
Semi-Empirical Models for the
Bidirectional Water-Leaving
Radiance: An Analysis of a Turbid
Inland Lake
Zeying Han1,2, Xingfa Gu1,2,3, Xin Zuo1,2, Kaiyi Bi 2,4 and Shuaiyi Shi1*

1State Environment Protection Key Laboratory of Satellite Remote Sensing, Aerospace Information Research Institute, Chinese
Academy of Sciences, Beijing, China, 2University of Chinese Academy of Sciences, Beijing, China, 3School of Remote Sensing
and Information Engineering, North China Institute of Aerospace Engineering, Langfang, China, 4State Key Laboratory of Remote
Sensing Science, Aerospace Information Research Institute, Chinese Academy of Sciences and Beijing Normal University, Beijing,
China

When a precise quantitative analysis of satellite measurements over bodies of water is
required, the bidirectional effects of water-leaving radiance must be considered. The
bidirectional reflectance distribution function (BRDF) is used to estimate the directional
dependency of the radiance. Previous research on BRDF has focused on oceanic waters;
few studies on turbid inland waters have been conducted. In this article, using multi-angle
MISR measurements, five semi-empirical BRDF models (MAG2002, Lee2004, Park-
Ruddick 2005, Woerd-Pasterkamp2008, and Lee2011) were quantitatively compared,
and an adaptive algorithm was proposed over a typical turbid inland lake, Taihu Lake,
China. Our results reveal the following: 1) the Woerd-Pasterkamp2008 and Lee2011
models provide the best fits with correlation coefficients greater than 0.8; 2) when prior
modeling parameters were used, the Lee2011 model was still the most accurate with
RMSEs less than 1.1%, while the accuracy of the Woerd-Pasterkamp2008 model varied;
and 3) the use of an adaptive algorithm including an empirical rule based on the ratio of bb/a
improved the accuracy. The results provide a theoretical basis for BRDFmodels and BRDF
effects over inland Case II waters. They also provide a priori knowledge for future studies on
water constituents and the quantitative inversion of atmospheric parameters.

Keywords: water-leaving radiance, bidirectional reflectance distribution function (BRDF), turbid inland water,
remote sensing, multi-angle sensors

INTRODUCTION

The spectral radiance emerging from a natural body of water is not generally isotropic (Jerlov and
Fukuda, 1960). It depends on the sun-sensor geometry as well as the optical properties and
constituents of the water (Zhai et al., 2015; He et al., 2017). For the accurate estimation of
spectral radiance, the angular effects of the water-leaving radiance must be considered. Most
algorithms that attempt to retrieve the properties and constituents of water are based on in situ
measurements of upwelling spectral radiance from a single viewing angle and toward the zenith
(Gordon and Morel, 1983). It is common practice in ocean color remote sensing to relate the water-
leaving radiance to a common geometry or account for the angular effects (Kwiatkowska et al., 2008).
Moreover, satellite measurements vary in sun-sensor geometries. On the other hand, bidirectional
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reflectance of the water surface reveals essential information. It
characterizes the optical properties of water (Twardowski and
Tonizzo, 2018a; Twardowski and Tonizzo, 2018b) and serves as
the boundary condition for the retrieval of aerosol properties
(Gordon et al., 1997; Gatebe and King, 2016). The development of
accurate bidirectional reflectance distribution function (BRDF)
models is important for the quantitative analysis of water bodies
and aerosols.

In previous years, research effort has developed the general
idea that the variation of bidirectional reflectance can be modeled
(Gordon, 1989a; Hirata et al., 2009). Research on the bidirectional
effects of a water light field began with clear Case I waters, mainly
oceanic waters. In such waters, the optical properties are mainly
controlled by phytoplankton and the phase function is related to
the concentration of chlorophyll-a (Loisel and Morel, 2001). The
models were confirmed by measurements (Morel et al., 1995) and
remote sensing data (Morel and Gentili, 1996). In turbid waters,
however, the optical properties are more complex. Studies on the
anisotropy of the Case II waters, especially coastal waters, have
been conducted (Hlaing et al., 2012). Bidirectional reflectance
distribution models were established with simulations in these
studies. However, the study of BRDF over inland waters is still
rare (Li et al., 2014).

BRDF models can be broadly divided into three categories: 1)
physical models based on radiative transfer equations (Jin and
Stamnes, 1994; Fell and Fischer, 2001) and Monte-Carlo
simulations (Morel and Gentili, 1991); 2) semi-empirical
models based on physical models and free parameters (Morel
and Gentili, 1993; Albert and Mobley, 2003; Gege, 2004); and 3)
empirical models based on statistical relationships (Morel, 2009).
Physical models provide good physical interpretations and
accurate simulations of bidirectional water-leaving radiance,
but they are so complicated that they incur large
computational costs. Empirical models are simpler than
others; however, they are less representative, especially for
waters quite different from the sample of origin. Perhaps,
most importantly, they cannot explain the physical factor of
BRDF in water. Compared with physical models and empirical
models, semi-empirical models can give physical interpretations
with reliable simulations at low computational costs. Therefore,
these semi-empirical models are widely used in water color
remote sensing algorithms (Gleason et al., 2012).

In this study, we identified the five popular semi-empirical
BRDF models among the current models and used them to
parameterize the bidirectional water-leaving radiance. Morel
et al. developed a BRDF model (referred to below as
MAG2002) to estimate the angular change in upwelling
radiation based on simulation tables of a radiative transfer
model (Morel et al., 2002). This is currently the standard
model used for oceanic remote sensing observations. In
addition, in recent years, several polynomial models have been
proposed for different types of water, including those developed
by Lee et al. (2004), Lee et al. (2011), Park and Ruddick (2005),
and Vanderwoerd and Pasterkamp (2008). Some of these models
have been used to compare different oceanic waters, including
Case I waters and coastal Case II waters. However, validations
and comparisons of these semi-empirical models over turbid

inland waters are still rarely conducted. In addition, studies of
these models essentially rely on numerical simulations and field
measurements (Gleason et al., 2012; He et al., 2017). Field datasets
are limited by the distribution of measurement sites. Multi-angle
remote sensing data can help a lot in the application of these
models.

