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China will strive to achieve carbon peak by 2030 and carbon neutralization by 2060
cooperating with the system dominated by carbon intensity control and supplemented by
total carbon emission control. This paper analyzes the environmental efficiency index of
China; the empirical results show that the average growth rate is 4.5% from 2006 to 2017.
A further decomposition of changes on scale efficiency and pure technical efficiency
indicates that the pure technical efficiency maintains a long-term growth, and scale
efficiency shows a fluctuant tendency. The abovementioned changes show that
various methods in China such as industrial structure adjustment and promotion of the
development of high and new technologies have obtained a certain effect. From the
perspectives of regional differences, the average changes of environmental efficiency in
eastern, central, and western regions as well as most of provinces and cities are all on the
increase. On the space layout, a trend has been presented that the average changes in
central regions exceed those in eastern regions, while the average changes in western
regions are comparatively lower than those in eastern regions.

Keywords: carbon reduction goals, environmental efficiency, DEA-malmquist model, dynamic indicator, regional
differences

INTRODUCTION

The outline of the 14th 5-year plan clearly proposes to improve the dual-control system of total
energy consumption and intensity, focusing on controlling fossil energy consumption. A
system dominated by carbon intensity control was implemented and supplemented by total
carbon emission control. With the goal of carbon peak and carbon neutralization, the dual-
energy control system is an important driving force for China’s low-carbon development.
According to the outline of the 14th 5-year plan, the decrease in energy consumption per unit
of GDP by 13.5% by 2025 is the carbon reduction goal. China strives to achieve carbon peak by
2030 and carbon neutralization by 2060, which is the final decision made by our leaders and
government after careful consideration and consideration in all aspects. Energy saving is the
key support to achieve the goal of carbon peak and carbon neutralization. The difficulty lies in
the heavy industrial structure and low energy efficiency. Through the 2021 government work
report, we can see the future development direction of China’s environment and energy
sources.
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“The 10 New Insights in Climate Science 2019” was presented
to UNFCCCs on the 25th meeting in Madrid, Spain (UNFCC,
CoP25, 2019). At present, developing countries lack budgeting,
funding, technology, and capacity building. Development of a
low-carbon economy in developing countries has become a key
issue. For the rest of the regions of the world, international trade
has made China a pollution haven with CO2 emissions peaking to
1.28 Gt in 2018 (Luis et al., 2018). Many of the world's climate
changes observed in the past few decades since 1950 are
meaningful (Pérez et al., 2017). In April 2018, in order to
integrate decentralized responsibilities of environmental
protection and ensure national ecological security, China has
established the Ministry of Ecological Environment (Andrew
et al., 2021). The central government has continuously
improved the governance methods of environmental
protection, and environmental legislation has been gradually
improved. At present, China has given great importance to
“environmental governance.” In traditional economics, to
evaluate the performance or development level of governance
in a region, the main consideration is the input of production
factors’ promotion to economic development such as labor,
capital, and means of production (Ozgur et al., 2021). Many
countries follow a pattern of “grow first, clean up later.” The
restriction of pollutants was not considered during the
development process, which distorted the negative impact on
social welfare and the evaluation of overall regional governance
performance during the development process (Xi et al., 2021).
Based on this, scholars have done a lot of research. The
environmental Kuznets curve (EKC) curve explains the
relevance between the economic development and the
environmental governance. According to the EKC curve, the
economic development and environmental governance curve
looks inverted U-shaped (Soumyananda, 2004; Dimitra and
Efthimios, 2013). The strengthening of environmental
governance will inevitably affect the current economic growth
and make the local economic growth rate fall down (Jack et al.,
2012; Nicholars and Ilhan, 2015; Usama and Choong, 2015;
Sakiru et al., 2017). Race to bottom-a behavior among local
governments to reduce the intensity of comprehensive
ecological governance has existed for a long time. Based on
the above, a win–win road to economic growth rate and
environmental improvement must be taken in China.

Therefore, incorporating environmental factors into the
regional governance performance appraisal system and the
overall analytical framework of system efficiency has been a
hot area of research. Environmental efficiency is a good
indicator. It can be used to measure the distance between a
region’s pollution emissions and the minimum pollution
emissions under the same input and output conditions of
equal factors. This paper uses the data envelopment analysis
(DEA)-Malmquist model to measure the environmental growth
efficiency of different regions in China and conducts an empirical
study on the influencing factors.

The main contributions of this article are as follows: 1) using
the DEA-Malmquist model, this paper makes an empirical study
on the environmental efficiency of 30 regions, calculates the
growth rate of environmental efficiency, and discusses the

main factors affecting the change of regional environmental
efficiency rate in China. 2) The method of comparative study
on regional differences in environmental efficiency of different
provinces is used. The innovation of this article lies in the
introduction of environmental efficiency indicators, the use of
the DEA-Malmquist model for empirical analysis, and the study
of regional differences in environmental efficiency. Furthermore,
the eastern, central, and western regions are analyzed from the
perspective of spatial distribution and regional differences of
environmental efficiency of carbon emission reduction targets.

