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Family farms, considered the most desirable form of Chinese agriculture, play a

pivotal role in promoting rural revitalization and agricultural modernization. The

purpose of this study was to summarize the spatiotemporal evolution

characteristics and influencing factors of family farms to better promote the

development of modern agriculture. Using provincial demonstration family

farms in the urban agglomeration in the middle reaches of the Yangtze River

(MYR-UA) as the research object, this study applied the nearest neighbor index,

kernel density analysis, multiscale spatial clustering analysis (Ripley’s

K-function), and geographically weighted regression (GWR) model to reveal

the spatiotemporal dynamic evolution and influencing factors of family farms.

The results indicate that: 1) from 2013 to 2021, family farms exhibited annual

increases, and their development stages could be divided into rapid, stable, and

slow growth periods. 2) The spatial agglomeration pattern of family farms was

significant, and the intercepted points at different time periods show the

distribution characteristics of the entire dispersion and local concentration.

The spatial evolution characteristics of different types of family farms are nearly

consistent with those of the overall family farms. 3) The overall family farms and

various types of family farms show a scale effect, which first strengthens and

thenweakenswith the change in geographical distance. 4) The spatial pattern of

family farms in MYR-UA is affected by both natural and social factors, of which,

social factors had the greatest influence. Finally, based on the findings of the

study, policy recommendations for promoting the high-quality development of

family farms are proposed.
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1 Introduction

As a new type of agricultural production and management

entity, family farms undertake the vital tasks of improving

agricultural production efficiency, realizing agricultural

modernization, and promoting sustainable agricultural

development (Wang et al., 2021). Family farms can effectively

circumvent the weaknesses of traditional small-scale farming

methods and have been developing for hundreds of years in

developed western countries (Lowder et al., 2016). Family farms

appeared in China at the end of the 20th century. Before this, there

were no agricultural management models in traditional China [

(Chen et al., 2022a), (Liang et al., 2016)]. The Chinese government

has focused on the cultivation and development of family farms as

an agricultural management model (Gong et al., 2019).

According to statistical data from the Ministry of Agriculture

and Rural Affairs of the People’s Republic of China, there were

139,000 family farms inChina in 2014. In 2020, this number reached

853,000, showing a trend of continuous growth. Family farms have

become a crucial force in the development of modern agriculture

(Gao et al., 2017). Although family farms in various parts of the

country have developed rapidly, there have been some practical

problems, such as weak marketing ability, lack of labor, a single

management model, and poor management [ (Wilson et al., 2010;

Graeub et al., 2016; Ji et al., 2016; Gao et al., 2019)]. To solve these

problems, the Chinese government issued the “High-quality

Development Plan for New Agricultural Business Entities and

Service Entities,” emphasizing the need to accelerate the

development of family farms, actively create demonstration

family farms, and ultimately develop high-quality family farms

(Qian and Li, 2020a). Therefore, in this context, exploring the

spatiotemporal evolution characteristics and influencing factors of

family farms is of great value and practical significance to rationally

plan the layout of family farms and promote the high-quality

development of family farms.

Family farms first appeared in European countries and North

America. The United States government defines the family farm

as one in which the family owns the property rights of the farm,

and family members are the main labor force and bear the

primary responsibility for the operation and management of

the farm (Reinhardt and Barlett, 2008). According to the Family

Farm Law of Russia, family farms are independent production

and operation entities with legal personal rights (Shubin, 2011).

With the rapid development of family farms worldwide,

measuring and improving their efficiency has become popular

a research topic for many scholars. Madau used the SFA and

DEA models to measure the efficiency of Italian citrus farms. It

was found that the technical efficiencies estimated using the two

models were essentially the same, but the scale efficiency varied

significantly (Madau, 2015). Chen and Meng adopted a DEA

model to measure the efficiency of Wuhan and Langxi family

farms and applied the Tobit model to explore the factors affecting

efficiency (Chen et al., 2022b). Qian and Li measured the

efficiency of different types of family farms in Songjiang,

Shanghai, China. They found significant differences in the

efficiencies of different types of family farms. In recent years,

scholars have gradually realized the important relationship

between geographical elements and family farms and have

begun to explore the spatial layout of family farms from the

perspective of geography [ (Xing et al., 2021), (Ilbery and Maye,

2010)]. For example, Xiong and Zhang used Jiangjin District of

Chongqing as a case study and comprehensively analyzed the

spatial distribution pattern of family farms using the nearest

neighbor index, kernel density analysis, and standard deviation

ellipse (Xing et al., 2021). Ilbery and Maye utilized ArcGIS tools

to analyze the spatial agglomeration characteristics and

distribution rules of family farms in England and Wales

(Ilbery and Maye, 2010). These studies have successfully

introduced geographical research methods into the study of

family farms.

Many studies have also considered factors that influence the

formation of family farms. Based on existing research, scholars

have mostly applied qualitative descriptions, spatial overlay

analyses, and traditional regression models to explore the

reasons for the formation of family farms (Huber et al., 2015;

Dumas et al., 2016; Julia and Elena, 2016; Zhang et al., 2022). The

results indicated that the formation of family farms is influenced

by both natural and social factors. Natural factors include

precipitation, temperature, altitude, and the soil environment,

while social factors include the rural labor force, traffic

accessibility, economic development level, relevant

government policies, degree of marketization, and agricultural

infrastructure. There is a complex network of relationships

among the variables, and their interactions promote the

regional formation and development of family farms.