Because of the complex optical characteristics of turbid inland
waters, research on the properties of the bidirectional water-
leaving radiance of lakes is insufficient. In this article, we selected
the five popular semi-empirical BRDF models among the current
models to parameterize the bidirectional water-leaving radiance.
The different BRDF models of water-leaving radiance were
analyzed based on MISR data collected from Taihu Lake,
China. Taihu Lake is a typical turbid lake. We also proposed
an adaptive and empirical algorithm based on the various
performances of the models. The results provide a theoretical
basis for models over lakes based on multi-angle remote sensing
data and the correction of the angular effect of the radiance. Our
study provides a priori knowledge that can be used in future
research on the retrieval of the constituents of water and aerosol
parameters.

This article is organized as follows: Materials and Methods
introduces the materials and provides a brief description of the
method used in the study. Results presents the results of the
comparison. Discussion discusses the advantages and limitations,
and also proposes an adaptive algorithm. Finally, the conclusions
are given in Conclusion.

MATERIALS AND METHODS

Database
Taihu Lake is located in the Yangtze River Delta and is China’s
third largest fresh water lake. It covers an area of ~2,300 square
kilometers with an average depth of over 1.9 m (Zhang et al.,
2019). The water in Taihu Lake is constantly turbid and
eutrophic, with a large area of optically deep waters (Shi et al.,
2018); it represents an environment that is very different from
clear oceanic waters and turbid coastal waters. Therefore, Taihu
Lake is ideal for research on turbid inland waters. Figure 1
illustrates the location of Taihu Lake.

The lake data used in this article came from the multi-angle
database generated by MISR onboard the satellite platform Terra.
As the MISR data now exceed over 20 years of global coverage,
they provide a massive amount of directional reflectance
information and having the advantage of accurate radiometric
calibration. In addition to the nadir camera (AN), the forward
and aft-viewing 26.1° cameras are called “AF” and “AA,”
respectively, and those viewing at 45.6, 60.0, and 70.5° are
noted as “B,” “C,” and “D,” respectively. The nine scans
record observations in four spectral bands, with spatial
sampling distances of 275 and 1,100 m. The center
wavelengths are 446 nm (Blue Band), 558 nm (Green Band),
672 nm (Red Band), and 867 nm (NIR Band). The global
repeat coverage time is between 2 and 9 days, depending on
latitude. Observations for a single pixel are collected at 9 angles
and taken within 7 min, meaning that the effect of dynamic
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inland water on the results is low. MISR is the only EOS series
multi-angle instrument that can carry out long-term serial
observations with a high level of spatial resolution and highly
accurate radiometric calibration and stability (Si et al., 2021).
The product of the radiance and geometric parameters can be
used to analyze bidirectional reflectance. The MISR Level-2
surface product includes parameters of some bidirectional
models, such as the hemispherical directional reflectance
factor (HDRF) and bidirectional reflectance factor (BRF).
These model parameters are not as accurate as expected due
to the fitting errors. To reduce the error rate, the raw data used
in this article are the MISR Level-1B products from 2015 to
2016. The MISR Level-1B product is top-of-atmosphere (TOA)
reflectance. Based on the aerosol information from the
AERONET site, we conducted atmospheric correction with
the radiative transfer model of the coupled surface signals
(Tanre et al., 1983) and the ASRVN (AERONET-based
Surface Reflectance Validation Network) method (Yujie

Wang et al., 2009). The accurate bidirectional reflectance
data with atmospheric correction were used as a benchmark
for the analysis in this study.

To improve the accuracy of atmospheric correction, we
obtained precise aerosol data from the AERONET-Taihu
Station. The AERONET (AErosol RObotic NETwork)
program is a federation of ground-based remote sensing
aerosol networks established by NASA and LOA-PHOTONS
(CNRS). There is an observation site named Taihu Station on
the north shore of Taihu Lake. Data from Taihu Station have been
widely used in related scientific research. We downloaded aerosol
data from this station and used them in the atmospheric
correction process.

The inherent optical properties (IOPs) of pure seawater have
known quantities (Morel, 1974; Pope and Fry, 1997), and the
IOPs can be derived by the quasi-analytical algorithm (QAA)
(Lee et al., 2011; Chen and Zhang, 2015). The series of QAA
algorithms input the above-surface remote sensing reflectance
and output IOPs of the absorption and backscattering
coefficients. The measurements of IOPs from published
datasets are sparse both in time and in space. The QAA-V
algorithm (Joshi and D’Sa, 2018) was designed for use in the
assessment of Case II waters and is suitable forMISR bands. Thus,
we conducted QAA-V to get the absorption and backscattering
coefficients of Lake Taihu.

To eliminate data on optically shallow waters, the MODIS
SWIR and blue bands were obtained to distinguish waters.
Morel’s oceanic models take wind into consideration. In this
study, wind speed data for every six hours were obtained from
global atmospheric reanalysis products provided by the National
Centers for Environmental Prediction (NCEP).

BRDF Models of Water
A calm water body is a planetary surface with a unique BRDF
pattern. In nature, we find large water bodies show anisotropy of
the radiance field just above the water surface (Gatebe and King,
2016). We selected data from MISR observations made over
Taihu Station and conducted accurate atmospheric corrections.
Figure 2 illustrates the retrieved above-water remote sensing
reflectance (Rrs) data plotted against scattering angles. Taihu

FIGURE 1 | (A) Location of Lake Taihu in China; (B) location of the AERONET site on the northern edge of Lake Taihu.

FIGURE 2 | Rrs retrieved over Taihu Station plotted against scattering
angles.
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Station was chosen as an example because of its stable water
quality and sufficient level of aerosol products.

The scattering angles in Figure 2 were calculated based on the
following formula:

cosξ � cos θs cos θv + sin θs sin θv sinΔϕ, (1)
where ξ the scattering angle; θs and θv are the solar zenith angle
and the view zenith angle, respectively; and Δϕ is the relative
azimuth angle between the solar and view directions. We
presented five semi-empirical BRDF models here. Table 1 lists
the models and the related information.