LITERATURE AND METHODOLOGY

This paper selected 30 provinces (autonomous regions and
municipalities) from 2006 to 2017 as sample data. The GDP
of each region is selected as the “good” output. According to the
“Water Environment Quality Bulletin” and the “Atmospheric
Environmental Quality Bulletin” issued by the Ministry of
Ecology and Environment, SO2 dioxide is regarded as “bad”
output in company with wastewater (Shan et al., 2021). With
reference to the three-factor production function of energy,
manpower, and capital based on Say’s Law (Say, 2013), taking
into account the high-tech technologies that improve
environmental efficiency, we consider the energy consumption,
the research and experimental development (R&D) funding, and
the number of employees of each region as input elements.

Among them, the GDP, number of employees, and R&D
funding in each region originated from the “China Statistical
Yearbook”; the energy consumption and carbon emissions in
each region are collected and organized through the “China
Energy Statistical Yearbook” and raw data from the
environmental quality bulletin. Table 1 shows the data
characteristics of low-carbon efficiency input–output indexes
in 30 provinces from 2006 to 2017 in China.

In the last several years, the DEA model has been used in the
research of various fields such as the following: in calculation of
the degree of efficiency in productivity (Matas, 1998; Lambert,
1999; Lovell, 2003; Mussard and Peypoch, 2006; Charles et al.,
2012; Fancello et al., 2014), ecological efficiency (Le Lannier and
Porcher, 2014; Wang et al., 2014; Deilmann et al., 2016; Gudipudi
et al., 2018), and economic efficiency (Li et al., 2017; Ruiz Estrada
et al., 2018). In order to incorporate environmental pollution
variables into the DEAmodel, it is necessary to build a production
possibility set containing both “bad” and “good” outputs. Suppose
N inputs per area to get M “good” output and I “bad” output.
Using x, b, and y to denote input, “bad” output, and “good”
output:

x � (x1, x2, ..., xN) ∈ RN
+

y � (y1, y2, ..., yM) ∈ RM
+

b � (b1, b2, ..., bM) ∈ RI
+

P(x) represents the production feasibility set:
P(x) � {(y, b): xcan produce (y, b)}, x ∈ RM+ . Assuming that P
(x) is a convex and closed set, the input x and the “good”
output y can be freely disposed (Fare and Primont, 1995). If P
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(x) satisfies the conditionsWeak Disposability and Null-jointness
of Outputs, P (x) can be used to represent environmental
efficiency. Null-jointness is also known as Byproducts Axiom,
which means that the “bad” output must appear with the “good”
output; Weak Disposability of Outputs means “bad” output, and
“good” outputs are concentrated in production feasibility, but the
same proportion decreases. It means that the “good” output must
decrease as the “bad” output decreases and increase as it increases
(Fare and Grossk, 2007).

The function of the DEA-Malmquist index is to measure
the growth rate of the environmental efficiency of each
region. The calculation methods of total factor
productivity include parametric and nonparametric
methods (Banker, 1984; Arellano and Bond, 1991). In
recent years, a lot of studies have used the BCC and
Charnes et al. (1978) proposed Charnes Cooper and
Rhodes (CCR) analysis methods of the DEA-Malmquist
model to calculate the environmental efficiency (Goto
et al., 2014; Sueyoshi and Goto, 2014; Lorenzo-Toja et al.,
2015; Sueyoshi and Yuan, 2017; Guo et al., 2020). Scheel
(2001) pointed out that in the production process, various
environmental pollutants will inevitably be produced, which
cannot meet the traditional DEA efficiency model’s
assumption about “maximizing output,” and the undesired
output needs to be considered adding into the traditional
DEA model. The use of the nonparametric DEA-Malmquist
index model to study the rate of rise of the environmental
efficiency index is relatively lacking. In 1953, Malmquist
proposed the Malmquist index method (Grifell-Tatje and
Lovell, 1995). The Malmquist index has been widely used
in various fields. It can measure productivity changes under
dynamic settings. When using the Malmquist index to
evaluate production efficiency, the factors that influence
the change in production efficiency can also be discussed,
such as the impact of changes in scale and technological
progress. Simar and Wilson (2019) extended the previous
results and developed a new central limit theorem that was
used to infer the geometric mean of the subindex of the
original data and the arithmetic mean of the log of the
subindex. Pastor et al. (2020) said that there is no research
on the traditional Malmquist index as total factor
productivity (TFP) index at present. He proposed a new
Malmquist exponential decomposition method based on
the “scale constant return” proportional direction distance
function (pDDF) and expressed the change in production
efficiency as the change caused by two influencing factors,

namely, the variety in production efficiency and the
denominator caused by the difference in molecular output
changes in production efficiency caused by input changes.