The above analysis suggests that the research results in this field

have gradually been enriched, but many issues still need to be

addressed and improved. These studies mostly examined the

efficiency of family farms from the perspectives of management

and economics [(Burton andWalford, 2005), (Fox et al., 2021)]. Few

studies have focused on the dynamic evolutionary patterns and

influencing factors of family farms from the perspective of

spatiotemporal heterogeneity. Second, from the perspective of

influencing factors, previous studies mostly used qualitative

descriptions and traditional linear regression methods to analyze

the causes of the formation of family farms [(Philip et al., 2018),

(Baležentis et al., 2014)]. The results obtained by these methods

could not reflect the spatial heterogeneity of the influencing factors

and thus could not provide specific suggestions for promoting the

development of family farms. Third, from the perspective of case

innovation, the existing research focused more on a single city or

region [(Marchant Santiago et al., 2021), (Carte et al., 2010)] but paid

less attention to the scale of urban agglomeration. There is also a lack

of comparative research between the different regions.

The urban agglomeration in the middle reaches of the

Yangtze River (MYR-UA) has a long history of agricultural
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development and is a key innovation base for modern

agricultural industry in China (Lv et al., 2010). In 2015, the

development plan for the MYR-UA indicated that it is necessary

to expand modern agricultural bases, actively cultivate new

agricultural business entities, and develop efficient modern

agriculture. The implementation of this plan has provided

great opportunities for the development of family farms in the

MYR-UA. Accordingly, the rational planning and layout of

family farms is paramount for promoting agricultural

modernization and rural revitalization in the MYR-UA. The

purpose of this study is to explore the spatiotemporal evolution

characteristics and influencing factors of family farms to provide

a scientific basis for the high-quality development of family

farms. Specifically, we 1) present the spatiotemporal evolution

characteristics of family farms overall and those of different

types, 2) identify the influencing factors and spatial

heterogeneity of family farms, and 3) provide specific

suggestions for the rational layout and high-quality

development of family farms.

The main innovations of this study can be described as

follows. First, this study combines traditional and spatial

statistical methods to systematically explore the temporal

evolution, spatial agglomeration, spatial density distribution,

and multiscale spatial characteristics of family farms in the

MYR-UA. Second, we classify the family farms in the MYR-

UA and display the spatial distribution patterns of the different

types of family farms. Third, we apply the geographically

weighted regression (GWR) model to determine the spatial

heterogeneity and distribution patterns of the influencing

factors of family farms at the grid scale and refine these factors.

2 Study area and data sources

2.1 Study area

TheMYR-UA is a critical part of the Yangtze River Economic

Belt, and it mainly comprises the Wuhan Metropolitan Area

(WMA), Chang–Zhu–Tan Urban Agglomeration (CZT-UA),

and Poyang Lake City Group (PLCG). The MYR-UA has

been a rich production area for grain crops since ancient

times and has superior conditions for agricultural production.

The region has the most abundant agricultural resources and the

most active agricultural trade in China (Wang et al., 2020).

Moreover, the MYR-UA is a flat area predominantly

composed of alluvial plains. This region has a subtropical

monsoon climate, indicating that it is warm and rainy. It has

many rivers that provide abundant water resources to the area.

Therefore, the establishment of family farms has inherent natural

conditions. Furthermore, the western region of the MYR-UA is

connected to the Chengdu–Chongqing economic zone, the

eastern region is connected to the Wanjiang Economic Belt

and the Yangtze River Delta, and the southern region is near

the Pearl River Delta economic zone, which means that the

region has a broad agricultural product market. Finally, the

MYR-UA is located at the intersection of the vertical axis of

the Beijing Harbin–Beijing Guangzhou Corridor and the

horizontal axis along the Yangtze River Corridor, providing

extremely convenient transport conditions. Therefore, the

MYR-UA is a suitable representative area to use as a case

study for practical significance. The study area is illustrated in

Figure 1.

2.2 Classification of family farms

Referring to previous studies combined with the actual

development of family farms in the MYR-UA, we divided the

family farms into three types based on their business scope:

breeding, planting, and comprehensive family farms [(Qian and

Li, 2020a), (Xing et al., 2021)]. Planting family farms mostly grow

food crops, vegetables, and fruits. The planting types are distinct

for each farm, with some maintaining a relatively simple planting

structure, whereas others have a wide variety of plants. Breeding

family farms are primarily engaged in poultry farming and

aquaculture. Most breeding family farms in the MYR-UA

raise pigs, chickens, ducks, crayfish, fish, and pigeons.

Comprehensive family farms are those that combine planting

and breeding, with the business scope including accommodation,

catering, picking, fishing, and recreation.

2.3 Data sources

A list of 1,998 provincial demonstration family farms in the

MYR-UA was obtained from the official websites of the Jiangxi

Provincial People’s Government (https://jiangxi.gov.cn/,

accessed on 26 February 2022), Hubei Provincial Department

of Rural Agriculture (http://nyt.hubei.gov.cn/, accessed on

26 February 2022), and Hunan Provincial Department of

Rural Agriculture (https://agri.hunan.gov.cn/, accessed on

26 February 2022). In 2013, the No.1 Central Document

explicitly proposed to encourage and develop family farms for

the first time. Therefore, 2013 was selected as the starting year for

this study. Because the list of provincial model family farms in

2022 was not yet available at the time of this study, 2021 was used

as the deadline year. Among the listed family farms, there were

713 planting farms, 337 breeding farms, and 948 comprehensive

farms. The longitude and latitude coordinates of each family

farm were queried using Baidu Maps, and the data were verified

as reliable through field research and random telephone

interviews. The DEM30m data of the study area was from the

Data Center of Resource and Environment Science, Chinese

Academy of Sciences (https://www.resdc.cn/, accessed on

10 March 2022), which was used to extract the slope values of

the surrounding areas of the family farms. The land-use data
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were obtained from the Data Center of Resource and