MAG2002
Morel et al.’s (2002) model (referred to as MAG2002 in this
article) is the standard model for oceanic remote sensing. It
accounts for Raman scattering and the variance of particle
phase function with respect to chlorophyll concentration. The
MAG2002 model is a well-known model for oceanic waters and
works well in studies conducted in clear oceanic areas (Voss et al.,
2007). MAG2002 is widely used in correcting the angular
measurements to be normalized water-leaving radiance, with
both the solar zenith angle and view zenith angle of 0°. The
applicability of the MAG2002 model in inland waters is worth
studying and comparing with coastal models. The model is
written as follows:

Rrs(θs, θv,Δφ, λ,W, [Chl]) � R(θv,W)
×
f

Q
(θs, θv,Δφ, λ, [Chl]) × bb(λ)

a(λ) ,
(2)

where Rrs is the above-water remote sensing reflectance; R is a
factor of cross-surface effects (Gordon, 2005) that can be obtained
from a look-up table (LUT) published in the study by Morel and
Gentili (1996); f can be calculated using the solar zenith angle
and the backscattering coefficient (Morel and Gentili, 1991); Q is
defined as the ratio of the upwelling irradiance to radiance; a and
bb are the IOPs of water, which represent the total absorption
coefficient and total backscattering coefficient, respectively; λ is
the wavelength; W is the wind speed obtained from the NCEP;
and [Chl] is the chlorophyll concentration.

Lee2004
Lee et al. (2004) proposed a model (referred to as the Lee2004
model in this article) for use over optically deep water. It is based
on absorption and backscattering properties instead of
chlorophyll concentration. The Lee2004 model explicitly

expresses the remote sensing reflectance using two separate
terms: one governed by the phase function of molecular
scattering and the other governed by the phase function of
particle scattering (Mobley, 1994). Model parameters have
been developed for each term. The two-term formula is
written as follows:

rrs(λ,Ω′) � gw(Ω)′ bbw(λ)
a(λ) + bb(λ) + gp(λ,Ω′) bbp(λ)

a(λ) + bb(λ), (3)

where rrs is the subsurface remote sensing reflectance, defined by
the ratio of upwelling radiance to downwelling irradiance just
below the water surface; Ω’ is the sun-sensor angular geometry in
the water; bbw and bbp are the backscattering coefficients of water
molecules and particles, respectively; and bbw + bbp � bb; gw and
gp are two independent model parameters.

In order to keep the comparison consistent, we needed to
convert rrs into Rrs. In studies on water color remote sensing, rrs
and Rrs have been related using the following formula (Lee et al.,
2002; Sokoletsky and Shen, 2014):

rrs(λ) � Rrs(λ)/(1.7Rrs(λ) + 0.52). (4)

Park-Ruddick2005
Park and Ruddick (2005) used a 4th-order polynomial (their
model is referred to as Park-Ruddick2005 here) to incorporate
multiple-scattering effects for both Case I and Case II waters.
The center of the high-order model is the ratio of
backscattering (bb) to the sum of absorption and
backscattering coefficients (a + bb). The fourth-order
polynomial was chosen because the associated numerical
error was much smaller than 10% in Park and Ruddick’s
experiment. The function is written as follows:

rrs(λ,Ω′) � ∑4
i�1
gi(Ω′)( bbp(λ)

a(λ) + bb(λ))
i, (5)

where gi (i = 1–4) are coefficients for the various sun-sensor
angular geometries.

Woerd-Pasterkamp2008
Vanderwoerd and Pasterkamp (2008) used information from the
IOPs in coastal waters to create an algorithm named HYDROPT
to retrieve chlorophyll-a from satellite remote sensing images. In
HYDROPT, a BRDF model (here referred to as Woerd-
Pasterkamp2008) was proposed. This model includes a

TABLE 1 | Summary of BRDF models used to assess water.

Model Number
of free parameters

Water type References

MAG2002 3 Oceanic waters Morel et al. (2002)
Lee2004 2 Oceanic and coastal waters Lee et al. (2004)
Park-Ruddick2005 4 Oceanic and coastal waters Park and Ruddick (2005)
Woerd-Pasterkamp2008 16 Coastal waters Woerd and Pasterkamp (2008)
Lee2011 4 Oceanic and coastal waters Lee et al. (2011)
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polynomial of the natural logarithm of total absorption and total
scattering. The model can be applied with any definition of the
specific inherent optical properties of chlorophyll-a, suspended
particulate matter (SPM), and colored dissolved organic matter
(CDOM). The model is written as follows:

ln[rrs(λ,Ω′)] � ∑3
i�0
∑3
j�0
Pij[ln(a(λ))]i[ln(b(λ))]j, (6)

where Pij (i = 0–3, j = 0–3) are fit coefficients for the combination
of solar zenith, sensor zenith, and the relative azimuth.

Lee2011
Lee et al. (2011) improved their Lee2004 model based on many
satellite measurements. With the objective of efficiently processing
a large volume of satellite data while, at the same time, explicitly
accounting for the different effects of molecular scattering and
particle scattering, a second-order modified model (referred to as
Lee2011 in this article) was proposed. The new model is similar to
that presented as Eq. 3 and is written as follows:

Rrs(λ,Ω) � (Gw
0 (Ω) + Gw

1Ω
bbw(λ)

a(λ) + bb(λ)) ×
bbw(λ)

a(λ) + bb(λ)
+ (Gp

0(Ω) + Gp
1(Ω) bbp(λ)

a(λ) + bb(λ)) ×
bbp(λ)

a(λ) + bb(λ),
(7)

where Gw
0 , G

w
1 , G

p
0, and Gp

1 are coefficients that are dependent on
the angular geometry; and Ω is the sun-sensor angular geometry
above water.

Data Preprocessing
Considering the cloud coverage of MISR data and the quality of
AERONET data, we selected 20 days with 180 images in our
study. As there were thousands of pixels in every image and the
adjacent pixels were similar, we sampled the data to lower the
computational cost. We chose 1 pixel from every 10 pixels to
conduct the experiment. The database of the bidirectional above-

water reflectance was used to compare the performance of these
five semi-empirical models. In order to conduct the experiment
precisely and properly, we preprocessed the raw data.