At the same time, the nonparametric linear programming
method was combined with the DEA model, which resulted into
the development of the DEA-Malmquist model that is used to
compute the ratio between outputs and inputs at different times.
In recent years, the DEA-Malmquist index method has been
gradually used in the research of various fields such as in court
reform (Falavigna et al., 2018), in healthcare (Prior, 2006;
Fragkiadakis et al., 2016; Bastian et al., 2016), and in energy
efficiency (Huang et al., 2017; Fernández et al., 2018; Mavi and
Mavi, 2019). Li et al. (2017) selected data from 742 listed
Chinese companies and used the cross-sectional DEA-
Malmquist model to predict the financial difficulties of the
listed companies. Furthermore, by using the time-varying
Malmquist-DEA, the competitive position of the listed
companies was dynamically predicted. The Malmquist-DEA
model can intelligently adjust the efficiency boundary and
make reliable predictions over time. Wang (2019) selected 40
global cities from 2012 to 2018 as samples and evaluated urban
globalization performance efficiency from six aspects: economy,
culture, environment, and research and development based on
the DEA model. Then, he derived the DEA-Malmquist index
and tracked the reasons for its performance efficiency changes.
Chen et al. (2020) used the DEAmodel to measure the evolution
of the destocking performance of the industry in China from
2005 to 2015. This is the first time that the DEA-Malmquist
model has been applied to the real estate industry. Due to
decision-making units (DMUs’) destocking efficiency,
regional differences in input redundancy, and total inventory,

TABLE 1 | Data characteristics of low-carbon efficiency input–output indexes.

Index GDP (100
million yuan)

SO2 emission
(10,000 tons)

Wastewater discharge
(10,000 t)

Energy consumption
(10,000 t of

standard coal)

Employees (10,000
people)

R&D (10,000
yuan)

Minimum value 648.50 2.01 2.26 920.45 149.82 21,044.00
Maximum value 89,705.23 196.00 938,000.00 38,899.00 6,767.00 2E+007
Mean value 17,795.47 67.67 216,103.7 13,164.96 2,617.68 3,207,592
Standard deviation 15,653.26 42.59 172,104.82 8,193.37 1730.06 4,147,774.14

The statistical data includes time series data of 30 areas in China within 12 years, with a total of 360 sample observation points.

FIGURE 1 | Illustration of DEA efficiency.
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no policy can fully and effectively affect all regions and solve
problems. The measures affecting production efficiency should
be changed according to the specific situation.

This paper takes 30 regions of China as research samples, uses
the DEA model to measure the growth rate of environmental
efficiency from 2006 to 2017, and conducts an empirical research
on the factors that affect the growth rate.

The principle of mathematical programming is the basis of the
DEA model, using multiple sets of expenditures and combined
data to obtain production efficiency, as depicted in Figure 1. The
number of DMUs is N, and each DMU has K inputs and M
outputs. The input and output of DMUi are represented by
column vectors xi and yi, respectively. In this way, under the
conditions of closed convex technology, fixed scale return (C),
and strong disposal of input factors (S), the CRS-DEA method is
input-oriented. It can be obtained by solving linear
programming (LP):

D(yi, xi) � Minθ, st − yi + Yλ≥ 0, θxi −Xλ≥ 0, λ≥ 0

DMUs with θ � 1 are at the production frontier of best
practices. DMUs with θ < 1 are inefficient. They can be
projected to the front by reducing the input to (1-θ)xi along
the ray direction. This adjustment is called radial adjustment.

In the “piecewise” linear form of the DEA’s nonparametric
front, when the current edge is parallel to the number axis, it will
produce an input slack problem.

As shown in Figure 1, the maximum output Y on the frontier
of production is standardized as 1, and the inputs of X1 and X2 are
divided by Y to standardize. The input–output combination of B
and D forms the frontier. The input–output combination of A′
and C′ is inefficient. A′ can be adjusted to the production front A
through the ray AA′. However, because the production Frontier is
a piecewise linear form, after the C′ adjusts to the production
Frontier C through the ray CC’. Furthermore, we can reduce the
input X2 of the CB quantity to retain it on the production
frontier. The adjustment of the input elements along the
production frontier is called slack adjustment.

The DEAmodel measures the distance from each DMU to the
production frontier boundary and quantifies it between 0 and 1.
For example, a DMU located at or above the production frontier
boundary is considered to be effective and is assigned a value of 1,
while a DMU located below the production frontier boundary is
considered insufficiently efficient and the efficiency score is less
than 1. The DEA model has three advantages. First, the DEA
model does not need to demonstrate in advance whether input
factors are the inevitable cause of output factors. When there is no
way to describe and summarize the production process, the DEA
model is suitable. Second, the DEA model can select multiple
input and output indicators. Finally, unlike the absolute value of
the efficiency calculated by the AHP model, the DEA model
calculates the relative efficiency value, which is particularly
suitable for ranking multiple DMUs.

Then, scholars developed various DEA models to meet the
demand under various situations. Charnes et al. (1978) proposed
CCR, which was an efficiency measurement method based on the
precondition of constant returns to scale. If convexity constraints

are added into the CCR model, we can get the BCC model, which
can distinguish between pure technical efficiency and scale
efficiency in technical efficiency.

According to the traditional DEA model, the efficiency values
of each sample area in two periods are in different benchmarking
periods and cannot be directly compared. The Malmquist index
can calculate the production efficiency in different periods.
Therefore, the DEA-Malmquist model is an analysis method
that combines the concept of the Malmquist index with the
DEA model.