Environmental Sciences, Chinese Academy of Sciences

(https://www.resdc.cn/, accessed on 10 March 2022), which

was applied to extract the cultivated land area around the

family farms. China’s 1 km grid population distribution data

and GDP data were obtained from the National Earth System

Science Data Center (http://www.geodata.cn/, accessed on

10 March 2022) [(Fu et al., 2014; Huang et al., 2014)]. These

data were used to extract the population density and GDP data of

the area around the family farms. China’s annual average

temperature and precipitation data were derived from the

China Meteorological Background Dataset of the Center for

Resource and Environmental Science and Data, Chinese

Academy of Sciences (https://www.resdc.cn/, accessed on

10 March 2022) (Xu and Zhang, 2017). Using remote sensing

image data, this study digitally acquired the main traffic road

network and water area of the MYR-UA. These data were used to

extract the road and water network densities of the area around

the family farms.

3 Methods and materials

3.1 Average nearest neighbor index

The average nearest neighbor index (ANN) indicates the

mutual proximity of point elements in a geographic space. Its

advantage is that it can accurately reflect the degree of spatial

clustering of point data (Chen et al., 2022c). In this study, an

ANN was used to determine the distribution types of family

farms in the MYR-UA. The index value was calculated as

follows:

R � Do

De

(1)

Do � ∑n

i�1
di

n
, De � 1

2

��
A

n

√
(2)

where R is the nearest neighbor index of the family farms, Do

represents the average distance between neighboring family

farms, De represents the theoretical average distance of

FIGURE 1
Here Location of the study area.
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family farms, di is the actual distance between the ith family

farm and its nearest neighbor, n is the number of family

farms, and A is the study area. R � 1 indicates that the points

generally show a random distribution, whereas R< 1

indicates an agglomerated distribution, and R> 1 indicates

a uniform distribution.

The Z-score is calculated as follows:

Z � Do −De

SE
, SE � 0.26136��

n2

A

√ (3)

Where Z-value is the standard score to determine the degree of

dispersion of the family farm in space.

3.2 Kernel density analysis

Kernel density analysis was used to calculate the unit density

of the measured values of the point and line elements in the

specified neighborhood. It is widely used in spatial clustering

analyses of point data, and its advantage is that it can intuitively

reflect the distribution of discrete measured values in continuous

areas (Ma et al., 2022). This study used kernel density analysis to

explore the spatial and temporal distribution characteristics of

the family farms in the MYR-UA. The calculation is as follows

(Yang et al., 2021):

f x( ) � 1
nh

∑n

i�1k
x − xi

n
( ) (4)

where n is the number of family farms within the bandwidth, k(·)
is the kernel function, (x − xi) is the distance from the estimated

point x to the sample point xi, and h is the bandwidth. The larger

the f(x), the denser the distribution of the family farms.

3.3 Multiscale spatial clustering analysis

The spatial distribution characteristics of the point features

may vary with the observation scale. Point features clustered at

small scales may exhibit discrete distributions at large scales. The

advantage of Ripley’s K-function is that it can analyze the

distribution patterns of point features at distinct spatial scales

(Zhang et al., 2021). This study used Ripley’s K-function to

determine the distribution patterns of the family farms at

different spatial scales. The calculation is as follows:

K d( ) � A∑n

i
∑n

j

wij d( )
n2

(5)

where A represents the study area, n is the total number of point

elements, d is the observation scale, and wij(d) represents the
distance between point elements i and j within the range of the

observation scale d.

Based on Eq. 5, Besag proposed the L(d) function to

maintain a stable variance as follows (Besag, 1977):

L d( ) �
�����
K d( )
π

√
− d (6)

We compared the L(d) value with the expected value, upper

data packet trace, and lower data packet trace. L(csr) is the

expected value, L(d)max is the upper data-packet trace, and

L(d)min is the lower data-packet trace. If the value of L(d) is
larger than expected, the family farms will show an aggregated

distribution, while an L(d) the is smaller than expected indicates

a discrete distribution. If the value of L(d) is larger than that of

the upper data packet trace, then the spatially clustered

distribution is statistically significant. The spatially discrete

distribution is statistically significant if the value of L(d) is

smaller than that of the lower data-packet trace.

3.4 Grid analysis

The grid analysis method is effective for determining and

analyzing the geographical phenomena of the study area based

on the spatial coordinate system. It has broad prospects for the

analysis of spatial patterns (Briggs, 2018). Owing to the large

scope of the study area, to accurately identify the factors

influencing the spatial distribution pattern of family farms, we

used the grid analysis method to divide the MYR-UA into

992 grid units. The area of the inner grids was 20 km ×

20 km, while that of the boundary areas varied. Finally, based

on the grid division, by extracting the number of family farms in

each grid as the dependent variable and the corresponding

geographic element values as independent variables, we

constructed a regression model to analyze the factors

influencing the spatial distribution of the farms.

3.5 Ordinary least squares
regression (OLS)

TheOLSmodel is a global regressionmodel applied to evaluate

the relationship between two or more elements. The advantage of

the OLS model is that it minimizes the sum of squares of the

residuals for all observations (Yang et al., 2022). This study initially

explored the factors influencing the spatial layout of family farms

using the OLS model. The calculation is as follows:

yi � β0 +∑n

j
βjxij + εi (7)

where yi is the observed value of the study region i, xij is the jth

variable value in region i, and ε denotes the vector of the random
error terms.
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3.6 Geographically weighted
regression (GWR)

The OLS model can only estimate the parameters globally.