Atmospheric Correction
Atmospheric correction is the key to the study. It is the first step
toward remote sensing of water color. The radiative transfer
equation of the coupled water-leaving signals can be expressed as
follows (Tanre et al., 1983):

RTOA(τ, μs, μv,Δϕ) � Ratm(τ, μs, μv,Δϕ), (8)
+e−τ

μs
e
−τ
μv

Rrs(μs, μv,Δϕ), (a)

+e−τ
μv

td(τ, μs)�ρ(τ, μs, μv,Δϕ), (b)

+e−τ
μs

td(τ, μv)ρ′(τ, μs, μv,Δϕ), (c)

+td(τ, μs)td(τ, μv)�ρ + T(τ, μs)T(τ, μv)S(τ)�ρ2
1 − S(τ)�ρ , (d)

where RTOA is the reflectance received at the top of the
atmosphere (TOA); Ratm is the radiation of solar radiation
directly reaching the sensor after the process of atmospheric
transmission; T is the atmospheric transmittance; S is the
backscattering coefficient of the atmosphere; τ is the
atmospheric optical thickness (AOT); μs and μv are the cosine
of the solar zenith angle and the view zenith angle, respectively; �ρ,
ρ’, and �ρ are the coupling terms and can be defined as follows:

�ρ(τ, μs, μv,Δϕ)
� ∫2π

0
∫1

0
μL↓(τ, μs, μ,Δϕ′)Rrs(μ, μv,Δϕ′ − Δϕ)dμdΔϕ′

∫2π

0
∫1

0
μL↓(τ, μs, μ,Δϕ′)dμdΔϕ′ ,

(9)

ρ′(τ, μs, μv,Δϕ) � �ρ(τ, μv, μs,Δϕ), (10)

�ρ � ρ′(τ, μs, μv,Δϕ) ≈ ∫1

0
∫2π

0
∫1

0
Rrs(μ, μ′,Δϕ)μμ′dμ′dμdΔϕ∫1

0
∫2π

0
∫1

0
μμ′dμ′dμdΔϕ

, (11)

As Eq. 8 shows, the contribution of the target pixel to the
signal at TOA can be divided into four terms: 1) the signal directly
transmitted to the water surface and directly reflected back to the
sensor, 2) the signal scattered by the atmosphere then directly
reflected back to the sensor, 3) the signal directly transmitted to
the target but scattered by the atmosphere on its way to the
sensor, and 4) the signal having at least two interactions with the
atmosphere and one with the target (Tanre et al., 1983).

The remote-sensing reflectance signal (Rrs) is the ratio of
water-leaving radiance to the downwelling irradiance incident
on the water surface. The test of glitter should be applied to all the
cameras of MISR within 40 degree of the specular direction
(Limbacher and Kahn, 2017). With the specular reflections
removed by the glitter mask in the study by Limbacher and
Kahn (2017), the data of Rrs do not include the reflection effects at
the air/water interface. In our study, the remote-sensing
reflectance signals were atmospherically corrected to remove
the atmospheric effects with Level 2.0 measurements of the
AERONET Taihu site. The AERONET-based Surface

FIGURE 3 | Comparison of in situ measurements and the retrieved
reflectance at nadir view of MISR with the ASRVN method.
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Reflectance Validation Network (ASRVN) method is based on
aerosol measurements and has been proven to be of high quality
(Yujie Wang et al., 2009). When the sky over the lake is clear and
without cloud cover, the distribution of aerosols can be regarded
as nearly horizontally uniform, and the ASRVN algorithm can be
used to obtain the bidirectional reflectance for Taihu Lake.

To test the accuracy of atmospheric correction, we obtained
measurements from sampling points over Taihu Lake. We
compared the in situ measurements and the nadir water-leaving
radiance with the ASRVN method in similar sun-view geometry.
The results are shown in Figure 3. The relative error is less than
that of the usual atmospheric correction methods in previous
studies (Pahlevan et al., 2021). Thus, we took the retrieved
reflectance as an accurate benchmark for the following study.

Water Types
Because bottom reflectance can significantly affect the
bidirectional water-leaving radiance (Mobley et al., 2003), this
study focused on optically deep waters where bottom reflectance
is not an important factor. The first data processing step was to
obtain the area of optically deep water. The extracted water areas
were intersected with data contained in the Global Lakes and
Wetland Database (GLWD) (Lehner and Döll, 2004). The
reflectance of optically shallow water with a grass bottom is
obviously higher than that of optically deep water in the
SWIR band, and the sandy bottom will cause high reflectance
in the Blue Band (Mobley–Curtis and Lydia, 2003). Therefore, to
eliminate data on optically shallow waters, the MODIS SWIR and
Blue bands were used to determine the threshold of the water-
leaving radiance (Wang et al., 2018).

Studies have shown that the accuracy of the BRDF model is
essentially related to the shape of the actual phase function of the
water (Xiong et al., 2017). However, the phase function is scarcely
measured because it is too complex for routine observations
(Kirk, 1991). The absorption (a) and backscattering (bb)
coefficients are also widely used in the analysis and processing
of water color data (Gordon, 1989b). In this article, we select IOPs
of a and bb as the main parameters to represent the water quality.

In order to compare the performance levels of models in
different water types, we calculated the statistical numbers of
sampled points with various IOPs. Based on the analysis of the
IOPs and the previous research on long-term observations of
Taihu Lake (Shi et al., 2019), we divided the data from Taihu Lake
into five types. The range of IOPs and the statistical numbers of
the sampled points in five water types are presented in Table 2.

Data Experiments and Adaptive Algorithm
In our study, we conducted experiments based on Taihu Lake as a
whole, as well as five different water types. We obtained
bidirectional reflectance from MISR’s TOA measurements by
atmospheric correction. The bidirectional data were used to
compare the performance of five semi-empirical models. The
method used for the comparison contained four parts: model
fitting, modeling with prior parameters, difference comparison
on scattering angles, and an adaptive algorithm.

For model fitting, the bidirectional reflectance is known, and
models are inverted against the data for each target independently.
Free parameters in this study are Q in MAG2002, gw and gp in Lee
2004, gi (i = 1–4) in Park-Ruddick2005, Pij (i = 0–3, j = 0–3) in
Woerd-Pasterkamp2008, and Gw

0 , G
w
1 , G

p
0, and Gp

1 in Lee 2011,
respectively. For MAG2002, Q is retrieved per water type and per
sun-senor geometries. And for the other models, parameters are
retrieved for every sun-senor geometry. Then these sets of free
parameters are used to predict bidirectional reflectance. The
optimization strategy for all the model fitting is least square
minimization.

In most cases, however, bidirectional reflectance data are not
available. Modeling with precomputed information is the usual way
to figure out the accuracy of models and referred as prior parameters
in our study. We selected data from 2015 as training data to obtain
the parameters mentioned above. Then, we calculated the values of
bidirectional reflectance based on the sun-view geometric data from
2016 and compared the simulations with the measurements.

