) value can be defined as a player in a coalitional
game (i.e., a modelling task) where the prediction represents the
payout. Shapley values are used to estimate how the payout is
distributed among the covariates (Molnar, 2021). In order to
compute Shapley values, two models are fitted for a covariate i:
one fS∪{i} including the covariate i and another fS withholding it. The
difference between the predictions of the two models on the current
input x, fS∪{i}(xS∪{i}) − fS (xS), constitutes the specific contribution of
covariate i (Lundberg and Lee, 2017). Since the specific contribution
of a covariate depends on the other utilised covariates, the preceding
calculation is computed for all the possible covariate subsets S ⊆ F,
where F is the set of all covariates. The overall covariate contribution
ϕi represents the weighted average of all specific contributions as
follows:

ϕi � ∑
S⊆F\ i{ }

|S|! |F| − |S| − 1( )!
|F|! fS∪ i{ } xS∪ i{ }( ) − fS xS( )[ ] (1)

The SHAP method defined by Lundberg and Lee (2017)
adapts the procedure described above by applying sampling
approximations to Eq. 1 and approximating the effect of
removing a covariate by using other samples from the training
dataset. In short, a SHAP value indicates the relative contribution,
positive or negative, of a covariate in a given sample to the
model’s output (Zhong et al., 2021). Moreover, Lundberg and Lee
(2017) developed a Deep SHAP explainer (DeepExplainer) to
compute SHAP values specifically for DNNs. The method applies
linear approximations which are aggregated by using a
composition rule enabling the approximation of SHAP values
for the whole model. Basically, in order to explain a complex
original model f, we use an explanation model g simpler than the
original. The explanation model is also based on simplified inputs
x′which map to the original inputs x through a mapping function
x � hx (x′) (Lundberg and Lee, 2017). This local method try to
ensure that g (z′) ≈ f (hx (z′)) when z′ ≈ x′. In order to assess the
effect of varying the input x, z′ is defined from reference values
sampled from observations from the training dataset (Padarian
et al., 2020). The contribution ϕi of each covariate (Eq. 1) is then
included in a linear function of binary variables (i.e., an
explainable variable being either present, 1, or absent, 0):

g z′( ) � ϕ0 +∑
M

i�1
ϕizi′ (2)

where z′ ∈ {0,1}M,M is the number of simplified input features, and
ϕi ∈ R. The explanationmodel g (i.e., the additive feature attribution
explanation model as defined by Lundberg and Lee (2017)) thus
represents an approximation of the prediction f(x) by summing all
the covariate contributions (or attributions) ϕizi′ and including ϕ0,
the contribution when all the covariates aremissing (i.e., mean of the
predictions for the complete dataset Padarian et al. (2020)).

The Deep SHAP Explainer is included in the SHAP Python library
(Lundberg and Lee, 2017) and was used for CNN interpretability
purposes. Deep SHAP supports both TensorFlow andKerasmodels by
extending the DeepLIFT algorithm from (Shrikumar et al., 2017) using
a distribution of background samples to calculate SHAP values for the
selected network. The data utilized to perform the approximations
correspond to the CNN training dataset. In order to confirm that the
model is capturing sensible relationships between the class target
(i.e., potential AS soil occurrence) and the environmental covariates,
we applied SHAP to visualize the distribution of the main contributing
environmental covariates over the whole study area, both as amap and
as a histogram. We also focused on a selection of main contributing
environmental covariates and inspected their distribution as a single
layer over the study area.

3 RESULTS AND DISCUSSION

3.1 RF Models
The predictive classification abilities of RF were evaluated for the
classification of potential AS soil occurrence in the wetlands of
Jutland. RF models were tested using firstly, the 14 environmental
covariates selected with RFE, and secondly, the 112 scaled covariates
forwhich smoothingmeanfilters were utilized. Based on the Bayesian
optimization procedure, the optimal RF tuning parameters were
defined for each RF model. The RF model built with the original
14 covariates (RForiginal) used a random subset size of 10, a minimal
nodesize of 5 and a tree size of 1,600 while the RF model developed
with the scaled covariates (RFscaled) used a random subset size of 5, a
minimal nodesize of 3 and a tree size of 680. Both models used the
Gini splitting rule. RForiginal and RFscaled models yielded comparable
OA values for validation, 61 and 63%, respectively. These results
indicate that the RFscaled model did not seem to use the contextual
spatial information to classify potential AS soils more accurately than
the RForiginal model. For the RForiginal model, the most important
variables were elevation, depth to pre-Quaternary deposits, detrended
elevation model and mid-slope position. For the RFscaled model, they
were elevation and detrended elevation model at different scales (fine
first, then coarse). AS soils occur in low-lying areas which supports
the importance of elevation layers. The depth to pre-Quaternary
deposits also represents a useful covariate in particular for central and
southern Jutland where potential AS soils can form in non-marine
environments (i.e. glaciofluvial outwash plains and moraine
landforms) overlaying pyrite-containing Tertiary sediments
(Beucher et al., 2017).

3.2 CNN Models
Using Bayesian optimization, the optimal hyperparameter values
were selected for our CNN models. Considering the CNN model
yielding the highest OA (68%), the hyperparameters were: ReLU
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as activation function, ADAM as optimizer, binary cross entropy
as loss function, a learning rate of 0.001, a convolution filter size
of 3 × 3 and 448 filters, a max-pooling kernel size of 2 × 2, and a
dropout rate of 15%. This model also used augmented data.
However, the CNN model with similar architecture and
parameters based on data without augmentation already
yielded a comparable OA value (63%). The optimal patch size
for training our CNN models was determined by assessing
different sizes (i.e. 3, 5, 7, 9, 15, 21, and 29) for the
classification of potential AS soils. An increase in patch size
up to 5 increases OA which then decreases from the patch size of
9. A patch size of 5 was thus found to be optimal. Considering the
spatial resolution of covariates of 30.4 m, a patch of 5 × 5 includes
the contextual information of approximately 76 m (i.e., 5/2 × 30.4
� 76 m). Therefore, the contextual information of environmental
covariates within a 76 m radius was demonstrated as valuable for
classifying potential AS soils compared to the local information
usually used at a specific point. This result is in line with findings
of past studies (Behrens et al., 2010a; Behrens et al., 2010b;
Behrens et al., 2018a; Behrens et al., 2018b; Padarian et al.,
2019b; Wadoux et al., 2019), which reported that the

prediction accuracy increased by including contextual
information within the modelling.