Therefore, it was necessary to use the GWR model to reflect the

non-stationarity of the parameters in space. Compared with the

traditional regression model, GWR allows the relationships

between the dependent and independent variables to vary

spatially (Ma et al., 2022). This study used the GWR model to

explore the factors influencing family farms and the spatial

heterogeneity of these factors. The calculation is as follows:

yi � β0 ui, vi( ) +∑n

i
βk ui, vi( )xik + εi (8)

where ui and vi are the spatial positions of location i; β0(ui, vi)
acts as an intercept, and βk(ui, vi) is the local estimated

coefficient of the independent variable.

The weight matrix can be described using a Gaussian

function as follows:

wij � exp
−d2

ij

h2
( ) (9)

where wij is the weight of observation j within the neighborhood

of observation i; dij represents the distance between observations

i and j; and h denotes the kernel bandwidth.

To determine the best bandwidth value, we adopted the

corrected Akaike information criterion (AICc) to search for

the best value (Yang et al., 2022).

AICc � 2nln σ( ) + nln 2π( ) + n
n + tr S( )

n − 2 − tr S( ) (10)

where σ is the maximum likelihood estimate of the variance of

the random error term, tr(S) is the trace of the S matrix, and n is

the number of sample cities.

3.7 Selection of influencing factors

The spatial distribution patterns of family farms are

influenced by several factors. Existing studies have used field

research and questionnaire survey methods to explore the factors

influencing the spatial distribution pattern of family farms and

found that natural resources, economic development level,

market demand, cultivated land resources, and traffic

conditions are influencing factors (Greig, 2009; Marks-Bielska,

2013; Lowder et al., 2016; Kenny, 2017; Zhou et al., 2020;

Pellegrina, 2022; Rahmani and Danesh-Yazdi, 2022; Wang

et al., 2022), (Greig, 2009; Marks-Bielska, 2013; Lowder et al.,

2016; Kenny, 2017; Zhou et al., 2020; Pellegrina, 2022; Rahmani

andDanesh-Yazdi, 2022;Wang et al., 2022). Based on the current

research results, combined with the principles of data availability

and innovation, we selected topographic features, temperature,

precipitation, water system characteristics, cultivated land

resources, traffic conditions, economic development level, and

population size as the potential influencing factors for this study

from the two aspects of natural and social factors (Table 1).

The natural factors include topographic features,

temperature, precipitation, water system characteristics, and

cultivated-land resources. The topographic features directly

affect the type and scale of the family farms (Greig, 2009) and

thus have a substantial impact on the distribution. In this study,

topographic features were expressed as the slope. Climatic factors

and water system characteristics are the essential production

conditions for family farms. Previous studies have confirmed that

temperature, precipitation, and water area have an impact on the

formation and development of family farms [ (Kenny, 2017;

Rahmani and Danesh-Yazdi, 2022; Wang et al., 2022)].

Cultivated land resources are not only indispensable for the

formation and development of family farms but are also the

basis for large-scale development (Lowder et al., 2016). In this

study, cultivated land resources were represented by the

proportion of cultivated land area in the research unit.

Social factors include traffic conditions, economic development,

and population size. Traffic is a primary factor determining the

connection between a region and other areas (Zhou et al., 2020).

Therefore, the geographic location of family farms is likely affected

by traffic conditions. In this study, the traffic factor was represented

by the density of the road network in the research unit. The level of

economic development is a fundamental condition for industrial

development (Pellegrina, 2022). A good economic foundation of a

region plays a positive role in promoting the formation and

development of family farms. This study selected the GDP level

to represent the economic foundation. Population size can reflect the

market consumption potential of a region, especially in the

agricultural product market (Marks-Bielska, 2013). This study

selected the average population density in the research unit to

represent the population size.

4 Results

4.1 Spatiotemporal dynamic evolution of
family farms

4.1.1 Temporal evolution characteristics of
family farm development

Figure 2 shows the change in the number of family farms in

the MYR-UA from 2013 to 2021. We divided the development of

family farms into three stages according to the growth trends.

1) Rapid growth stage (2013–2017). After the Chinese

government encouraged and supported the development of

family farms in 2013, the number of family farms grew

rapidly. In just 5 years, the number of family farms grew

from 273 to 1,575, with an average annual increase of 325. In

terms of family farms of different types, comprehensive
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family farms grew the fastest from 113 to 725. This was

followed by planting farms that grew from 107 to 590. The

slowest growth rate was observed for the breeding farms,

which grew from 53 to 260.

2) Stable growth stage (2017–2019). During this stage, family farms

showed a steady growth trend with an annual increase of

approximately 150. In 2017, the “Guiding Opinions on

Promoting the Development of Agricultural Industrial

Complexes” issued by six departments, including the Ministry

of Agriculture, further emphasized the basic position of family

farms in agricultural industrialization. The introduction of this

policy promoted the sustainable development of family farms.

However, owing to the rapid growth during the early stage, the

expansion of family farms in some areas faced insufficient land

and market saturation, which led to a decline in the growth rate.

In terms of different family farm types, the growth rate of

comprehensive farms remained the fastest during this stage,

increasing from 725 to 882. This was followed by planting farms

that grew from 590 to 667, and the slowest growth was observed

in breeding farms, which grew from 260 to 309.

3) Slow growth stage (2019–2021). In 2020, the Chinese

government issued the “High-quality Development Plan

TABLE 1 Description of relevant variables.