The evaluation methods were the Pearson correlation
coefficient (R), the root-mean-square error (RMSE), and the
absolute relative error (ARE), which were calculated as follows:

R � ∑n
i�1(xi − x)(yi − y)����������������������∑n

i�1(xi − x)2∑n
i�1(yi − y)2√ , (12)

RMSE �
�����������������������������
1
n
∑n

i�1(Rrs−simulation − Rrs−measurement)2
√

, (13)

ARE �
∣∣∣∣∣∣∣Rrs−simulation − Rrs−measurement

Rrs−measurement
× 100%

∣∣∣∣∣∣∣, (14)

Finally, we were trying to propose an adaptive algorithm for
models to improve the accuracy in simulation. It was necessary to
analyze the relationship between the models and the IOPs of a
and bb. We took bb/a as the factor to represent the differences in
water types in this study, because bb/a is a common ratio used in
IOP studies of water color (Jerome et al., 1996; Twardowski and
Tonizzo, 2018a). By analyzing the model’s performance

TABLE 2 | Taihu Lake water types based on the IOPs at 558 nm (Green Band).

Types Absorption coefficient at
558 nm

Backscattering coefficient at
558 nm

Num.
of sampled points

Type 1 0.0–0.5 0.0–0.5 46,331
Type 2 0.0–0.5 0.5–1.0 24,790
Type 3 0.5–1.0 0.0–0.5 15,356
Type 4 0.5–1.0 0.5–1.0 84,857
Type 5 0.5–1.0 1.0–1.5 13,995
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againstbb/a, we figured a threshold to identify models’
performance. The adaptive algorithm was a modification of
models. This algorithm could be applied for quantitative
remote sensing over Taihu Lake, and its application could be
expanded to other, similarly turbid lakes.

The flowchart is shown in Figure 4. The flowchart illustrates
the four parts of our study.

RESULTS

Comparison for Model Fitting
The free parameters of the models were fitted from the retrieved
bidirectional MISR data and then used to predict the Rrs. The

scatter density plots were drawn from model simulations and
measurements.

The scatter density plots in Figure 5 show the example of
model simulations at the Green Band against measurements for
the total lake. Accordingly, the plots in Figure 6 present the
performances at the Green Band of the five types of water. Table 3
presents the detailed fitting result statistics for five models of
four bands.

Figures 5, 6 show a discontinuous distribution with some
point split. For Taihu Lake as a whole, the performance of the
models varied among bands. At the Blue Band (446 nm), the top
models were Woerd-Pasterkamp2008, Park-Ruddick2005, and
Lee2011. At the Green Band (558 nm), the best models were
Woerd-Pasterkamp2008 and Lee2011. At the Red Band

FIGURE 4 | Flowchart of this study.
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(672 nm), the Park-Ruddick2005 and Lee2011 models provided
the best fits. The accuracy level for the NIR Band (867 nm) was
lower than that for the other bands. MAG2002 was identified as
the worst model for all bands, with simulated values being lower
than the measured ones.

As for the various types of water, Woerd-Pasterkamp2008
was the model that provided the best fit for the Blue and Red
Bands. It was the best for three types of water at the Green and
NIR Bands. The Lee2011 model was the most successful for
use in Type 1 waters at 872 nm and Type 5 waters at Green

FIGURE 5 | Scatter density plots of model simulations and measurements at the Green Band for Taihu Lake as a whole. The values are presented at linear scales.
The solid red color lines in the figures are the fitting lines. The solid black lines are the reference lines of 1:1. The colors indicate the proportional number against the
maximum of observations on the scale. The linear fitting formula (y), the correlation coefficient (R), the root-mean-square error (RMSE), and the number of measurements
(N) are displayed on the upper left section of each plot.
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and NIR Bands. Lee2004 fit best in Type 2 waters at the
Green Band.

Comparison for Modeling With Prior
Parameters
The scatter density plots presented in Figure 7 show model
simulations with prior modeling parameters at the Green
Band versus measurements obtained for the lake as a whole.
Detailed statistical data from all bands are listed in Table 4.

For Taihu Lake as a whole, the model performance varied
among bands. At the Blue Band (446 nm), the top models were
Park-Ruddick2005 and Lee2011. At the Green Band (558 nm),
the best model was Lee2011. At the Red Band (672 nm), the
Lee2011 and Park-Ruddick2005 models had the best fits. At the
NIR Band (867 nm), Lee2011 was the most precise model.
MAG2002 was the worst model for all bands. As for the
various types of water, Lee2011 was the most accurate 11
times, followed by Woerd-Pasterkamp2008 with 8 times and
Park-Ruddick2005 with 1 time.

Difference Comparison on Scattering
Angles
To evaluate the overall performance of these BRDF models in the
remote sensing domain (θv = 0–71°) (Lee et al., 2011), we
compared the accuracy with various sun-view geometries of
MISR to show the angular deviations. According to the
Comparison for Model Fitting and Comparison for Modeling
With Prior Parameters, MAG2002 is not suitable for the
inland lake, and error analysis of angular effects is focused on
the inherent-optical-property-centered models (Lee2004, Park-
Ruddick2005, Woerd-Pasterkamp2008, and Lee2011).
Precomputed parameters are much useful in simulation and
angular correction when the bidirectional measurements
available are not sufficient. We applied these prior parameters
to simulate bidirectional reflectance in many cases. Thus, we
present the results of the models in Comparison for Modeling
With Prior Parameters against scattering angles. The absolute
relative differences are calculated based on ARE in Eq. 14.
Figure 8 shows the scatter density plots of the absolute
relative difference of five models against scattering angles.

FIGURE 6 | Scatter density plots of five model simulations and measurements conducted at the Green Band for five water types. The values are presented at linear
scales. The solid red color lines in the figures are the fitting lines. The solid black lines are the reference lines of 1:1. The ranges of x-axis and y-axis are both 0–0.15.
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As shown in Figure 8, Woerd-Pasterkamp2008 and Lee2011
are better than Lee2004 and Park-Ruddick2005. Woerd-
Pasterkamp2008 is best when the scattering angle is less than
130°, but the absolute relative difference increases at large
scattering angle. Lee2011 is excellent in the domain of
scattering angle. The relative difference is less than 20% in
most cases.

