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Editorial on the Research Topic

Microscale Modelling of Soil Processes: Recent Advances, Challenges, and the Path Ahead

Over the last 15 years, increasing numbers of researchers have come to recognize that in order to
understand many soil processes, and be able to predict their future evolution, especially under the
very unsteady conditions resulting from climate change, the traditional macroscopic approach would
not do, and a microscopic perspective needs to be adopted instead (e.g., Smercina et al., 2021). This
conclusion has been particularly clear for soil processes involving microorganisms. Several key
studies have demonstrated that to better understand what controls the growth and activity of
microorganisms, one needed to make observations at their scale, i.e., with a resolution of at most a
few microns, and it is anticipated that even much smaller resolutions than that will need to be
considered when we shall try to understand what controls the behavior of viruses (e.g.,
bacteriophages) in soil environments. The progressive shift in emphasis from the macroscale to
the microscale over the last few years has been rendered possible by tremendous technological
advances, such as the advent of dedicated table-top X-ray computed tomography scanners, and the
development of various synchrotron-based techniques (such µXRF or NEXAFS) as well as
NanoSIMS. Experimental research in this field has been very active and is currently undergoing
a major expansion around the world, in particular in work that combines several different
observation techniques (e.g., Schlüter et al., 2019; Lucas et al.; Bandara et al., 2021; Gerke et al., 2021).

In parallel with the experimental work that has been and continues to be actively carried out, a
significant amount of research has also been devoted to the mathematical modelling of soil processes at
the microscale. Various “mathematical network” models of soils have been developed, which in theory
were based on amicroscale description of the pore space, but assumed pores to have a regular geometry,
most often that of cylindrical tubes. In the last 15 years, modelling efforts have increasingly been based
instead on the actual geometry of pores, as seen in 3D X-ray CT images of soils. Significant progress has
been achieved in the description of water retention and movement in those pores. The approach of
choice in that context has been the Lattice-Boltzmann method, whose application to soils has achieved
substantial progress (e.g., Ginzburg et al., 2015; Khirevich et al., 2015; Pot et al., 2015, Pot et al., 2020).
Other methods have also been implemented, involving the use of geometrical primitives (spheres or
ellipsoids) (e.g., Monga et al., 2007; Ngom et al., 2012; Kemgue et al., 2019) or including finite difference
and finite element schemes, after discretization of the pore space (e.g., Gerke et al., 2018). Relatively
limitedwork has been devoted to the description of (bio)chemical processes at themicroscale in soils but,
by contrast, a very sizeable body of literature has focused on modelling the growth and activity of
microorganisms, especially bacteria (e.g., Ebrahimi and Or, 2015, Ebrahimi and Or, 2016, Ebrahimi and
Or, 2017) and fungi (e.g., Falconer et al., 2015), in the pore space.
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A previous Research Topic (RT), spearheaded as well by the
Soil Processes section, was meant originally to cover both the
measurement and the modelling of processes affecting the activity
of microorganisms at the microscale (Baveye et al.). The 22
articles published in that RT presented in detail some of the
experimental research being carried out in this context, with
comparatively less attention being devoted to modelling, as was
also the case earlier in the review article of Baveye et al. (2018).
Hence, we decided that a follow-up RT was desirable, which
would focus specifically on the work being done on the
mathematical modelling, at the microscale, of all soil
processes, not just those involving microorganisms. The
purpose was to demonstrate how the use of novel modelling
tools at the microscale, starting from actual 3D images of soils,
allows us to better understand and predict a variety of soil
processes. We encouraged the submission of articles
presenting an interdisciplinary perspective on the modelling
effort, for example by combining physical and microbiological
or chemical aspects, as well as articles describing comparisons of
the application of different modelling approaches on sets of CT
images, or situations where the pore space varies over time, for
example in soils that get progressively compacted or swell/shrink
in response to change in moisture content. Last but not least, we
were hoping to receive manuscripts that attempted to bridge the
gap between the micro- and macroscales, i.e., dealt with the much
needed and still largely elusive step of upscaling, which will need
to be resolved for the research on the microscale to lead to
outcomes that are relevant to the everyday practice of soil
management.

Among the articles that were eventually included in the RT,
one, by König et al. proposes a detailed review of modelling
studies with a focus on spatiotemporal dynamics of bacteria and
bacterial functions in soil microhabitats. The authors compare
these studies along four dimensions: specific aim, model type
(individual-based, population-based), scale, and considered
physical, chemical, biological processes and aspects. A special
emphasis is laid on modelling approaches considering processes
and aspects influencing the spatial distribution of bacteria such as
motility, vector-based dispersal and biofilm formation. This
includes factors like soil structure, carbon and oxygen
gradients, temporal variations in hydration conditions or
anthropogenic disturbance events. By assessing the importance
of different microscale bacterial processes, this review aims to
contribute to the ongoing discussion on challenges related to the
upscaling from the microscopic via the profile to the landscape
scale. In parallel with this article by König et al., two other groups
have recently proposed detailed, critical reviews of the literature
on the modelling of microscale soil processes. Golparvar et al.
(2021) focus on the pore-scale modelling of bacterial activity,
whereas the more recent article by Pot et al. (2021) reviews in
great detail the microscale models dealing respectively with the
architecture of soils and with the dynamics of bacteria, archaea
and fungi within it. All in all, these three complementary review
articles now provide a very solid framework in which to
contextualize future microscale modelling efforts.