3.3 CNN/RF Model Comparison
The best performing CNNmodel yielded a slightly higher OA than
both RFmodels, improving the prediction by 5 and 7%compared to
RFscaled and RForiginal models, respectively. This relatively small
difference in performance canmight be explained by the use of RFE
as a common variable selection method. For this study, RFE was
based on the RF algorithm and thus rendered a selection of
covariates optimized for this method. As indicated by Brungard
et al. (2015), the use of RF within RFE most likely explains the
consistent higher accuracies rendered by RF models in comparison
with other models. Even though ANNs in general, and CNNs in
particular, have the ability to extract relevant information from large
datasets (Gershenfeld, 1999; Chagas et al., 2013) and generalize
from relatively imprecise data (Porwal et al., 2003), variable
selection might constitute an important processing step when
implementing them. Moreover, a variable selection optimized for
RF, a method resistant both to noise (Strobl et al., 2007) and
multicollinearity (Hengl et al., 2018), might not be the most sound

FIGURE 3 | Maps of the predicted probability for potential acid sulfate soil occurrence generated using Random Forest (RF) with scaled covariates (left) and
Convolutional Neural Networks (CNN; right).
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option for CNNs. However, the use of a specific variable selection
method for CNNsmight also yield a different selection of covariates,
which would hinder comparing the two methods. Another possible
most probable reason for the comparable performances of RF and
CNN lies in is the relatively coarse spatial resolution of the
environmental covariates used as input data, which might may
have represented a strong limitation for the CNNmodels. As stated
previously using a patch of 5 × 5 with 30.4-m resolution covariates
resulted in the use of contextual information within a 76-m radius
around soil observations for the training of CNN models.
Employing covariates with a finer resolution, for example 10 m,
would enable to use larger size patches and thus feed the CNN
models with more details to investigate in each input image.
Moreover, this limitation due to the resolution could also
explain the fact that CNN models with more complex
architectures did not yield notable increases in accuracy
compared to the simple CNN selected in this study (Figure 2).
While the first convolution layer is applied to the input
environmental covariates and extracts low-level features, the
following convolution layers are applied to the created feature
maps and thus, produce more generalized and spatially coarser
level of information. In our case, the additional convolution layers
might only have extracted coarser information from coarse input

data, which did not enable the fully-connected layers to generate
more accurate predictions.

Comparing the prediction maps in Figure 3, both models
predicted high probability areas located along the western coast
of Jutland, for example the delta region of the Skjern River (i.e. the
bottom located close-up in Figure 3) which constitutes a well-
known potential AS soil area (Madsen and Jensen, 1988). However,
the RF model tended to over-predict mid-range values (Figure 4),
which can be observed in the northern part of Jutland, in particular
in the top-located close-up in Figure 3. This can be interpreted as
RF poorly generalizing from input data. In comparison, the CNN
model over-predicted low probability values (Figure 4), which can
be explained by the fact that the set of non-potential AS soils (n �
3,576) is larger than the one of potential AS soils (n � 2,309).

3.4 Interpretability Using SHAP
In order to compute SHAP values, we used 200 training points
from each class as background data (i.e., data to perform the
approximations). These values were found empirically as it was
determined to give a good trade-off between consistency of SHAP
values and computation time since the computation of SHAP
values from the explainer increases linearly with the number of
samples (i.e., training points).

In order to gainmore insight as to the spatial interpretation of the
model over Jutland, the most important covariates are displayed in
Figure 5. The map shows the spatial distribution of the covariates
with the largest SHAP value for each 5× 5 patch,meaning the largest
positive or negative deviation from the baseline SHAP values
calculated from the background samples. Moreover, Figure 6
shows the distribution of the covariates with the largest SHAP
contribution for each patch. Figure 6 indicates that the
detrended DEM, depth to pre-Quaternary deposits and distance
to Littorina sea coastline constitute the most important covariates in
terms of occurrence, followed by the multi-resolution valley bottom
flatness and precipitation. Figure 5 shows that the detrendedDEM is
themost important covariate in wetland areas all over Jutland, which
can be expected as soils typically occur in low-lying areas. The depth
to pre-Quaternary deposits represents the second most important
covariate, occurringmostly in thewestern half of Jutland. This can be
explained by the fact that potential AS soils can form in non-marine
environments (i.e., in glaciofluvial outwash plains and moraine
landforms as seen in Figure 7) overlaying pyrite-rich Tertiary
sediments (Beucher et al., 2017). The distance to the former
Littorina sea coastline constitutes the third most important
covariate and almost perfectly concurs with post-glacial marine
deposits located in northern Jutland and the easternmost part of
central Jutland (Figure 7). This result confirms the suggestion of
Beucher et al. (2017) that such a predictor enables targeting potential
AS soils formed within post-glacial marine deposits and most
probably occurring close to this limit. The multi-resolution valley
bottom flatness and precipitation also represent important
covariates. The former occurs as a most important covariate in
wetlands almost all over Jutland, particularly in the eastern part of
Jutland, andmost probably emphasizes flat, low-relief areas in which
AS soils typically appear. Precipitation mostly occurs as a most
important covariate in the southern and westernmost areas of
Jutland. These areas are particularly flat and low-lying with a

FIGURE 4 | Distribution of the predicted probability for potential acid
sulfate soil occurrence generated using Random Forest (RF) with scaled
covariates (top) and Convolutional Neural Networks (CNN; bottom).
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very high groundwater table. Perhaps, precipitation constitutes an
indirect indicator in these specific areas which are all located in or
upstream from marsh areas (Figure 7).

A summary plot for the selected CNN can be seen in Figure 8.
Each point on the plot shows the yielded SHAP values for each
covariate for all 5 × 5 patches. It should be noted that if multiple
patches for a given covariate have the same value the points are
stretched along the y-axis. Notably, the plot confirms the
previously developed interpretation results concerning the most
important covariates in terms of SHAP contribution and enables
further interpretation. Focusing on the detrended DEM, Figure 8
shows that low elevation values (in blue) mostly have a strong
positive impact on the model output, which can be explained as
soils typically occur in low-lying areas. Shallow depths to pre-
Quaternary deposits and small distances to the former Littorina sea
coastline (in blue) also present a substantial positive impact on the
model output. This confirms that potential AS soils can be targeted
in the corresponding areas, either in former marine environments

FIGURE 5 | Spatial distribution of covariates with the largest SHAP importance for each patch.