Adaptive Algorithm for BRDF Models
To illustrate the IOP effects explicitly, Rrs of five water types at
AN view (the nadir camera of MISR) was presented. The average
of Rrs at AN view is denoted as [Rrs]AN and shown in Figure 9.

The various values of [Rrs]AN in five water types show that the
backscattering coefficient has a greater influence than absorption
coefficient. In addition to Woerd-Pasterkamp2008’s typical
performance related to water types in Comparison for
Modeling with Prior Parameters, we selected bb/a as a factor to
compare models. Lee2011 was the best model according to the
results. We compare Lee2011 and Woerd-Pasterkamp2008
against bb/a here to develop our adaptive algorithm.

Figure 10 illustrates that the correlation coefficient and RMSE
of the twomodels when the bb/a of 1.1 at the Green Band were set
as the threshold. When bb/a < 1.1 at the Green Band, the two
models performed well. Woerd-Pasterkamp2008 was found to
have a slight advantage and was more stable than Lee2011. When
bb/a > 1.1 at the Green Band, however, the accuracy of Lee2011
was much better than that of Woerd-Pasterkamp2008.

Then we can manage a crossover method as the adaptive
algorithm. The threshold of bb/a was set as 1.1, and the
corresponding model was conducted. The results for the

adaptive algorithm compared to Woerd-Pasterkamp2008 and
Lee2011 models are shown in Figure 11.

For the adaptive algorithm, the correlation coefficients were
greater than 0.85 for all water types, while the RMSE values were
lower than 0.5. Compared with the original models, the adaptive
algorithm was found to be unquestionably more robust for
simulating water-leaving radiance, especially in Type 2 and
Type 5 waters. The adaptive algorithm is a modification of the
top two models.

DISCUSSION

Discussion of the Results
For the results presented in Results, one of the most obvious
characteristics shown in the figures is that the plotted points are
not continuous. This discontinuity is related to the discrete
parameters based on the grid of sun-sensor geometries. The
view zenith angles of MISR are quite sparse. The relative
azimuth angles are not as different as the zenith angles over
Taihu Lake. Thus, the sun-sensor angular geometries gather in
clusters. The model parameters are fitted to the nearest geometry,
and the sun-sensor geometries are not continuous. Thus, they are
not as smooth as in the simulation based on a continuous sun-
sensor geometry.

The model fitting comparison allowed us to determine the
models with the best fit. Woerd-Pasterkamp2008 and Lee2011
had correlation coefficients greater than 0.8, showing almost
unbiased comparisons and indicating that they are good fits
for the shape of BRDF. For Taihu Lake as a whole,

TABLE 3 | Fitting result statistics for five models for Taihu Lake as a whole and for five water types. The bold-italic values mean the best results in every case.

(nm) Types MAG2002 Lee2004 Park and Ruddick Woerd and
Pasterkamp

Lee2011

Cor. RMSE% Cor. RMSE% Cor. RMSE% Cor. RMSE% Cor. RMSE%

446 Taihu 0.534 1.522 0.934 0.708 0.975 0.431 0.979 0.395 0.973 0.452
Type 1 0.679 1.112 0.913 0.513 0.961 0.33 0.976 0.248 0.963 0.317
Type 2 0.255 2.166 0.887 0.713 0.968 0.365 0.97 0.349 0.962 0.395
Type 3 0.787 0.516 0.691 0.408 0.846 0.227 0.887 0.199 0.864 0.213
Type 4 0.406 1.952 0.95 0.465 0.981 0.268 0.982 0.257 0.981 0.261
Type 5 0.934 1.524 0.875 1.386 0.931 1.003 0.934 0.953 0.927 1.02

558 Taihu 0.648 1.553 0.939 0.509 0.953 0.446 0.969 0.384 0.96 0.412
Type 1 0.773 1 0.901 0.402 0.903 0.406 0.937 0.292 0.926 0.317
Type 2 0.681 1.109 0.829 0.603 0.75 0.459 0.793 0.409 0.776 0.455
Type 3 0.336 1.025 0.762 0.382 0.786 0.413 0.886 0.272 0.827 0.377
Type 4 0.333 2.253 0.862 0.487 0.919 0.365 0.954 0.267 0.93 0.329
Type 5 0.649 2.413 0.802 0.909 0.79 0.956 0.809 0.885 0.859 0.753

672 Taihu 0.864 1.736 0.979 0.323 0.985 0.258 0.946 0.482 0.974 0.336
Type 1 0.848 1.795 0.928 0.315 0.979 0.142 0.989 0.098 0.954 0.22
Type 2 0.66 1.783 0.732 1.662 0.733 1.66 0.843 1.115 0.809 1.301
Type 3 0.302 1.684 0.894 0.267 0.94 0.201 0.968 0.126 0.943 0.177
Type 4 0.447 2.452 0.909 0.281 0.887 0.308 0.978 0.134 0.879 0.21
Type 5 0.404 4.351 0.67 3.923 0.668 3.941 0.768 2.941 0.768 2.942

867 Taihu 0.53 2.393 0.77 1.185 0.719 1.282 0.826 1.03 0.832 1.033
Type 1 0.139 3.019 0.562 1.862 0.547 1.837 0.661 1.599 0.694 1.479
Type 2 0.607 1.955 0.696 1.39 0.695 1.395 0.798 1.181 0.758 1.253
Type 3 0.782 1.747 0.806 0.56 0.791 0.533 0.991 0.103 0.924 0.325
Type 4 0.374 2.137 0.41 1.908 0.434 1.904 0.552 1.815 0.476 1.861
Type 5 0.769 2.826 0.778 3.054 0.777 3.073 0.777 3.007 0.779 3.011
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Woerd-Pasterkamp2008 provided the smallest RMSE values
and the largest correlation coefficients at the Blue and Green
Bands, while it was the second best model at the NIR Band and
the third best model at the Red Band. Lee2011 was consistently
one of the top models for all bands. The next best models were
Park-Ruddick2005 and Lee2004. As for the various types of

water, Woerd-Pasterkamp2008 was the best fitting model. It
had the smallest RMSE value and the largest correlation
coefficient in most situations. The Lee2011 model was the
second best followed by Park-Ruddick2005 and Lee2004.
MAG2002 was the worst model for all water types. These
results are consistent with those obtained for Taihu Lake as a

FIGURE 7 | Scatter density plots to compare model simulations andmeasurements at the Green Band for Taihu Lake as a whole. The values are presented at linear
scales. The solid red color lines in the figures are the fitting lines. The solid black lines are the reference lines of 1:1. The colors indicate the proportional number against the
maximum of observations on the scale. The linear fitting formula (y), the correlation coefficient (R), the root-mean-square error (RMSE), and the number of measurements
(N) are displayed on the upper left section of each plot.
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whole. The MAG2002 was identified as the worst model in all
situations.