The basic idea of the DEA-Malmquist index method is to
assume that in each year t � 1, 2, ..., T, the input-–output value of
the K province is (xk,t, yk,t, bk,t). On the basis of meeting the
above conditions, there are

Pt(xt) � ⎧⎨⎩(yt, bt): ∑K
K�1

Zt
kx

t
kn ≤x

t
kn,

n � 1, ..., N; ∑k
k�1

ztky
t
km ≥yt

km,m � 1, ...,M;

∑k
k�1

ztkb
t
ki � btki, i � 1, ..., I; ztk ≥ 0, k � 1, ..., K

⎫⎬⎭
The technical index reference value for year t can be expressed

as �Pt(x) � {y: y≤ z�Yt,x≥ z �Xt, z≥ 0}, �Xt � (/,Xt0 ,/Xt−1,Xt),
and �Yt � (/, Yt0 ,/Yt−1, Yt), where z denotes the weight of the
observed value of the cross section in every DMU. In the
calculation, the indicator values of year t0 and all previous
years need to be used. However, it is difficult to obtain the
value of the indicator before t0. Therefore, the technical index
reference value for year t is expressed as

�Pt(x/ �Xt0 � Xt0 , �Yt0 � Yt0) � {y: y≤ z(Yt0 ,/, Yt−1, Yt), x≥ z
(Xt0 ,/, Xt−1, Xt), z≥ 0} At this time, the distance function of
each province in year t is dt(xt, yt) � inf {θ: (xt, yt/θ) ∈ �Pt},
where dt(xt, yt) � 1 indicates that the input–output value of
year t is on the production boundary, showing efficiency, and
dt(xt, yt)> 1 indicates that the input–output value of year t is
within the production boundary, showing inefficiency.

At this time, the Malmquist index is expressed as
Mt

0 � dt+1(xt+1, yt+1)/dt(xt, yt). Further, it is decomposed into
changes in technological progress and changes in technological
efficiency:

FIGURE 2 | Illustration of the DEA-Malmquist model.
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TFP � TECHpEFF � TECHpPEpSE

Among them, TFP is the change in environmental
efficiency; TECH is the change in technological progress
which depends on the impact of boundary transfers. EFF
represents the change of technical efficiency which presents
the efficiency change of the same DMU in different periods
based on the benchmark test to get to the border. PE is the
change of pure technical efficiency. SE is the change of scale
efficiency.

In order to better clarify the connotation of TECH and
EFF, we use a simple input-oriented example (two inputs and
one output) to illustrate the DEA-Malmquist model used in
this article. In Figure 2, the two axes represent two inputs and
one output. Suppose (E) and (H) are the positions of DMU in
year t and year t + n. The two piecewise linear curves
represent the production frontier boundary at year t and
year t + n. The projections of (E) on the two curves are (F)
and (G). Similarly, the projections of (H) on the two curves
are (I) and (J). The DEA efficiency of (E) at t can be shown as

OE/OF. The DEA efficiency of (E) at t + n can be expressed as
OE/OG. Similarly, the DEA efficiency of (H) at time t can be
expressed as OH/OI. The DEA efficiency of (H) at t + n can be
expressed as OH/OJ. The DEA-Malmquist value is�������

OE
OF × OE

OG
OH
OI × OH

OJ

√
�

OE
OF
OH
OI

×
�������
OH
OI × OE

OG
OE
OF × OH

OJ

√
�

OE
OF
OH
OI

×
��������
OI

OJ
× OF

OG

√
� TECH × EFF

OE
OF
OH
OI

stands for EFF, determined by the overall characteristics and

performance of the DMU itself.

������
OI
OJ × OF

OG

√
stands for TECH, which

shows the impact of changes in production boundaries.

ANALYSIS

This paper uses DEAP 2.1, VRS (based on returns to scale), and
the input-oriented DEA model to calculate and decompose the
environmental efficiency of 30 areas in China from 2006 to 2017.

The Average Growth Rate of China’s
Environmental Efficiency
In Table 2, this paper shows that the average growth rate of
China’s environmental efficiency index from 2006 to 2017 was
1.045, and the overall growth rate was 4.5%. For each of the
years, only 2008–2009 and 2010–2011 showed a negative
growth, −2.5% and −8.1%, respectively, and the other years
showed a positive growth. The reason for this may be that in
recent years, the central government has improved the
governance methods of environmental protection
continuously, and environmental legislation has been
gradually improved. Each region has committed great
importance to “environmental governance.” The ecological
civilization reform has become one of the “five tasks,” and
“environmental governance” has become a long-term trend
rather than a short-term boom. Therefore, the overall growth
rate of the environmental efficiency index also shows a positive
growth trend.

FIGURE 3 |Movement track of China’s environmental efficiency change.

TABLE 2 | China’s environmental efficiency change.