Soil architecture is an essential characteristics of soils, in that it
determines the geometry, topology, and connectivity of the pore

space, in which a large fraction of soil processes is taking place
(Letey, 1991; Vogel et al., 2021). It is therefore important that
modelling efforts aim at predicting how this architecture is likely
to evolve in time, under the influence of external stimuli or the
processes occuring in soils. In that context, the article by Rupp
et al. presents an interesting mechanistic framework, based on a
cellular automaton model, to simulate the interplay between the
soil mineral constituents quartz, goethite, and illite, subject to
attractive and repulsive electrostatic interaction forces. The
resulting architectures are quantified by morphological
measures. This framework is presented from the perspective of
the “aggregate” perspective on soil architecture, of which the
dynamics of “microaggregate” formation is an important aspect.
However, the cellular automaton method developed by Rupp
et al. could also potentially prove useful within the context of the
holistic perspective advocated by Vogel et al. (2021).

Two articles, by König et al. and Pagel et al. deal with the
modelling of bacterial dynamics in soils. König et al. analyze how
spatial disturbance characteristics determine functional resilience
on the microscale. They use the numerical model eColony
considering bacterial growth, substrate consumption, and
dispersal to analyze the dynamic response of biodegradation as
an important microbial ecosystem function to disturbance events,
and systematically vary the frequency of the disturbance events,
and the size and fragmentation of the disturbed area. They find
that the influence of the disturbance size on functional recovery
depends on the spatial fragmentation of the disturbance,
indicating that to some extent disturbance size can be
compensated for by the spatial configuration of the disturbed
area. Pagel et al., on the other hand, try to quantify controls on
soil carbon turnover due to the mm-scale spatial distribution of
microbial decomposer communities in soil. A new spatially
explicit trait-based model (SpatC) is developed, which captures
the combined dynamics of microbes and soil organic matter
(SOM) by taking into account microbial life-history traits and
SOM accessibility. Samples of spatial distributions of microbes at
μm-scale resolution are generated using a spatial statistical model
based on Log Gaussian Cox Processes that was originally used to
analyze distributions of bacterial cells in soil thin sections
(Raynaud and Nunan, 2014). These μm-scale distribution
patterns are then aggregated to derive distributions of
microorganisms at mm-scale.

The fifth and last article in the RT, by Almquist, focuses on the
components of soil variability whose scale dependency emerges
because soils are non-equilibrium thermodynamic systems. The
author argues that a ubiquitous process, soil stirring or
pedoturbation, is widely implicated in affecting soil processes
such as aggregation, horizonation, and rates of chemical
weathering. This observation aligns well with advancements
recently made in theoretical physics. For a variety of non-
equilibrium physical systems, the stirring rate has been shown
to be equivalent to an effective temperature of the systems, and
can be used to recover thermodynamic relationships in non-
equilibrium settings. While effective temperatures have yet to be
measured in soils, this theoretical framework has the potential to
provide a new tool to rectify the discordance between small and
large-scale rates of soil processes, and thereby, possibly, to help in
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the development of upscaling approaches adapted to soil
conditions.

One way to look at this RT is to consider that five articles is a
small number of articles, considering that the topic that is
addressed is intimately related to some of the key societal
concerns of the moment, like he fate of soil carbon in
response to climate change and the ability of soils to feed the
10 billion people that are going to inhabit the Earth in a mere
29 years. There are probably several practical reasons for the
relatively low turnout. Perhaps one of the key ones, already
discussed by Baveye et al. (2018) is that, at this stage, the
experimental data that could be used to assess the
performance of models remain extremely scanty. This has
been illustrated schematically by Baveye et al. (2018), in a
diagram that we reproduce here in Figure 1. There has been
some progress achieved since 2018 in several respects, for
example in terms of spatial measurements of the distribution
of bacteria in soils (e.g., Juyal et al., 2019; Juyal et al., 2020; Juyal
et al., 2021) and in the combination of physical, chemical, and
biological measurements to obtain a full picture of
microenvironments at the scale of microorganisms (e.g.,
Schlüter et al., 2019; Lucas et al.; Bandara et al., 2021; Gerke
et al., 2021). Nevertheless, one can argue that a “half-empty-glass”
perspective remains appropriate, and there is still some way to go
before enough microscale measurements will be available to
reasonably rigorously assess microscale models. Alternatively,

one could adopt a “half-full-glass” perspective on the present
RT, since all 5 articles in it have contributed very valuable insight
and information on aspects of the very complex reality we face in
soils, which were still insufficiently addressed when the RT was
launched. This fact is highlighted in Figure 1 by labels indicating
where in the diagram the insights resulting from the different
articles of this RT fit. In all cases, these are areas where there was a
relatively dire deficit of information. Hopefully, this RT will
encourage more researchers to fill in the gaps in our
knowledge of what controls soil processes at the microscale,
and that eventually this knowledge will enable us in a timely
fashion to come up with answers to the many soil-related
challenges humanity faces.
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FIGURE 1 | Schematic representation of the research flow chart on the emergent properties of soils, as outlined by Baveye et al. (2018). It consists of a sequence of
steps, leading from a characterization of the physical, (bio)chemical, and biological properties and dynamics at the microscale, onward to an upscaled macroscopic
model, and finally to the ultimate goal of identifying macroscopic measurements that can be carried out routinely. The un-shaded parts of the different blocks constituting
the flow chart correspond to Baveye et al. (2018) estimate of the progress achieved on each step. The letter labels indicate where the articles of the present RT have
made the most significant contribution. These labels correspond respectively to the articles by (A) König et al., (B) Rupp et al., (C) König et al., (D) Pagel et al., and (E)
Almquist.
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