In the comparison with modeling using prior parameters, the
rank of models changed. The accuracy of the models when a
priori knowledge was used was lower than that obtained with
model fitting. For Taihu Lake, as a whole, the best model was
obviously Lee2011, which was identified as one of the top models
for all bands. The next best model was Park-Ruddick2005, which
was one of the best at the Blue and Red Bands. For the various
types of waters, Lee2011 was the best overall. The next best
models were Park-Ruddick2005 and Lee2004. Woerd-
Pasterkamp2008 was less stable in terms of its precision and
accuracy than the other models. MAG2002 was still the worst.

As for the various water types, the accuracy of model fitting varied
widely. For example, the difference in correlation coefficients reached
0.6 for the MAG2002 model. However, clearly, all models except
MAG2002 were more successful in water types where the effects of
absorption and backscattering were similar. There were great
differences in Woerd-Pasterkamp2008’s performance among the
various water types. Woerd-Pasterkamp2008 performed the best for
two water types (Types 3 and 4) and the worst for two water types
(Types 2 and 5).

Apart from MAG2002, the main structure of the models had
an inherent optical property center and parameters with a sun-
view geometry. IOPs are the center of these four models, and they
have various levels of sensitivity on the scattering angle.

Combined with the relative errors against scattering angle
presented in Difference Comparison on Scattering Angles, the
relative errors of four models are mainly less than 40%. Moreover,

Lee2011 is stable in all the geometries, whileWoerd-Pasterkamp2008’s
errors increase at large scattering angles. Woerd-Pasterkamp2008 and
Lee2011 are better, with relative errors less than 20%. These two
models are suitable for all the remote sensing domains.

In a theoretical sensitivity study, Lee2011 proves its robustness with
outstanding relative errors. Lee2004 is not sensitive to the absorption
coefficient, but it is less robust to the backscattering coefficient. Park-
Ruddick2005 is affected by IOPs. Woerd-Pasterkamp2008 is largely
sensitive to IOPs, especially backscattering coefficients. Besides, the
average [Rrs]AN in five water types shows that the backscattering
coefficient has a greater influence than the absorption coefficient. Thus,
an adaptive algorithmwas proposed based on bb/a by applying various
models in water. Lee2011 andWoerd and Pasterkamp are the top two
models mentioned in previous results. In Type 3, where the effects of
absorption are larger than those of backscattering, Woerd and
Pasterkamp behave better than Lee2011. In Types 2 and 5,
however, where the effects of absorption are less than those of
backscattering, Lee2011 is more accurate than Woerd and
Pasterkamp. Meanwhile, in Types 1 and 4, where the effects of
absorption and backscattering are similar, the two models perform
similarly. The adaptive algorithm improves the accuracy of BRDF
simulations and expands the applicability of the models. When the
uncertainty of the model is less than 10%, the model is acceptable for
use in BRDFmodeling and for the correction of bidirectional variation
(Loisel and Morel, 2001).

Advantages and Limitations of the Models
MAG2002 is the standard oceanic BRDF model, but it performed
badly in the Taihu Lake simulation. There are at least three

TABLE 4 | Statistical data for the five models with prior parameters for Taihu Lake as a whole and for the five water types. The bold-italic values mean the best results in every
case.

(nm) Types MAG2002 Lee2004 Park and Ruddick Woerd and
Pasterkamp

Lee2011

Cor. RMSE% Cor. RMSE% Cor. RMSE% Cor. RMSE% Cor. RMSE%

446 Taihu 0.387 2.882 0.88 0.923 0.941 0.658 0.412 4.88 0.926 0.733
Type 1 0.662 1.106 0.687 1.071 0.875 0.561 0.683 0.946 0.771 0.791
Type 2 0.183 5.911 0.793 0.891 0.9 0.628 0.232 5.711 0.855 0.751
Type 3 0.687 0.616 0.635 0.394 0.741 0.367 0.775 0.318 0.701 0.367
Type 4 0.378 2.045 0.928 0.507 0.925 0.507 0.973 0.319 0.955 0.422
Type 5 0.739 2.01 0.885 1.64 0.919 1.067 0.205 14.165 0.882 1.257

558 Taihu 0.563 1.655 0.914 0.577 0.881 0.707 0.899 0.778 0.948 0.448
Type 1 0.707 1.151 0.849 0.536 0.895 0.477 0.916 0.348 0.923 0.326
Type 2 0.666 1.138 0.671 0.61 0.634 0.843 0.419 1.23 0.77 0.505
Type 3 0.471 1.14 0.76 0.451 0.767 0.456 0.855 0.343 0.809 0.355
Type 4 0.326 2.203 0.851 0.524 0.91 0.391 0.937 0.311 0.921 0.355
Type 5 0.526 2.87 0.712 1.112 0.68 1.25 0.489 2.164 0.787 0.933

672 Taihu 0.651 2.145 0.934 0.534 0.94 0.509 0.846 1.047 0.941 0.505
Type 1 0.603 1.751 0.924 0.355 0.932 0.293 0.955 0.218 0.939 0.272
Type 2 0.225 8.101 0.667 2.015 0.691 1.854 0.424 3.1 0.724 1.407
Type 3 0.288 1.656 0.869 0.271 0.876 0.262 0.914 0.208 0.889 0.242
Type 4 0.503 1.957 0.859 0.364 0.872 0.343 0.899 0.301 0.946 0.335
Type 5 0.308 4.618 0.459 2.603 0.557 1.6 0.456 2.562 0.655 1.088