Year Technical efficiency
change

Technical change Pure technical
efficiency change

Scale efficiency
change

Total factor
productivity

2006-2007 1.016 1.076 1.002 1.014 1.094
2007-2008 1.009 1.076 1.016 0.993 1.086
2008-2009 1.014 0.962 1.014 1 0.975
2009-2010 1.005 1.289 1.017 0.988 1.295
2010-2011 0.936 0.983 1.009 0.927 0.919
2011-2012 1.026 0.997 1.016 1.01 1.023
2012-2013 1.11 0.924 1.018 1.09 1.025
2013-2014 1.007 1.02 1.003 1.004 1.027
2014-2015 1.003 1.02 0.988 1.015 1.023
2015-2016 0.998 1.027 0.996 1.002 1.025
2016-2017 1.007 1.033 1.01 0.996 1.04
Mean 1.011 1.033 1.007 1.004 1.045
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From the decomposition of the growth rate of the
environmental efficiency index, the environmental
technological efficiency and technological progress are
increased slightly; the amplitudes are 1.1% and 3.3% in
China, respectively, indicating that both the development of
technological efficiency and progress are conducive to
promoting the growth of environmental efficiency, of which
the contribution of technological progress is even greater.
Figure 3 shows, from 2009 to 2010, the growth rate of TFP
reached 29.5%, of which the technical change reached 28.9%,
which is due to the “The Stockholm Convention on Persistent
Organic Pollutants (POPs)” in May 2009. The corresponding
amendments came into force on August 26, 2010. During this
period, in order to improve stakeholders’ understanding of the
content and mechanism of the Convention and promote the
implementation of follow-up work, in July 2010, the United
Nations Environment Programme held an international
seminar, which greatly promoted the environmental efficiency.

Further decomposing the changes in pure technology scale and
efficiency, it can be found that pure technology efficiency has

maintained a stable positive growth for a long time, and there was
only a small negative growth between 2014 and 2016. The scale
efficiency showed a fluctuant trend, indicating that the adjustment
of industrial structure, promoting the development of high new
technology, and othermeasures have obtained a certain effect inChina.

Interprovincial Heterogeneity of Changes in
China’s Environmental Efficiency Index
According to China’s improvement of the level of economic and
social development in China, 30 areas are divided into three
major areas: eastern, central, and western.

Table 3 shows a further situation of changes in the
environmental efficiency index and its decomposition. The
growth rate of China’s environmental efficiency index was
4.5% from 2006 to 2017. The average changes in the
environmental efficiency of the eastern, western, and
central areas showed positive growth, and most of the
provinces and cities are on the increase. On the space
layout, a trend has been presented, showing that the

TABLE 3 | China’s regional environmental efficiency change from 2006 to 2017.

Areas Regions Technical efficiency
change

Technical change Pure technical
efficiency change

Scale efficiency
change

Total factor
productivity

East area Beijing 1 1.089 1 1 1.089
Tianjin 1.003 1.047 1 1.002 1.05
Hebei 0.993 1.049 1 0.993 1.042
Liaoning 0.999 1.047 1.002 0.997 1.047
Shanghai 1 1.045 1 1 1.045
Jiangsu 1.013 1.052 1.012 1 1.065
Zhejiang 1.002 1.047 1.002 1 1.049
Fujian 1.003 1.049 1 1.003 1.052
Shandong 0.996 1.045 0.997 0.999 1.041
Guangdong 1 1.046 1 1 1.046
Hainan 1 0.912 1 1 0.912
Average 1.001 1.039 1.001 0.999 1.040

Central area Shanxi 1.012 1.039 1.016 0.996 1.052
Inner Mongolia 1 1.015 1 1 1.015
Jilin 1.018 1.062 1.018 1 1.082
Heilongjiang 1 1.054 1.005 0.995 1.054
Anhui 1.014 1.049 1.006 1.008 1.064
Jiangxi 1.011 1.048 1.007 1.004 1.06
Henan 1.018 1.058 1 1.018 1.077
Hubei 1.038 1.051 1.029 1.009 1.092
Hunan 1.027 1.059 1.005 1.022 1.088
Guangxi 1.001 1.051 1 1.001 1.052
Average 1.014 1.049 1.009 1.005 1.064

West area Chongqing 1.014 1.047 1.01 1.004 1.061
Sichuan 1.03 1.049 1.028 1.002 1.081
Guizhou 1.064 0.98 1.063 1.001 1.042
Yunnan 1.019 1.008 1.005 1.014 1.027
Shaanxi 1.029 1.042 1.029 1.001 1.073
Gansu 1.012 1.05 1.011 1.001 1.063
Qinghai 1 0.925 1 1 0.925
Ningxia 1.017 1.002 0.999 1.018 1.019
Xinjiang 1 1.002 1 1 1.002
Average 1.021 1.012 1.016 1.005 1.033

Whole country Average 1.011 1.033 1.007 1.004 1.045
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average changes in central regions exceed those in eastern
regions. In western areas, the average changes are lower than
those in eastern and central areas.

Eastern Areas
Eastern areas include 11 areas which are Beijing, Tianjin,
Jiangsu, Hebei, Liaoning, Guangdong, Shanghai, Zhejiang,
Fujian, Shandong, and Hainan. With the exception of

TABLE 4 | China’s regional environmental efficiency in 2017.