FIGURE 6 | Distribution of covariates with the largest SHAP importance
for each patch (clarification of covariate names in Table 1).
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close to the former Littorina sea coastline or in non-marine
environments above shallow pyrite-rich Tertiary deposits.

Next, the distribution of SHAP values for the top three covariates,
namely the detrended DEM, depth to pre-Quaternary deposits and
distance to Littorina sea coastline, is shown in Figure 9. While
Figures 5, 6 display the most important covariates spatially and
quantitatively, Figure 9 shows the distribution of SHAP values, both

positive and negative, for each of the top three covariates. The three
maps confirm previous findings. Firstly, the distance to the former
Littorina sea coastline (Figure 9C) presents the most positive SHAP
values (i.e. strong positive impact on model output) in northern
Jutland and the eastern part of central Jutland, which correspond to
post-glacial marine deposit areas (Figure 7). The most negative
SHAP values (i.e., negative impact on model output) are mostly
located in western and southwestern inland areas of Jutland.
Secondly, the depth to pre-Quaternary deposits (Figure 9B) show
the most positive SHAP values for areas mostly located in the
western half of Jutland, where potential AS soils can form in non-
marine environments, such as glacial flood plains and moraine
landforms overlaying pyrite-rich Tertiary sediments (Figure 7). The
most negative SHAP values are located in coastal areas in northern
and southwestern Jutland. Thirdly, the detrended DEM (Figure 9A)
presents mostly a positive impact in southern, western and parts of
northern Jutland. Negative impact occurs in eastern Jutland and the
remaining parts of northern Jutland.

Finally, the Deep SHAP explainer enables assessing covariate
importance (as can be done for classical machine learning models
such as RF), most importantly in a spatial context, producing
different maps of covariate contributions for the CNN predictive
model. Concurring with Padarian et al. (2020), we emphasize that
the use of SHAP values for model interpretation represents a
substantial development within the DSM framework. Samek et al.
(2019) states that discovering new patterns within the data
through the use of XAI methods such as SHAP (i.e. explaining
and interpreting what covariates/features were used for
prediction) is often more important than the prediction itself.
The results of the present study are consistent with this statement.
Furthermore, as the amount of high resolution data will
substantially increase in the near future, the use of deep
learning models will also most probably expand. Interpretation
methods such as SHAP will thus become necessary to 1) improve

FIGURE 7 | Map of the main landscape types (i.e., spatially
homogeneous geomorphological units) in Jutland (derived using the existing
digital vector landscape map at 1:100000 scale originally from Madsen et al.
(1992)).

FIGURE 8 | Summary plot for the selected CNN model (clarification of covariate/feature names in Table 1).
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our understanding of complex model results, 2) possibly develop
our knowledge of soil systems and 3) enable us to better explain
our findings both to scientific and non-scientific audience.

3.5 Other Challenges AssociatedWith CNNs
and Future Possible Development
When employing CNNs, another substantial challenge lies in the
selection of a model architecture. Two approaches can be utilized.

With the first approach, pre-existing architectures of well-known
CNNs such as DenseNet (Huang et al., 2017), Inception (Szegedy
et al., 2015), VGG (Simonyan and Zisserman, 2015), Xception
(Chollet, 2017) and ResNet (He et al., 2016) are employed.
Primarily defined for computer vision, these CNNs have been
used for example in land cover classification studies (e.g.,
Mahdianpari et al. (2018)). With the second approach, a CNN
architecture is fully designed and the model trained from scratch. In
this case, the network hyperparameters are determined through a

FIGURE 9 | Spatial distribution of SHAP values for the three most important covariates: detrended DEM, depth to pre-Quaternary deposits and distance to Littorina
sea coastline.
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highly iterative process which can be based on manual (trial-and-
error), purely random or grid search, sequential model-based
optimization such as Bayesian optimization or a combination of
approaches (Bergstra and Bengio, 2012; Hinz et al., 2018). Within
the existing DSM studies investigating the use of CNNS, this second
approach is employed. However, the selection of the architecture is
generally not clarified, with the exception of Taghizadeh-Mehrjardi
et al. (2020b) and Wadoux et al. (2019) which both relied on
Bayesian optimization. while the present study utilized Bayesian
optimization for the selection of several hyperparameters, it still
resorted to a trial-and-error process to design the CNN architecture
(i.e., number and type of layers), which constitutes a substantial
weakness. A future development of the present work would be to test
and clarify different existing methods for hyperparameter
optimization, such as tree of Parzen estimators, genetic algorithm
and sequential model-based algorithm configuration (Hinz et al.,
2018) for the specific purpose of soil mapping.

Another crucial challenge consists in the assessment of uncertainty
for CNN model predictions. Padarian et al. (2019b) used
bootstrapping to derive confidence intervals while Wadoux (2019)
employed a method based on bootstrap plus variance estimates
(Khosravi et al., 2011). The latter study also referred to two other
possible methods for uncertainty quantification of neural networks,
namely the Bayesian uncertainty analysis (Mackay, 1992; Gal and
Ghahramani, 2016) and the Delta (De Vleaux et al., 1998) methods,
which have not been tested yet. Considering AS soils, the use of
contextual informationmay considerably benefit themapping of their
occurrence. A future development of the present study would be the
prediction of key soil properties in strategic hot spot areas for AS soil
occurrence using CNNs. Accounting for the spatial variability of soil
properties, such as incubation pH and titratable acidity, would enable
an improved management of environmental risks related to AS soils.