867 Taihu 0.433 2.488 0.743 1.217 0.709 1.296 0.384 4.562 0.801 1.088
Type 1 0.092 3.122 0.503 1.769 0.477 1.9 0.549 2.908 0.599 1.645
Type 2 0.219 8.129 0.22 8.112 0.22 8.112 0.222 8.103 0.223 8.006
Type 3 0.347 1.63 0.767 0.85 0.73 0.856 0.832 0.521 0.793 0.661
Type 4 0.221 2.779 0.369 1.96 0.35 1.983 0.413 1.946 0.399 1.949
Type 5 0.498 4.742 0.507 4.619 0.501 4.611 0.494 4.567 0.5 4.602
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reasons for this. First, because the model is based on Case I
assumptions (Morel and Prieur, 1977), it requires the absorption
contribution to co-vary with the concentration of chlorophyll-a
(Morel and Maritorena, 2001) and ignores the other optically
active factors in Case II waters, such as CDOM, SPM, and higher
chlorophyll concentrations (Gleason et al., 2012). The second
reason is the form of the model itself. Morel and Gentili
parameterized f and Q as the function of the chlorophyll
concentration in Case I waters. These parameters can be
obtained from the previous LUT (Morel and Gentili, 1996) or

calculated based on sun-sensor geometry, causing errors to
accumulate. Another possible reason is the QAA-V process in
this study. The structure of QAA-V is similar to the other models,
and that might reduce the errors for the others. But we think the
effects relating to the difference are less than the quality of models
in turbid lakes. In fact, Park-Ruddick2005 is the most similar
model to the structure of the QAA-V, but it is not the best model
in our study. Thus, both theoretically and empirically, the
MAG2002 model is not suitable for the quantitative analysis
of inland Case II waters.

FIGURE 8 | Scatter density plots of the absolute relative difference of five models against scattering angles.
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As for the other four models, one of the common
characteristics is that they are
inherent-optical-property-centered models and ignore inelastic
scattering [like Raman scattering (Stavn and Weidemann, 1988;
Hu and Voss, 1997) and chlorophyll-a fluorescence, which has an
isotropic angular distribution (Gordon et al., 1993)]. This differs
from MAG2002. Thus, all of these models can be applied for the
analysis of the turbid inland waters. However, they vary in terms
of their complexity and accuracy.

Park-Ruddick2005 performs well according to our results, but
its level of uncertainty is much larger than that presented in Park
and Ruddick’s experiments. According to Park and Ruddick’s
research, the model’s uncertainty arises mainly from the phase
function uncertainty and is generally less than 2%. This function
can be applied to a wide range of bb/�a + bb� values, but it is
sensitive to the backscattering coefficient. In extremely turbid

water, variations in the sensor zenith angle are significant (Park
and Ruddick, 2005). In simulations, the sensor zenith angle is
approximated to the nearest angle. This might be the main
limitation of Park-Ruddick2005.

The fundamental difference between Lee’s models (Lee2004 and
Lee2011) and the other models is that they account for molecular
and particle backscattering separately. This feature works well in
our simulation.We observed that Lee’s models were more stable in
various water types than the Park-Ruddick2005 and Woerd-
Pasterkamp2008 models. For Lee2011, another notable
improvement is that the water-leaving radiance is simulated
using linear mixing of the Petzold average particle phase
function (Mobley, 1994), where mineral particles and the
Fournier-Forand phase function (Fournier and Forand, 1994)
are represented with a backscattering ratio of 1% (Mobley et al.,
2002) to represent phytoplankton particles. The model is more
robust and precise when used to assess turbid lakes than Lee2004
due to the new form of themodel and themodified phase function.

The Woerd-Pasterkamp2008 model has the most free
parameters and the highest order polynomial of natural
logarithm. Its structure resulted in an exponential relative error
in the sensitivity study. It was found to be the best model for model
fitting. However, it performed badly when modeling with prior
parameters. Notably, the model’s performance varied among water
types. Woerd-Pasterkamp2008 had the worst performance for two
water types (Types 2 and 5) where the effect of backscattering was
larger than that of absorption. Conversely, it performed the best in
the two water types (Type 3 and 4), where the effects of
backscattering and absorption were similar. We will discuss this
further in the following section.

We used Taihu Lake as an example of a turbid inland lake. In
order to enhance the results for various water qualities, we
divided the lake into five types (presented in Data
Preprocessing) and applied the algorithm for their analysis.
This algorithm can be applied for quantitative remote sensing
over Taihu Lake, and its application can be expanded to other,
similarly turbid inland waters.

FIGURE 9 | Average of Rrs values at AN view of five water types drawn
with four bands of MISR.

FIGURE 10 | Boxplots of the correlation coefficient and RMSE values at the Green Band for Lee2011 and Woerd-Pasterkamp2008 in two groups of water.
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CONCLUSION

In previous years, several BRDF models have been developed to
parameterize the bidirectional water-leaving radiance of water
surfaces. Although some achievements have been made through
the comparison and validation of some of these models over clear
oceanic Case I waters and coastal Case II waters, studies on turbid
inland waters are lacking. We quantitatively compared the five
popular models using a typical turbid inland lake, Taihu Lake,
China, in this study.

Using a bidirectional reflectance database generated from
space-borne MISR measurements, the model fitting accuracy
of five models and the accuracy when prior modeling
parameters were used were analyzed over Taihu Lake. The
water was divided into five types based on IOPs in order to
more accurately assess the performance of the models at various
levels of water quality. The results suggest that Woerd-
Pasterkamp2008 has the best fitting effects, followed by
Lee2011. Based on the inappropriate hypothesis of the
algorithm and phase function, MAG2002 was found to be
unsuitable. On the other hand, when the prior parameters
were used, Lee2011 was the most accurate and robust model
for most water types. Woerd-Pasterkamp2008 behaved
differently in terms of the ratio of IOPs bb/a. Furthermore, the
error comparison on scattering angles showed that Lee2011 and
Woerd-Pasterkamp2008 were robust in the remote sensing
domain. We identified a certain rule governing the
relationship between model simulations and the bb/a ratio,
which could be applied to obtain an adaptive algorithm. Based
on this rule, we proposed an adaptive algorithm using the top two
models to enhance their applicability. The algorithm improves
the robustness and accuracy of bidirectional water-leaving
radiance simulations.

In this article, we carried out a bidirectional reflectance model
analysis of a typical turbid inland lake, Taihu Lake, in China.
These results are important for the application of multi-angle
remote sensing data and the correction of the BRDF effect of
radiance. This research also provides a theoretical basis for future

studies on the quantitative inversion of water constituents and
surface atmospheric parameters over turbid lakes.
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FIGURE 11 | RMSE values and correlation coefficients of measurements and simulations conducted at the Green Band.
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