Regions Environmental efficiency Pure technical efficiency Scale efficiency Scale efficiency trend

Beijing 1 1 1 —

Tianjin 1 1 1 —

Hebei 0.75 1 0.75 Drs
Liaoning 0.792 0.824 0.962 Drs
Shanghai 1 1 1 —

Jiangsu 1 1 1 —

Zhejiang 0.932 0.932 1 —

Fujian 1 1 1 —

Shandong 0.801 0.967 0.828 Drs
Guangdong 1 1 1 —

Hainan 1 1 1 —

Shanxi 0.794 0.827 0.96 Drs
Inner Mongolia 1 1 1 —

Jilin 1 1 1 -
Heilongjiang 0.832 0.892 0.932 Drs
Anhui 0.826 0.827 0.998 Irs
Jiangxi 0.954 1 0.954 Drs
Henan 0.846 1 0.846 Drs
Hubei 0.887 0.898 0.987 Drs
Hunan 0.869 0.932 0.932 Drs
Guangxi 0.824 1 0.824 Drs
Chongqing 0.938 0.941 0.997 Irs
Sichuan 0.76 0.881 0.863 Drs
Guizhou 0.818 0.989 0.827 Drs
Yunnan 0.685 0.818 0.838 Drs
Shaanxi 0.807 0.812 0.994 Drs
Gansu 0.558 0.575 0.971 Drs
Qinghai 1 1 1 —

Ningxia 0.948 0.966 0.981 Irs
Xinjiang 1 1 1 —

TABLE 5 | Descriptive statistics.

Variable type Variable Method Sample
size

Mean Standard
deviation

Minimum
value

Maximum
value

Explained
variable

Environmental efficiency Total factor productivity 330 1.4094 0.3334 0.4125 2.49

Explanatory
variables

Government intervention Fiscal expenditure/GDP 330 0.2276 0.0973 0.0874 0.6269
Proportion of tertiary
industry

Tertiary industry output value/GDP 330 0.4263 0.0928 0.2862 0.8056

Level of urbanization Urban population at the end of the year/total
population at the end of the year

330 0.5412 0.1346 0.2824 0.896

Average education level
of residents

The proportion of the population with each
education level multiplied by the sum of the
weights

330 8.8589 0.9608 6.7639 12.5025

Level of intellectual
property protection

Technology market transactions/GDP 330 0.0108 0.0236 0.0001717 0.1602

TABLE 6 | Regression results based on the Tobit model.

Explanatory variables Coefficient Standard deviation

Government intervention −0.4848** 0.196424
Proportion of the tertiary industry 0.2221 0.337,152
Level of urbanization −1.5266*** 0.279646
Average education level of residents 0.2276*** 0.038992
Level of intellectual property protection 1.5886 1.107245
C 0.2175 0.262666
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Hainan, the environmental efficiency indexes of all provinces
and cities showed positive growth. Among them, Beijing has
the highest growth rate of 8.9%. This is because in recent
years, Beijing has vigorously promoted the optimization of
energy structure and the adjustment of regional industrial
structures. It has implemented energy consumption by
replacing coal with gas or electricity to control total coal
consumption. A series of practicable measures such as
optimizing regional transportation structure, increasing
railway transportation volume, and reducing road diesel
vehicle transportation volume are implemented. Especially
in the implementation of “Enhanced Measures for the
Prevention and Control of Air Pollution in the Beijing-
Tianjin-Hebei Region (2016-2017),” and “Water Pollution
Control Action Plan,” the air quality continued to improve,
and the sewage treatment rate was 92%. According to the
“2017 Beijing Environmental Status Bulletin,” Beijing has
achieved continuous improvement in air quality through
5 years of governance. Hainan’s environmental efficiency
index showed a negative growth of −8.8%. This is because
Hainan has a unique geographical location and natural
conditions, and its main development is tourism and
modern service industries. In addition to that, its
environmental efficiency reached the production frontier
between 2006 and 2017 so there is less room for
improvement in environmental efficiency. The growth rate
of the DEA-Malmquist environmental efficiency index is a
dynamic indicator, so there is little room for growth in
environmental efficiency in Hainan.

Central Areas
Central areas include 10 areas which are Shanxi, Inner Mongolia,
Hubei, Jilin, Heilongjiang, Jiangxi, Anhui, Henan, Hunan, and
Guangxi. The environmental efficiency indexes of all central areas
are increasing, and the average growth rate is 6.4%. This is
because the central provinces have combined the advantages
of various regions and adopted the green development path of
characteristic development and dislocation development since
the 18th National Congress of the Communist Party. It also
focused on cultivating and developing the endogenous driving
force of the green economy. They have formed the advantages of
protection during development and development during
protection. Recently, the central provinces have turned the
improvement of environmental efficiency into specific
ecological civilization practices. For example, some provinces
have comprehensively implemented the five-level river chief,
lake chief, and forest chief system. It will cover ecological
compensation of the whole river basin, taking the lead in
carrying out the pilot reform of comprehensive enforcement.
Among them, Hubei has the highest growth rate of 9.2%. This is
because under the guidance of “Outline of the Yangtze River
Economic Belt Development Plan” and “Ecological Environment
Protection Plan of the Yangtze River Economic Belt,” Hubei
Province has formulated the corresponding five special plans
based on these policy measures. These plans have formulated
strict rectification or improvement plans for the chemical
industry and iron industry along the Yangtze River, as well as

a timetable and roadmap for relocation into the industrial park,
so as to make the industrial structure and optimization of
framework in the industry of the Yangtze River ecological
safety go on wheels.