4 CONCLUSION

The present study aimed at investigating first, the use of
convolutional neural networks for the classification of potential
acid sulfate soils located in the wetlands of Jutland, Denmark, and
second and most importantly, the application of a model-agnostic
interpretation method called SHAP to the selected convolutional
neural networks model. The deep learning model yielded slightly
higher prediction accuracy than the random forest models which
were using original or scaled covariates. These results could most

likely be explained by the use of a common variable selection
method, namely recursive feature elimination. This technique
being based on the random forest algorithm most probably
rendered a selection of covariates optimized for this method.
However, the main focus of the study was to assess the SHAP
interpretation method. In particular, the spatial interpretation of
the most important covariates enabled to clarify the predictions of
the selected convolutional neural networks model. While classical
machine learning methods such as random forest or cubist provide
variable importance or usage, SHAP allows the visualization of
covariate contribution to the convolutional neural network model
at different levels in geographical space, such as the general spatial
distribution of all most important covariates in one map and the
specific spatial distribution of SHAP values for one covariate. The
possibility to inspect the contribution of covariates in space
constitutes a crucial development for digital soil mapping in
general and for contextual mapping in particular. The
combination of convolutional neural networks and SHAP
represent a powerful and promising progress for contextual
mapping. Furthermore, the rapid developments within the field
of explainable artificial intelligence will most likely deliver novel
tools to visualize, explain and interpret deep learning methods,
which may lead to discovering new insights, improving both
knowledge and understanding of soil systems.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusion of this article will be
made available by the authors, without undue reservation.

AUTHOR CONTRIBUTIONS

AB conceived, executed the research and wrote the paper. CR
participated in executing the research and writing the paper. TM
reviewed the paper. MG gave suggestions about the approach and
reviewed the paper.

FUNDING

The study was supported by the ReDoCO2 project with funding
from the Innovation Fund Denmark (grant number: 0177-00086A).

REFERENCES

Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., et al. (2016).
“Tensorflow: a System for Large-Scale Machine Learning,” in OSDI, 265–283.

Adhikari, K., Hartemink, A. E., Minasny, B., Bou Kheir, R., Greve, M. B., and Greve,
M. H. (2014). Digital Mapping of Soil Organic Carbon Contents and Stocks in
Denmark. PLoS ONE 9. doi:10.1371/journal.pone.0105519

Batty, M., and Torrens, P. M. (2001). Modelling Complexity : The Limits to
Prediction. cybergeo 201. doi:10.4000/cybergeo.1035

Behrens, T., Schmidt, K., Zhu, A. X., and Scholten, T. (2010a). The ConMap
Approach for Terrain-Based Digital Soil Mapping. Eur. J. Soil Sci. 61, 133–143.
doi:10.1111/j.1365-2389.2009.01205.x

Behrens, T., Zhu, A.-X., Schmidt, K., and Scholten, T. (2010b). Multi-scale Digital
Terrain Analysis and Feature Selection for Digital Soil Mapping. Geoderma 155,
175–185. doi:10.1016/j.geoderma.2009.07.010

Behrens, T., Schmidt, K., Ramirez-Lopez, L., Gallant, J., Zhu, A. X., and Scholten, T.
(2014). Hyper-Scale Digital Soil Mapping and Soil Formation Analysis.
Geoderma 213, 578–588. doi:10.1016/j.geoderma.2013.07.031

Behrens, T., Schmidt, K., MacMillan, R. A., and Viscarra Rossel, R. A. (2018a).
Multi-scale Digital Soil Mapping with Deep Learning. Sci. Rep. 8, 2–10.
doi:10.1038/s41598-018-33516-6

Behrens, T., Schmidt, K., MacMillan, R. A., and Viscarra Rossel, R. A. (2018b).
Multiscale Contextual Spatial Modelling with the Gaussian Scale Space.
Geoderma 310, 128–137. doi:10.1016/j.geoderma.2017.09.015

Bendix, J. (2004). Gelandeklimatologie. Berlin: Gebruder Borntraeger.

Frontiers in Environmental Science | www.frontiersin.org January 2022 | Volume 9 | Article 80999512

Beucher et al. Interpretation SHAP CNN Soil Classification

https://doi.org/10.1371/journal.pone.0105519
https://doi.org/10.4000/cybergeo.1035
https://doi.org/10.1111/j.1365-2389.2009.01205.x
https://doi.org/10.1016/j.geoderma.2009.07.010
https://doi.org/10.1016/j.geoderma.2013.07.031
https://doi.org/10.1038/s41598-018-33516-6
https://doi.org/10.1016/j.geoderma.2017.09.015
https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


Bergstra, J., and Bengio, Y. (2012). Random Search for Hyper-Parameter
Optimization. J. Machine Learn. Res. 13, 281–305.

Beucher, A., Österholm, P., Martinkauppi, A., Edén, P., and Fröjdö, S. (2013).
Artificial Neural Network for Acid Sulfate Soil Mapping: Application to the
Sirppujoki River Catchment Area, South-Western Finland. J. Geochem. Explor.
125, 46–55. doi:10.1016/j.gexplo.2012.11.002

Beucher, A., Fröjdö, S., Österholm, P., Martinkauppi, A., and Edén, P. (2014). Fuzzy
Logic for Acid Sulfate Soil Mapping: Application to the Southern Part of the Finnish
Coastal Areas. Geoderma 226-227, 21–30. doi:10.1016/j.geoderma.2014.03.004

Beucher, A., Siemssen, R., Fröjdö, S., Österholm, P., Martinkauppi, A., and Edén, P.
(2015). Artificial Neural Network for Mapping and Characterization of Acid
Sulfate Soils: Application to Sirppujoki River Catchment, Southwestern
Finland. Geoderma, 247-248, 38–50. doi:10.1016/j.geoderma.2014.11.031

Beucher, A., Adhikari, K., Breuning-Madsen, H., Greve, M. B., Österholm, P.,
Fröjdö, S., et al. (2017). Mapping Potential Acid Sulfate Soils in Denmark Using
Legacy Data and LiDAR-Based Derivatives. Geoderma 308, 363–372.
doi:10.1016/j.geoderma.2016.06.001

Binzer, K., and Stockmarr, J. (1994). Geological Map of Denmark 1:500,000 – Pre-
Quaternary Surface Topography of Denmark. Geological Survey of Denmark.
Map series no. 44, 10. 2 maps.