Variable type Variable name Calculation method Symbol References

Dependent variable Number of family farms Number of family farms in each grid Y ——

Topographic features Average value of slope in each grid X1 Greig Greig, (2009)

Temperature Average value of annual temperature in each
grid

X2 Wang and Yuan Wang et al., 2022

Precipitation Average value of annual precipitation in each
grid

X3 Kenny and Daniel Kenny, (2017)

Independent
variable

Water system
characteristics

Proportion of water area in each grid X4 Rahmani and Dabesh-Yazdi Rahmani and
Danesh-Yazdi, (2022)

Cultivated land resources Proportion of cultivated land area in each
grid

X5 Lowder and Skoet Lowder et al., 2016

Traffic conditions Density of traffic network in each grid X6 Zhou and Huang Zhou et al., 2020

Economic development
level

Density of GDP in each grid X7 Pellegrina Pellegrina, (2022)

Population size Population density in each grid X8 Marks–Bielska Marks-Bielska, (2013)

FIGURE 2
Here Changes in the number of family farms in MYR-UA.
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for New Agricultural Business Entities and Service Entities,”

emphasizing the need for the high-quality development of

family farms. This stage focused on the pursuit of quality

rather than the quantity of family farm development.

Consequently, the growth rate slowed to an average of

70 per year. For the different types, the growth rate of

planting farms was the fastest during this stage, growing

from 667 to 714. This was followed by comprehensive

farms, which grew from 882 to 947, and breeding farms,

which grew from 309 to 337.

4.1.2 Evolution of spatial distribution types of
family farms

The ANN revealed the spatial distribution types of family farms

in the MYR-UA. The Z-score and p-value results are measures of

statistical significance used to determine whether to reject the null

hypothesis. Table 2 shows that theANNof overall family farms from

2013 to 2021 was less than 1, and the Z-score was less than −2.58.

The results also passed the significance level test, indicating that the

family farms in the MYR-UA always exhibited a distinct clustered

distribution during the study period. Indicated by the trend of

change in the values, the ANN and Z-score showed a significant

downward trend, which meant that the degree of family farm

clustering increased continuously.

Planting and comprehensive family farms were clustered in

the study area, and the clustering degree increased yearly. The

spatial distribution and degree of change of these two types of

family farms were consistent with the overall family farms. The

spatial distribution type and clustering degree of the breeding

family farms changed significantly during the study period. From

the perspective of spatial distribution, the breeding family farms

were randomly distributed in the study area only in 2013, while

the other years had a clustered distribution. The degree of spatial

clustering of the breeding family farms experienced two stages of

change. First, from 2013 to 2015, the ANN decreased from

0.942 to 0.719, indicating that the spatial clustering degree

increased. Second, from 2015 to 2021, the ANN increased

from 0.719 to 0.754, indicating that the spatial clustering

degree of breeding family farms was weakening.

4.1.3 Evolution of the spatial distribution density
of family farms

The kernel density analysis method was used to further

analyze the spatial distribution patterns of the family farms.

We used kernel density analysis in ArcGIS 10.8 spatial analysis

tool, set the search radius to 20 km, and kept the default values

for the other variables. We then selected 2013, 2017, and 2021 as

the time points for the analysis.

1) Family farms in general. As shown in Figure 3A, the overall

spatial distribution pattern of the family farms in the MYR-

UA changed considerably. The application and certification

of family farms in China began at the end of 2013. At this

time, the number of family farms in the study area was small

and exhibited a single-core distribution pattern. These farms

were mainly distributed in Nanchang with clear circular

structures. As the capital city of Jiangxi Province,

Nanchang led the development of family farms under the

guidance of national policies. From 2013 to 2017, the

government introduced several measures to support the

development of family farms, such as tax reductions,

subsidies, and free training. Therefore, the distribution

expanded rapidly, evolving from a single-core

agglomeration to a multicore agglomeration. The medium-

TABLE 2 Average nearest neighbor distance analysis of family farms in MYR-UA.

Category 2013 2015 2017 2019 2021

Overall Family farms Z-score −8.807 −18.327 −22.737 −24.763 −25.382

p 0.000 0.000 0.000 0.000 0.000

ANN 0.721C 0.701C 0.601C 0.599C 0.501C

Planting family farms Z-score −5.477 −11.282 −12.500 −13.062 −14.246

p 0.000 0.000 0.000 0.000 0.000

ANN 0.723C 0.713C 0.631C 0.621C 0.579C

Breeding family farms Z-score −0.813 −7.211 −8.424 −8.545 −8.635

p 0.416 0.000 0.000 0.000 0.000

ANN 0.942R 0.719C 0.727C 0.746C 0.754C

Comprehensive family farms Z-score −5.322 −10.766 −14.351 −15.974 −16.831

p 0.000 0.000 0.000 0.000 0.000

ANN 0.738C 0.727C 0.621C 0.601C 0.562C

Z-score less than -2.58 indicates aggregation; p < 0.01 indicates significant results; C and R, clustered and random distributions, respectively.
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FIGURE 3
Here Kernel density analysis of family farms: (A–D) indicate family farms overall, planting family farms, breeding family farms, and
comprehensive family farms, respectively.
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and higher-density agglomeration areas spread to the east and

west sides in a band-like shape. High-density agglomeration

areas expanded from Nanchang to the surrounding cities, such

as Yingtan, Yichun, and Xinyu. From 2017 to 2021, the scale of

the family farms expanded further, with noticeable multicenter

distribution characteristics. At this time, some small-scale high-

density agglomeration areas appeared in Jingdezhen, north of

Changde, the central part of Hengyang, and at the junction of

Yueyang and Changsha. Notably, WMA did not form a high-

density or medium-high-density agglomeration area. This is

because the urbanization and industrialization of WMA have

developed rapidly in recent years, which has resulted in a large

reduction in agricultural land. In addition, frequent flood

disasters in the Jianghan Plain have seriously damaged the

agricultural ecological environment and restricted the

development of family farms.