Western Areas
Western areas include nine areas which include Sichuan, Qinghai,
Chongqing, Guizhou, Shaanxi, Yunnan, Gansu, Ningxia, and
Xinjiang. Except Qinghai, all areas have positive growth in
environmental efficiency indexes. Among them, Sichuan has
the highest growth rate of 8.1%. This is because Sichuan’s
environmental supervision and enforcement have been very
effective. In 2017 alone, the province levied a total of 753
million Yuan in sewage charges and installed 2,894 automatic
monitoring facilities for key sewage enterprises. In addition, the
former Ministry of Environmental Protection established the
Southwest Regional Air Quality Forecasting and Forecasting
Center in Sichuan Province to carry out comprehensive air
quality forecasting and forecasting work. From the aspect of
spatial distribution, the environmental efficiency index of
western China has the lowest growth rate. This is because the
proportion of counties that have been evaluated as
“comparatively poor” and “poor” in China’s ecological
environment reached 32.9%, and these areas are largely due to
northwestern areas, such as the northern Qinghai-Tibet Plateau,
Gansu, and most of Xinjiang (according to the “Technical
Specifications for the Evaluation of the Ecological
Environment Status”). Environmental management in these
areas is difficult.

From a static perspective Table 4 shows, the average value of
China’s environmental efficiency in 2017 was 0.887, which was
less than 1. The mean efficiency of pure technology is 0.936, and
the mean efficiency of scale technology is 0.948. Eleven provinces
and cities reached the frontier of production. Except for Anhui
and Chongqing, which showed diminishing returns to scale, the
other 17 provinces and cities all showed increasing returns to
scale. Among them, Hebei, Jiangxi, Henan, and Guangxi had a
pure technical efficiency of 1. Environmental efficiency can be
improved by increasing investment.

Analysis of Influencing Factors of China’s
Environmental Efficiency Index
There are many factors that affect environmental efficiency. We
use panel data of 30 areas from 2006 to 2017 to find out the main
influencing factors of environmental efficiency. With reference
to influencing factors which are frequently used in relevant
typical studies of authoritative institutions, the factors of
government intervention, the output value of the tertiary
industry, the level of urbanization, the average length of
education of residents, and the protection of intellectual
property rights are analyzed (in Table 5).

Firstly, it is government intervention (GOV). In China, the
basis for the decentralization between the local and central
governments is not strictly divided according to the spillover
scope of public goods. Under the shelter of “local protectionism,”

Frontiers in Environmental Science | www.frontiersin.org January 2022 | Volume 9 | Article 8160718

Pan et al. Spatial Distribution and Environmental Efficiency

https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


environmental law enforcement often falls into the cycle of
“pollution, investigation, and fines” (Shi Qingling Chen Shiyi,
Guo Feng, 2017). It is generally believed that the strength of
government financial support plays a crucial role in improving
environmental efficiency.

Secondly, it is the proportion of the tertiary industry’s value of
outputs in GDP and the level of urbanization (CIT). Structural
factors are important factors affecting environmental efficiency. It
is generally believed that with the increase in the proportion of
industry in the national economy, the degree of pollution to the
environment will increase accordingly. Therefore, changing the
industrial structure can improve low-carbon efficiency. The
process of urbanization has caused serious difficulties in
supporting natural resources. To ensure the rational use of
resources in urbanization development, it is inevitable to
increase environmental efficiency.

Thirdly, it is “years of education for residents” (EDU). Peoples’
awareness of environmental protection is very important for
improving environmental efficiency. It is mainly cultivated
from an early age and has a close relationship with education.

Finally, there is the protection of intellectual property rights
(KNO). At present, China is vigorously giving impetus to
innovation of clean and renewable energy technologies.
Technological progress factors also promote environmental
efficiency. According to intellectual property theory,
strengthening intellectual property protection is conducive to
fairness in the environmental protection market and promotes
technological competition, thereby resulting into improving
environmental efficiency.

Building the following model:

Yit � β0 + β1GOVit + β2CITit + β3EDUit + β4KNOit + εit

It should be noted that the growth rate of the environmental
efficiency index obtained above is not a static absolute value, so
the TFP in 2006 is set to 1, and then the index measured by DEA-
Malmquist is converted in a cumulative manner, as the relative
level of environmental efficiency each year (Li and Dewan, 2017).

Because the use of OLS calculation will cause the parameter
estimates to be biased, this paper uses a restricted dependent
variable model, tobit model, for regression analysis, and uses
EViews 10 software to calculate the impact of each independent
variable on regional environmental efficiency. It indicated that
the regional environmental efficiency and GOV showed a
significant negative correlation at 5%. The urbanization level
showed a significant negative correlation at 1%, and the
average education age of resident showed a significant positive
correlation at 1% (in Table 6).

The regression coefficient of the degree of government
intervention and regional environmental efficiency is negative
and significant at 0.05. In recent years, in order to develop the
regional economy and obtain more liquid capital, the
phenomenon of lowering environmental standards, “free-
riding,” and “race to the bottom” has long existed.
Environmental efficiency is used to measure the distance of a
region’s pollution emissions from the minimum pollution
emissions under the same input and output conditions. The

pursuit is to reduce pollution emissions without reducing the
speed of economic growth. However, the reality is that the
assessment of local governments is more based on the
evaluation of economic performance. Therefore, from the
perspective of fiscal expenditure, fiscal expenditures of local
governments are more favored for productive projects with
good economic benefits and more tax revenues, but they
ignore the expenditure on environmental pollution. So the
higher the level of local government intervention is, the
lower the level of development of environmental efficiency is.