Böhner, J., and Antonić, O. (2009). “Chapter 8 Land-Surface Parameters Specific to
Topo-Climatology,” in Geomorphometry: Concepts, Software, Applications.
Editors T. Hengl and H. I. Reuter (New York: Elsevier), 195–226.
doi:10.1016/s0166-2481(08)00008-1

Böhner, J., Köthe, R., Conrad, O., Gross, J., Ringeler, A., and Selige, T. (2002). “Soil
Regionalization by Means of Terrain Analysis and Process Parameterization,” in
Soil Classification 2001. Editors E. Micheli, F. Nachtergaele, and L. Montanarella
(Luxembourg), Eur. Soil Bur., Res. Rep. No. 7, EUR 20398 EN 213–222.

Bou Kheir, R., Greve, M. H., Bøcher, P. K., Greve, M. B., Larsen, R., and McCloy, K.
(2010). Predictive Mapping of Soil Organic Carbon in Wet Cultivated Lands
Using Classification-Tree Based Models: The Case Study of Denmark.
J. Environ. Manage. 91, 1150–1160. doi:10.1016/j.jenvman.2010.01.001

Boyle, R., and Thomas, R. (1988). Computer Vision: A First Course. UK: Blackwell
Scientific Publications, 210–34.

Brungard, C. W., Boettinger, J. L., Duniway, M. C., Wills, S. A., and Edwards, T. C.
(2015). Machine Learning for Predicting Soil Classes in Three Semi-arid
Landscapes. Geoderma 239-240, 68–83. doi:10.1016/j.geoderma.2014.09.019

Breuning Madsen, H., and Henrik Jensen, N. (1988). Potentially Acid Sulfate Soils
in Relation to Landforms and Geology. Catena 15, 137–145. doi:10.1016/0341-
8162(88)90025-2

Cai, J., Luo, J., Wang, S., and Yang, S. (2018). Feature Selection in Machine Learning: A
New Perspective. Neurocomputing 300, 70–79. doi:10.1016/j.neucom.2017.11.077

Chagas, C. d. S., Antônio, C., Vieira, O., Elpídio, I., and Fernandes, F. (2013).
Comparison Between Artificial Neural Networks and Maximum Likelihood
Classification in Digital Soil Mapping. R. Bras. Ci. Solo 37, 339–351.

Chollet, F. (2017). “Xception: Deep Learning with Depthwise Separable
Convolutions,” in Proceedings - 30th IEEE Conference on Computer Vision
and Pattern Recognition, Honolulu, HI, 2017-January, 1800–1807. CVPR 2017.
doi:10.1109/CVPR.2017.195

Conrad, O., Bechtel, B., Bock, M., Dietrich, H., Fischer, E., Gerlitz, L., et al. (2015).
System for Automated Geoscientific Analyses (SAGA) V. 2.1.4. Geosci. Model.
Dev. 8, 1991–2007. doi:10.5194/gmd-8-1991-2015

Danmarks Meteorologiske Institut (1998). Danmarks Klima 1997. Copenhagen:
Danmarks Meteorologiske Institut.

De Vleaux, R. D., Schumi, J., Schweinsberg, J., and Ungar, L. H. (1998). Prediction
Intervals for Neural Networks via Nonlinear Regression. Technometrics 40,
273–282. doi:10.1080/00401706.1998.10485556

Emadi, M., Taghizadeh-Mehrjardi, R., Cherati, A., Danesh, M., Mosavi, A., and Scholten,
T. (2020). Predicting and Mapping of Soil Organic Carbon Using Machine Learning
Algorithms in Northern Iran. Remote Sens. 12, 2234. doi:10.3390/rs12142234

ESRI (2020). ArcGIS Desktop: Release 10.7.1. Redlands, CA: Environmental
Systems Research Institute.

Gal, Y., and Ghahramani, Z. (2016). “Dropout as a Bayesian Approximation:
Representing Model Uncertainty in Deep Learning,” in 33rd International
Conference on Machine Learning, ICML 2016, 1651–1660.

Gallant, J., and Dowling, T. (2003). A Multi-Resolution index of valley Bottom
Flatness for Mapping Depositional Areas. Water Resour. Res. 39 (12),
1347–1359. doi:10.1029/2002wr001426

Gershenfeld, N. (1999). The Nature of Mathematical Modelling. Cambridge:
Cambridge University Press, 356.

Gholizadeh, A., Saberioon,M., Ben-Dor, E., Viscarra Rossel, R. A., and Borůvka, L. (2020).
Modelling Potentially Toxic Elements in forest Soils with Vis-NIR Spectra and
Learning Algorithms. Environ. Pollut. 267, 115574. doi:10.1016/j.envpol.2020.115574

Greve, M. H., Christensen, O. F., Greve, M. B., and Kheir, R. B. (2014). Change in
Peat Coverage in Danish Cultivated Soils during the Past 35 Years. Soil Sci. 179,
250–257. doi:10.1097/SS.0000000000000066

Grinand, C., Arrouays, D., Laroche, B., and Martin, M. P. (2008). Extrapolating
Regional Soil Landscapes from an Existing Soil Map: Sampling Intensity,
Validation Procedures, and Integration of Spatial Context. Geoderma 143,
180–190. doi:10.1016/j.geoderma.2007.11.004

Haghi, R. K., Pérez-Fernández, E., and Robertson, A. H. J. (2021). Prediction of
Various Soil Properties for a National Spatial Dataset of Scottish Soils Based on
Four Different Chemometric Approaches: A Comparison of Near Infrared and
Mid-infrared Spectroscopy. Geoderma 396, 115071. doi:10.1016/
j.geoderma.2021.115071

He, K., Zhang, X., Ren, S., and Sun, J. (2016). “Deep Residual Learning for Image
Recognition,” in Proceedings of the IEEE Computer Society Conference on
Computer Vision and Pattern Recognition, 2016-December, 770–778.
doi:10.1109/cvpr.2016.90

Hengl, T., Nussbaum, M., Wright, M. N., Heuvelink, G. B. M., and Gräler, B.
(2018). Random forest as a Generic Framework for Predictive Modeling of
Spatial and Spatio-Temporal Variables. PeerJ 6, e5518. doi:10.7717/peerj.5518

Hijmans, R. (2021). Raster: Geographic Data Analysis and Modeling. r package
version 3. 4-13. Available at https://cran.r-project.org/web/packages/raster/.