2) Planting family farms. Figure 3B illustrates the spatial

evolution patterns of the planting family farms. In 2013,

planting family farms were highly concentrated in

Nanchang, forming a polar-core spatial structure.

Nanchang has a vast area of arable land and a high level

of agricultural modernization, providing advantages for

developing planting family farms. However, the entire

study area was dominated by low- and lower-density

agglomerations. A few high-density agglomeration areas

were scattered west of Yingtan, Nanchang, north of

Shangrao, northeast of Jiujiang, and north of Jingdezhen.

From 2013 to 2017, the main spatial expansion pattern of

planting family farms was jump diffusion. During this stage,

influenced and driven by Nanchang, planting family farms in

cities around the capital city (including Yichun, Ji’an, Fuzhou,

Xinyu, and Yingtan) developed rapidly, forming several high-

density agglomeration areas, which also extended to the west

of the study area, covering most of the cities in the CZT-UA.

From 2017 to 2021, contact diffusion was the main spatial

expansion pattern of planting family farms. The changes in

the higher- and high-density agglomeration areas were not

substantial and expanded outward from the original area.

During this stage, the government focused more on the

quality of the development of planting family farms.

3) Breeding family farms. Figure 3C shows the spatial evolution

patterns of breeding family farms. In 2013, the number of

declarations of breeding family farms was relatively small,

exhibiting a spatial pattern of “one pole and multiple points.”

The main gathering points were distributed in the central part

of Nanchang, whereas the density in other places was more

scattered. This is because Nanchang focused on training the

farmers in scientific breeding and has established professional

training institutions. Therefore, the development of breeding

family farms in Nanchang was the fasted of the farm types.

From 2013 to 2017, breeding family farms expanded rapidly

to the northwest. During this stage, the higher- and high-

density agglomeration areas were relatively scattered, and

higher- and high-density agglomeration areas appeared in

all three urban agglomerations. However, the areas with

higher density values were predominantly distributed in

PLCG. From 2017 to 2021, with the popularization of

scientific breeding technology and experience, breeding

family farms were further developed, exhibiting a dense

spatial distribution pattern in the southeast and a sparse

spatial distribution pattern in the northwest. The changes

in the high-density agglomeration area were less substantial,

and the expansion of the higher-density agglomeration area

was larger. Most of the new high-density agglomeration areas

appeared in the CZT-UA.

4) Comprehensive family farms. Figure 3D shows the spatial

evolution patterns of the comprehensive family farms. In

2013, the spatial distribution patterns of the comprehensive

and planting farms were similar. At this time, the

comprehensive family farm focused primarily on planting and

was supplemented by breeding. From 2013 to 2017, the

government encouraged rice and shrimp farming. This move

led to the rapid expansion of comprehensive family farms,

forming multiple growth opportunities. The higher- and high-

density agglomeration areas expanded rapidly in a point-like

manner. High-density agglomeration areas were mainly

distributed in the northwest of PLCG and southeast of CZT-

UA, including Nanchang, west of Yingtan, east of Jiujiang, Xinyu,

south of Jingdezhen, east of Shangrao, Pingxiang, Hengyang,

northern Changsha, and northeast Yiyang. From 2017 to 2021,

comprehensive family farms exhibited a spreading expansion

trend, and the multicenter distribution pattern became more

distinct. To pursue greater economic benefits, most single-family

farms had begun to transform into comprehensive farms. At this

time, the higher- and high-density agglomeration areas expanded

significantly to the southwest, forming numerous new higher-

and high-density areas in CZT-UA.

4.1.4 Multiscale spatial clustering characteristics
of family farms

Ripley’s function was used to analyze the spatial distribution

pattern of the family farms overall and different types of family

farms in the MYR-UA at multiple scales. The calculation results

are presented in Figure 4. Generally, the overall family farms and

different types of family farms in the MYR-UA exhibit significant

spatial agglomeration distribution characteristics, which first

increase and then weaken with increasing geographic distance.

In 2013, 2017, and 2021 (Figures 4A–C), the trends of the L(d)
curves of the family farms were similar, showing an inverted “U"-

shaped characteristic of first increasing and then decreasing from

2 to 150 km. However, there were differences in the peaks of the

L(d) curves and the spatial distances at which they appeared.

Specifically, the agglomeration degree of the family farms

reached maximum values at 101.01, 98.57, and 98.55 km for

2013, 2017, and 2021, respectively, and the corresponding L(d)
peaks were 46.72, 24.87, and 21.25, respectively. This indicates
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that the spatial range of the locations of the family farms in the

MYR-UA was 101.01 km, 98.57 km, and 98.55 km at the three

time points, respectively.

From the distances corresponding to the peaks of the three types

of family farms in 2013 (Figures 4D, 4G, 4J), the breeding and

planting farms exhibited agglomeration characteristics in a large

spatial range, with peaks at 104.45 and 103.78 km, respectively. This

indicates that the scale range of location selection for breeding and

planting family farms is large. The distance corresponding to the

peak of the comprehensive family farm is the smallest (83.77 km),

indicating that the scale range of its spatial location selection is small.