The regression coefficient of the tertiary industry proportion
and regional environmental efficiency is positive. It can be seen
where the tertiary industry occupies a relatively large proportion,
the higher the environmental efficiency is. The same is true in
China.

The regression coefficient of urbanization level and regional
environmental efficiency is negative and significant at 1%. This is
because the higher the level of urbanization is, the relatively
concentrated the population and industry are, which will generate
a large amount of pollutant emissions and reduce the
environmental efficiency of that region.

The regression coefficient of EDU and regional environmental
efficiency is positive and significant at 0.01. Generally, the higher
the education level is, the higher the awareness and the popularity
of education among its citizens are, which is good for cutting
down pollutant emissions in life and production, thereby
increasing the environmental efficiency value of the area.

The regression coefficient of KNO and regional
environmental efficiency is positive. This is because the
regions with higher intellectual property protection have
higher levels of high-tech development, which can
effectively promote the development of environmental
protection technologies, thereby increasing the
environmental efficiency value in that region. China has a
vast territory, and there are great differences in resource
endowment and industrial economic structure in different
regions. Reasonable policy design needs to reflect industry
and regional characteristics. Different regions set carbon
emission reduction targets in line with local characteristics.
At the same time, it should be consistent with China’s overall
carbon emission reduction target.

CONCLUSION

We use panel data of the 30 areas in China from 2006 to 2017
and uses the DEA-Malmquist method to calculate the
environmental efficiency of various areas. The Tobit model
was constructed to test the factors which are influencing
environmental efficiency. The main research conclusions of
this article are as follows:

Firstly, from a dynamic perspective, China’s average
environmental efficiency index from 2006 to 2017 increased
by 4.5%. The average changes in environmental efficiency in
the central, eastern, and western areas all illustrated positive
growth, and environmental efficiency indexes of most
provinces and cities also showed positive growth. From the
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perspective of spatial layout, there is a tendency that the central
areas have a slight advantage compared with the eastern areas,
and the eastern areas slightly outdo the western areas. From a
static perspective, as of 2017, the average regional environmental
efficiency in China was 0.887, which has not yet reached the
production frontier. The average value of pure technology
efficiency is 0.936, and the average value of scale efficiency is
0.948. Therefore, there is room for improvement from the
technological perspective and striving for scale efficiency. In
2017, the environmental efficiency of 11 provinces and cities
reached the frontier of production. Except for Anhui and
Chongqing, which showed diminishing returns to scale, the
other 17 provinces and cities all showed increasing returns to
scale. Among them, Hebei, Jiangxi, Henan, and Guangxi’s pure
technical efficiency is 1.

Secondly, the influencing factors affecting regional
environmental efficiency are further analyzed through the
Tobit method, and the results showed that the government
intervention and urbanization levels significantly inhibit the
regional environmental efficiency. Increasing the average
education years of residents significantly promotes regional
environmental efficiency. The regression coefficient of tertiary
industry proportion and intellectual property protection is
positive, but it failed the significance test, and it is not yet
possible to determine whether it has significantly promoted
regional environmental efficiency or not.

Based on the above analysis, the following information is
obtained.

First, to improve China’s ecological environment
continuously, we need to lay a solid and stable foundation.
As a whole, China’s environmental efficiency and its
performance are gradually increasing, but the results are
not solid. In the short term, environmental efficiency still
shows a fluctuant trend. It may be repeated with a little slack.
Environmental efficiency’s steady increase is extremely hard.
In order to enhance people’s happiness and build a “Beautiful
China,” we need to do the basic work well, improve and
upgrade industrial structures, promote cleaner production,
increase policy support for environmental protection
industry development, and improve environmental
efficiency in a sustainable manner.

Second, it is essential to learn from effective experience,
better explore the local advantages of various regions, and
take the path of green economic development, such as
characteristic development and dislocation development.
Although from the static time point of view, the
environmental efficiency of the eastern areas was in the
leading state in 2017, it is worth noting that the central
areas have developed rapidly in the past decade. The
average environmental efficiency indexes of all provinces

and municipalities in the central region between 2006 and
2017 are all growing positively. The average growth rate
reaches 6.4%, which is higher than the growth rate in the
eastern region. We should fully study and learn from the
green development practices of the central provinces, strive
to find our own regional advantages, and form an endogenous
drive of protection during development and during
protection. Accelerating new industrialization,
informatization, urbanization, and agricultural
modernization is the phase that China, as a developing
country, is still in. The foundation for achieving
comprehensive green transformation is still weak. The
foundation for achieving a comprehensive green
transformation is still weak, and the pressure on ecological
and environmental protection has not been radically relieved.
Yet, new industries and business models will be accomplished
step by step in the process of achieving the “dual-carbon”
goal. China should fit the trend of technological revolution
and industrial transformation, look for opportunities brought
by green transformation, and seek development
opportunities from green development. If China feels like
boosting carbon peaking and carbon neutrality, it ought to
follow the way of source prevention, industrial adjustment,
technological innovation, and green life; speed up the
realization of green transformation in production and way
of life; and promote the realization of the “dual-carbon” goal
on time.
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