Hinz, T., Navarro-Guerrero, N., Magg, S., andWermter, S. (2018). Speeding up the
Hyperparameter Optimization of Deep Convolutional Neural Networks. Int.
J. Comp. Intel. Appl. 17, 1850008–1850015. doi:10.1142/S1469026818500086

Huang, J., Nhan, T., Wong, V. N. L., Johnston, S. G., Lark, R. M., and Triantafilis, J.
(2014a). Digital Soil Mapping of a Coastal Acid Sulfate Soil Landscape. Soil Res.
52, 327–339. doi:10.1071/SR13314

Huang, J., Wong, V. N. L., and Triantafilis, J. (2014b). Mapping Soil Salinity and
pH across an Estuarine and Alluvial plain Using Electromagnetic and Digital
Elevation Model Data. Soil Use Manage 30, 394–402. doi:10.1111/sum.12122

Huang, G., Liu, Z., Van Der Maaten, L., and Weinberger, K. Q. (2017). “Densely
Connected Convolutional Networks,” ,in Proceedings - 30th IEEE Conference
on Computer Vision and Pattern Recognition, Honolulu, HI, 2017-January,
2261–2269. CVPR 2017. doi:10.1109/CVPR.2017.243

IUSS Working Group WRB (2006). World Reference Base for Soil Resources 2006.
World Soil Resources Reports No. 103. Rome: FAO.

Jiang,Z.-d.,Owens, P.R., Zhang,C.-l., Brye,K.R.,Weindorf,D.C.,Adhikari,K., et al. (2021).
Towards a Dynamic Soil Survey: Identifying and Delineating Soil Horizons In-Situ
Using Deep Learning. Geoderma 401, 115341. doi:10.1016/j.geoderma.2021.115341

Keras (2021). Available at https://keras.io/.
Khaledian, Y., and Miller, B. A. (2020). Selecting Appropriate Machine Learning

Methods for Digital Soil Mapping. Appl. Math. Model. 81, 401–418.
doi:10.1016/j.apm.2019.12.016

Khosravi, A., Nahavandi, S., Creighton, D., and Atiya, A. F. (2011). Comprehensive
Review of Neural Network-Based Prediction Intervals and New Advances. IEEE
Trans. Neural Netw. 22, 1341–1356. doi:10.1109/TNN.2011.2162110

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). “Imagenet Classification
with Deep Convolutional Neural Networks,” in Advances in Neural
Information Processing Systems (MIT Press), 1097–1105.

Kuhn, M. (2021). Caret: Classification and Regression Training. r package version 6.0-88.
Available at https://cran.r-project.org/web/packages/caret/.

Lark, R. M., and Webster, R. (2001). Changes in Variance and Correlation of Soil
Properties with Scale and Location: Analysis Using an Adapted Maximal
Overlap Discrete Wavelet Transform. Eur. J. Soil Sci. 52, 547–562.
doi:10.1046/j.1365-2389.2001.00420.x

Lundberg, S. M., and Lee, S. I. (2017). “A Unified Approach to Interpreting Model
Predictions,” in Advances in Neural Information Processing Systems, Long
Beach, CA, 2017-Decem, 4766–4775.

Mackay, D. J. C. (1992). The Evidence Framework Applied to Classification
Networks. Neural Comput. 4, 720–736. doi:10.1162/neco.1992.4.5.720

Madsen, H. B., Jensen, N. H., Jakobsen, B. H., and Platou, S. W. (1985). A Method
for Identification and Mapping Potentially Acid Sulfate Soils in Jutland,
Denmark. Catena 12, 363–371. doi:10.1016/s0341-8162(85)80031-x

Frontiers in Environmental Science | www.frontiersin.org January 2022 | Volume 9 | Article 80999513

Beucher et al. Interpretation SHAP CNN Soil Classification

https://doi.org/10.1016/j.gexplo.2012.11.002
https://doi.org/10.1016/j.geoderma.2014.03.004
https://doi.org/10.1016/j.geoderma.2014.11.031
https://doi.org/10.1016/j.geoderma.2016.06.001
https://doi.org/10.1016/s0166-2481(08)00008-1
https://doi.org/10.1016/j.jenvman.2010.01.001
https://doi.org/10.1016/j.geoderma.2014.09.019
https://doi.org/10.1016/0341-8162(88)90025-2
https://doi.org/10.1016/0341-8162(88)90025-2
https://doi.org/10.1016/j.neucom.2017.11.077
https://doi.org/10.1109/CVPR.2017.195
https://doi.org/10.5194/gmd-8-1991-2015
https://doi.org/10.1080/00401706.1998.10485556
https://doi.org/10.3390/rs12142234
https://doi.org/10.1029/2002wr001426
https://doi.org/10.1016/j.envpol.2020.115574
https://doi.org/10.1097/SS.0000000000000066
https://doi.org/10.1016/j.geoderma.2007.11.004
https://doi.org/10.1016/j.geoderma.2021.115071
https://doi.org/10.1016/j.geoderma.2021.115071
https://doi.org/10.1109/cvpr.2016.90
https://doi.org/10.7717/peerj.5518
https://cran.r-project.org/web/packages/raster/
https://doi.org/10.1142/S1469026818500086
https://doi.org/10.1071/SR13314
https://doi.org/10.1111/sum.12122
https://doi.org/10.1109/CVPR.2017.243
https://doi.org/10.1016/j.geoderma.2021.115341
https://keras.io/
https://doi.org/10.1016/j.apm.2019.12.016
https://doi.org/10.1109/TNN.2011.2162110
https://cran.r-project.org/web/packages/caret/
https://doi.org/10.1046/j.1365-2389.2001.00420.x
https://doi.org/10.1162/neco.1992.4.5.720
https://doi.org/10.1016/s0341-8162(85)80031-x
https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


Madsen, H., Nørr, A., and Holst, K. (1992). “The Danish Soil Classification,” in
Atlas over Denmark I (Copenhagen: The Royal Danish Geographical Society),
Vol. 3.

Mahdianpari, M., Salehi, B., Rezaee, M., Mohammadimanesh, F., and Zhang, Y.
(2018). Very Deep Convolutional Neural Networks for Complex Land Cover
Mapping Using Multispectral Remote Sensing Imagery. Remote Sens. 10, 1119.
doi:10.3390/rs10071119

Miller, B. A., Koszinski, S., Wehrhan, M., and Sommer, M. (2015). Impact of Multi-
Scale Predictor Selection for Modeling Soil Properties. Geoderma 239-240,
97–106. doi:10.1016/j.geoderma.2014.09.018

Molnar, C. (2021). Interpretable Machine Learning - A Guide for Making Black Box
Models Explainable. Available at https://christophm.github.io/interpretable-
ml-book/.