The distances corresponding to the peaks of the three types of family

farms in 2017 were not significantly different from those in 2013

(Figures 4E, 4H, 4K). From the largest to the smallest, they are

breeding, planting, and comprehensive family farms, and the

corresponding peak distances are 105.79, 102.7, and 85.29 km,

respectively. In 2021 (Figures 4F, 4I, 4L), the distances

corresponding to the peaks of the three types changed

significantly. Specifically, the distance corresponding to the peaks

of the breeding and planting farms decreased, and that of the

comprehensive farms increased. However, the distance

corresponding to the peak of breeding family farms remained the

largest, which indicates that the spatial scale of location selection of

the breeding family farm is the largest. The distances corresponding

to the peaks of the planting and comprehensive family farms are

similar, indicating that the difference in the agglomeration scale of

these two types of family farms was narrowing.

4.1 Influencing factors in the spatial
distribution characteristics of family farms

4.2.1 Ordinary least squares analysis
Before applying the GWR model, a global OLS regression

model was used to test the relationship between the explanatory

and explained variables. According to the results of variable

selection, we used the number of family farms in each grid as the

dependent variable and eight influencing factors as the

FIGURE 4
Here Ripley’s K-function analysis of family farms: (A–C) indicate family farms overall; (D–F) indicate planting family farms; (G–I) indicate
breeding family farms; and (J–L) indicate comprehensive family farms.
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independent variables and conducted an OLS regression analysis

to preliminarily test the effect degree and significance level of the

explanatory variables on the explained variables. Table 3 lists the

results of the OLS model.

The OLS regression results are as follows. 1) The variance

inflation factor test showed that the VIF value of each influencing

factor was less than 7.5, which indicated that the model variables

were reasonably set and that there was no variable redundancy or

multicollinearity. 2) The goodness of fit of the model was 0.26,

which passed the significance test, indicating that the model was

robust. 3) Among the explanatory variables, only the water

system characteristics failed the significance test, while the

other variables passed the statistical significance test.

Temperature, precipitation, cultivated land resources, traffic

conditions, economic development level, and population size

had a positive impact on the spatial distribution pattern of family

farms, and topographic features had a negative influence. The

water system characteristics had no significant impact on the

spatial distribution pattern. 4) Based on the value of the

influencing factor coefficient, the traffic factor had the greatest

impact on the number of family farms. When other conditions

remain unchanged, the number of family farms in the unit space

increased by 1.65 for every 1 unit increase in the traffic factor.

The other factors were in the order of cultivated land resources,

temperature, topographic features, precipitation, and population

size, and the impact of the economic development level was the

lowest. Overall, social factors had a greater impact than natural

factors on the number of family farms. 5) The Jarque–Bera test

results were significant, which indicated that the residuals did not

obey a normal distribution and that the model fitting was one-

sided. To improve the degree of fitting, the GWR model must be

introduced.

4.2.2 Spatial heterogeneity of influencing factors
based on GWR model

The default space of the OLS model was homogeneous and

considered only the global characteristics of the regression

coefficients, which could not reflect regional heterogeneity.

Therefore, we introduced the GWR model to analyze the

influence of various influencing factors on the spatial

heterogeneity of the dependent variables. Before running the

GWR model, we first set the parameters, took the latitude and

longitude of the center of mass of each grid as the geographic

coordinates, selected the fixed Gaussian function for the kernel

type, used the golden section search to select the bandwidth, and

considered the AICc as the bandwidth selection criterion. Based

on the regression results of the GWRmodel, the R-squared value

of the OLS model was 0.26, the AICc value was 4,251.15, while

the R-squared value obtained using the GWR model was 0.41,

and the value of AICc was 4,039.14. According to Fotheringham

et al. (Fortheringham et al., 1996), if the AICc value of the GWR

model is smaller than that of the OLS model, then the GWR

model is appropriate. This implies that the GWR model in this

study was more suitable than the OLS model for the regression

fitting of the explanatory variables.

Table 4 presents the statistics of the mean, minimum,

maximum, and upper and lower quartile values based on the

regression coefficient of the GWR model. The regression

coefficients of traffic conditions and cultivated land resources

varied significantly, and the maximum value was high, indicating

that these two factors had a significant impact on the spatial

distribution pattern of the family farms. The regression

coefficients of temperature, traffic conditions, economic

development level, and population size were both positive and

negative for different areas, indicating that these four factors had

TABLE 3 OLS model test results.

Variables Symbol Coefficient Standard deviation T Value p-value VIF

Intercept —— −0.74463 0.36067 −2.06455 0.03921** ——

Topographic features X1 −0.05982 0.01479 −4.04469 0.00006*** 2.04765

Temperature X2 0.07557 0.01675 4.51189 0.00001*** 1.34228

Precipitation X3 0.00098 0.00014 6.69663 0.00000*** 1.14849

Water system characteristics X4 −0.03435 0.03010 −1.14124 0.25404 1.03468

Cultivated land resources X5 1.09746 0.39850 2.75392 0.00599*** 2.00301

Traffic conditions X6 1.65331 0.52924 3.12392 0.00185*** 1.25829

Economic development level X7 −0.0256 0.0158 −1.6214 0.1051 2.1546

Population size X8 0.00005 0.00002 2.49572 0.01272** 1.35490

OLS diagnosis Joint F value Jarque-Bera test R2 Adjusted R2 AICc

43.29122*** 3,922.44687 0.26053 0.25451 4,251.14545

*** and ** indicate significance at the levels of 0.01 and 0.05, respectively.
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a positive impact on the spatial distribution pattern of family

farms in some regions and a negative impact on the spatial

distribution pattern of family farms in other regions. In all the

study areas, the regression coefficients of the topographic features

were negative and those of precipitation were positive.