Ng,W., Minasny, B., Mendes,W. d. S., and Demattê, J. A. M. (2019a). Estimation of
Effective Calibration Sample Size Using Visible Near Infrared Spectroscopy:
Deep Learning vs Machine Learning. SOIL Discuss., 1–21. doi:10.5194/soil-
2019-48

Ng, W., Minasny, B., Montazerolghaem, M., Padarian, J., Ferguson, R., Bailey, S.,
et al. (2019b). Convolutional Neural Network for Simultaneous Prediction of
Several Soil Properties Using Visible/near-Infrared, Mid-infrared, and Their
Combined Spectra. Geoderma 352, 251–267. doi:10.1016/
j.geoderma.2019.06.016

Padarian, J., Minasny, B., and McBratney, A. B. (2019a). Transfer Learning to
Localise a continental Soil Vis-NIR CalibrationModel.Geoderma 340, 279–288.
doi:10.1016/j.geoderma.2019.01.009

Padarian, J., Minasny, B., and McBratney, A. B. (2019b). Using Deep Learning for
Digital Soil Mapping. Soil 5, 79–89. doi:10.5194/soil-5-79-2019

Padarian, J., Minasny, B., and McBratney, A. B. (2019c). Using Deep Learning to
Predict Soil Properties from Regional Spectral Data. Geoderma Reg. 16, e00198.
doi:10.1016/j.geodrs.2018.e00198

Padarian, J., McBratney, A. B., and Minasny, B. (2020). Game Theory
Interpretation of Digital Soil Mapping Convolutional Neural Networks.
SOIL Discuss., 1–12. doi:10.5194/soil-2020-17

Porwal, A., Carranza, E. J. M., and Hale, M. (2003). Knowledge-Driven and Data-
Driven Fuzzy Models for Predictive Mineral Potential Mapping. Natural
Resources Research 12.

Pyo, J., Hong, S. M., Kwon, Y. S., Kim, M. S., and Cho, K. H. (2020). Estimation of
Heavy Metals Using Deep Neural Network with Visible and Infrared
Spectroscopy of Soil. Sci. Total Environ. 741, 140162. doi:10.1016/
j.scitotenv.2020.140162

Python Software Foundation (2021). Python Language Reference, Python Software
Foundation. Available at https://www.python.org/.

R Core Team (2021). R: A Language and Environment for Statistical Computing.
Vienna Austria: R Foundation for Statistical Computing.

Samek, W., Montavon, G., Vedaldi, A., Hansen, L. K., and Muller, K.-R. (2019).
Explainable AI: Interpreting, Explaining and Visualizing Deep Learning.
doi:10.1007/978-3-030-28954-6

Scharling, M. (2000). Klimagrid - Danmark Normaler 1961-90 Måneds- Og Årsværdier
Nedbør 10*10, 20*20 40*40 422 Km Temperatur Og Potentiel Fordampning 20*20
40*40 Km. Danish Meteorological Institute, 1–17. Teknisk Rapport.

Shapiro, R. (1970). Smoothing, Filtering, and Boundary Effects. Rev. Geophys. 8,
359–387. doi:10.1029/rg008i002p00359

Shrikumar, A., Greenside, P., and Kundaje, A. (2017). “Learning Important
Features through Propagating Activation Differences,” in 34th International
Conference on Machine Learning, ICML 2017, 4844–4866.

Simard, P. Y., Steinkraus, D., and Platt, J. C. (2003). “Best Practices for
Convolutional Neural Networks Applied to Visual Document Analysis,” in
Proceedings of the Seventh International Conference on Document Analysis
and Recognition (ICDAR), 1–6.

Simonyan, K., and Zisserman, A. (2015). “Very Deep Convolutional Networks for
Large-Scale Image Recognition,” in 3rd International Conference on Learning
Representations, ICLR 2015 - Conference Track Proceedings, 1–14.

Singh, S., and Kasana, S. S. (2019). Estimation of Soil Properties from the EU
Spectral Library Using Long Short-TermMemory Networks.Geoderma Reg. 18,
e00233. doi:10.1016/j.geodrs.2019.e00233

Smith, M. P., Zhu, A.-X., Burt, J. E., and Stiles, C. (2006). The Effects of DEM
Resolution and Neighborhood Size on Digital Soil Survey. Geoderma 137,
58–69. doi:10.1016/j.geoderma.2006.07.002

Song, X., Zhang, G., Liu, F., Li, D., Zhao, Y., and Yang, J. (2016). Modeling Spatio-
Temporal Distribution of Soil Moisture by Deep Learning-Based Cellular
Automata Model. J. Arid Land 8, 734–748. doi:10.1007/s40333-016-0049-0

Strobl, C., Boulesteix, A.-L., Zeileis, A., and Hothorn, T. (2007). Bias in Random
forest Variable Importance Measures: Illustrations, Sources and a Solution.
BMC Bioinformatics 8–25. doi:10.1186/1471-2105-8-25

Sun, X.-L., Wang, H.-L., Zhao, Y.-G., Zhang, C., and Zhang, G.-L. (2017). Digital
Soil Mapping Based on Wavelet Decomposed Components of Environmental
Covariates. Geoderma 303, 118–132. doi:10.1016/j.geoderma.2017.05.017

Szegedy, C., Wei Liu, W., Yangqing Jia, Y., Sermanet, P., Reed, S., Anguelov, D.,
et al. (2015). “Going Deeper with Convolutions,” in Proceedings of the IEEE
Computer Society Conference on Computer Vision and Pattern Recognition,
Boston, MA, 07-12-June, 1–9. doi:10.1109/CVPR.2015.7298594

Taghizadeh-Mehrjardi, R., Mahdianpari, M., Mohammadimanesh, F., Behrens, T.,
Toomanian, N., Scholten, T., et al. (2020a). Multi-task Convolutional Neural
Networks Outperformed Random forest for Mapping Soil Particle Size Fractions
in central Iran. Geoderma 376, 114552. doi:10.1016/j.geoderma.2020.114552

Taghizadeh-Mehrjardi, R., Schmidt, K., Amirian-Chakan, A., Rentschler, T.,
Zeraatpisheh, M., Sarmadian, F., et al. (2020b). Improving the Spatial
Prediction of Soil Organic Carbon Content in Two Contrasting Climatic
Regions by Stacking Machine Learning Models and Rescanning Covariate
Space. Remote Sens. 12, 1095. doi:10.3390/rs12071095

Tao, F., Zhou, Z., Huang, Y., Li, Q., Lu, X.,Ma, S., et al. (2020). Deep LearningOptimizes
Data-Driven Representation of Soil Organic Carbon in Earth SystemModel over the
Conterminous United States. Front. Big Data 3, 1–15. doi:10.3389/fdata.2020.00017

Tsakiridis, N. L., Keramaris, K. D., Theocharis, J. B., and Zalidis, G. C. (2020).
Simultaneous Prediction of Soil Properties from VNIR-SWIR Spectra Using a
Localized Multi-Channel 1-D Convolutional Neural Network. Geoderma 367,
114208. doi:10.1016/j.geoderma.2020.114208

Wadoux, A. M. J.-C., Padarian, J., and Minasny, B. (2019). Multi-source Data
Integration for Soil Mapping Using Deep Learning. Soil 5, 107–119.
doi:10.5194/soil-5-107-2019

Wadoux, A. M. J.-C. (2019). Using Deep Learning for Multivariate Mapping of Soil
with Quantified Uncertainty. Geoderma 351, 59–70. doi:10.1016/
j.geoderma.2019.05.012

Wright, M. N., and Ziegler, A. (2017). Ranger: A Fast Implementation of Random
Forests for High Dimensional Data in C++ and R. J. Stat. Soft. 77. doi:10.18637/
jss.v077.i01

Xu, Z., Zhao, X., Guo, X., and Guo, J. (2019). Deep Learning Application for
Predicting Soil Organic Matter Content by VIS-NIR Spectroscopy. Comput.
Intell. Neurosci. 2019, 1–11. doi:10.1155/2019/3563761

Yan, Y. (2021). rBayesianOptimization: Bayesian Optimization of
Hyperparameters. R package version 1.2.0. Available at https://cran.r-project.
org/web/packages/rBayesianOptimization/.

Yang, J., Wang, X., Wang, R., and Wang, H. (2020). Combination of Convolutional
NeuralNetworks andRecurrentNeuralNetworks for Predicting Soil PropertiesUsing
Vis-NIR Spectroscopy. Geoderma 380, 114616. doi:10.1016/j.geoderma.2020.114616

Zhong, L., Guo, X., Xu, Z., and Ding, M. (2021). Soil Properties: Their Prediction and
Feature Extraction from the LUCAS Spectral Library Using Deep Convolutional
Neural Networks. Geoderma 402, 115366. doi:10.1016/j.geoderma.2021.115366

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors, and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Beucher , Rasmussen, Moeslund and Greve . This is an open-access
article distributed under the terms of the Creative Commons Attribution License (CC
BY). The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice.
No use, distribution or reproduction is permitted which does not comply with
these terms.

Frontiers in Environmental Science | www.frontiersin.org January 2022 | Volume 9 | Article 80999514

Beucher et al. Interpretation SHAP CNN Soil Classification

https://doi.org/10.3390/rs10071119
https://doi.org/10.1016/j.geoderma.2014.09.018
https://christophm.github.io/interpretable-ml-book/
https://christophm.github.io/interpretable-ml-book/
https://doi.org/10.5194/soil-2019-48
https://doi.org/10.5194/soil-2019-48
https://doi.org/10.1016/j.geoderma.2019.06.016
https://doi.org/10.1016/j.geoderma.2019.06.016
https://doi.org/10.1016/j.geoderma.2019.01.009
https://doi.org/10.5194/soil-5-79-2019
https://doi.org/10.1016/j.geodrs.2018.e00198
https://doi.org/10.5194/soil-2020-17
https://doi.org/10.1016/j.scitotenv.2020.140162
https://doi.org/10.1016/j.scitotenv.2020.140162
https://www.python.org/
https://doi.org/10.1007/978-3-030-28954-6
https://doi.org/10.1029/rg008i002p00359
https://doi.org/10.1016/j.geodrs.2019.e00233
https://doi.org/10.1016/j.geoderma.2006.07.002
https://doi.org/10.1007/s40333-016-0049-0
https://doi.org/10.1186/1471-2105-8-25
https://doi.org/10.1016/j.geoderma.2017.05.017
https://doi.org/10.1109/CVPR.2015.7298594
https://doi.org/10.1016/j.geoderma.2020.114552
https://doi.org/10.3390/rs12071095
https://doi.org/10.3389/fdata.2020.00017
https://doi.org/10.1016/j.geoderma.2020.114208
https://doi.org/10.5194/soil-5-107-2019
https://doi.org/10.1016/j.geoderma.2019.05.012
https://doi.org/10.1016/j.geoderma.2019.05.012
https://doi.org/10.18637/jss.v077.i01
https://doi.org/10.18637/jss.v077.i01
https://doi.org/10.1155/2019/3563761
https://cran.r-project.org/web/packages/rBayesianOptimization/
https://cran.r-project.org/web/packages/rBayesianOptimization/
https://doi.org/10.1016/j.geoderma.2020.114616
https://doi.org/10.1016/j.geoderma.2021.115366
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles

	Interpretation of Convolutional Neural Networks for Acid Sulfate Soil Classification
	1 Introduction
	2 Material and Methods
	2.1 Study Area
	2.2 Soil Observations
	2.3 Environmental Data and Variable Selection
	2.4 Random Forest and Scaled Environmental Data
	2.5 Convolutional Neural Networks
	2.5.1 General
	2.5.2 Input Data Augmentation
	2.5.3 CNN Architecture Selection and Parameter Optimization
	2.5.4 Training, Validation and Test Datasets

	2.6 Interpretability With SHAP

	3 Results and Discussion
	3.1 RF Models
	3.2 CNN Models
	3.3 CNN/RF Model Comparison
	3.4 Interpretability Using SHAP
	3.5 Other Challenges Associated With CNNs and Future Possible Development

	4 Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	References