In addition to the model parameter estimates above, the

GWR model simulates the spatial differences in the degree of

influence of different factors on the spatial distribution pattern of

family farms. In this study, we counted the proportions of

positive and negative values of the regression coefficients of

the influencing factors in each grid (Figure 5). At the same

time, we also used ArcGIS 10.8 software to visualize the spatial

heterogeneity of the influencing factors (Figure 6).

As shown in Figure 5A, the regression coefficient values of

topographic features were negative in the entire study area,

indicating that topographic features had a completely negative

correlation with the number of family farms. The spatial

distribution of the absolute value of the regression coefficient

showed a distribution trend of “high in the south and low in the

north” (Figure 6A). The high-value areas of the absolute value of

the regression coefficient were mainly distributed in Changsha,

Xiangtan, Zhuzhou, Fuzhou, and Yingtan, indicating that

topographic features had a greater impact on the spatial

distribution of family farms in these areas. This may be

because these areas were mainly rice- and vegetable-growing

family farms and live-stock-raising family farms, which are more

susceptible to terrain conditions. The low-value areas of the

absolute values of the regression coefficient were distributed in

Xiangyang, Jingmen, Xiaogan, Wuhan, Ezhou, and Huanggang.

Most of these areas were located in low mountain areas and the

Jianghan Plain, so the development of family farms was less

affected by topographic conditions.

Figure 5B shows that the regression coefficient of the

temperature factor was positive in most research units and

negative in only 4% of research units. This means that the

temperature had a positive effect on the number of family farms.

The regression coefficient of the influencing factor showed a

decreasing distribution trend from the center to the north and

south (Figure 6B). The regions with higher regression coefficients

were mainly distributed in southern Yueyang, northern Changsha,

northeastern Fuzhou, Yingtan, and Shangrao, which indicated that

the temperature factor in this region had a significant promoting

effect on the number of family farms. The regions with low

coefficients were distributed in the north of the WMA, such as

Xiangyang, Jingmen, Tianmen, north of Yichang, Xiaogan, and

Wuhan. This is because investment in agricultural scientific research

has been strengthened in these areas in recent years, and greenhouse

technology and temperature-control equipment have been used to

adjust the temperature conditions required for agricultural planting

and animal husbandry. Therefore, the temperature factor has little

correlation with the number of family farms.

TABLE 4 Statistics of the geographical weighted regression model results.

Variables Symbol Minimum Lower quartile Median Upper quartile Maximum Mean

Intercept —— −3.25363 −0.91723 −0.39874 −0.10476 0.59745 −0.59905

Topographic features X1 −0.09891 −0.08745 −0.07397 −0.04354 −0.01144 −0.06461

Temperature X2 −0.00501 0.03159 0.06472 0.08472 0.10325 0.05709

Precipitation X3 0.00001 0.00063 0.00088 0.00120 0.00252 0.00091

Cultivated land resources X5 0.48905 1.08607 1.65042 3.12297 4.47857 2.07289

Traffic conditions X6 −1.34760 −0.04429 0.84890 2.87944 7.28191 1.58524

Economic development level X7 −0.00006 −0.00001 0.00017 0.00034 0.00051 0.00018

Population size X8 −0.00295 −0.00035 0.00024 0.00135 0.00170 0.00019

GWR diagnosis Bandwidth Effective number R2 Adjusted R2 AICc

172,198.81692 71.45234 0.45589 0.41424 4,039.14387

FIGURE 5
Here Statistics of positive and negative regression
coefficients for various factors: a–g indicate topographic features,
temperature, precipitation, cultivated land resources, traffic
conditions, economic development level, and population
size, respectively.
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As shown in Figure 5C, the regression coefficient values of

the precipitation factor were positive for the entire study area,

indicating that topographic features had a complete positive

correlation with the number of family farms. The high-value

areas of the coefficient were mainly distributed in northwestern

Yichun, southwestern Jiujiang, and eastern Xianning (Figure 6C).

These areas are rich in grain and cash crops in China, and the

level of precipitation is conducive to the development of family

farms. The low-value areas of the coefficient, such as Fuzhou,

Yingtan, and Shangrao, were distributed east of the PLCG. There

are several water systems in these areas. The three river systems

of Fuhe, Xinjiang, and Ganjiang pass through this area and there

are abundant irrigation water sources. Therefore, precipitation

was not a key factor in the development of family farms.

Figure 5D shows that the regression coefficient of cultivated

land resources was positive in all the research units, which means

that there was a significant positive correlation between

cultivated land resources and the number of family farms.

Figure 6D demonstrates that the regression coefficient of

cultivated land resources varied from 0.48905 to 4.47857 and

FIGURE 6
Here Spatial distribution of the regression coefficients of various correlated variables in the geographically weighted regression (GWR) model:
(A–G) indicate topographic features, temperature, precipitation, cultivated land resources, traffic conditions, economic development level, and
population size, respectively.
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the impact varied significantly in space. The spatial distribution

of the regression coefficients exhibited a decreasing trend from

the southeast to the northwest. The maximum value appeared in

PLCG, specifically in Xinyu, Yichun, Nanchang, Jingdezhen,

Shangrao, and Yingtan. In recent years, affected by

industrialization, urbanization, and natural disasters in these

regions, the area of cultivated land has gradually declined.

Therefore, cultivated land resources have a significant impact

on the number of family farms in a region. The minimum values

were observed in Yichang, Xiangyang, Huanggang, and Changde.

This may be because the area has sufficient land for agriculture,

animal husbandry, and aquaculture, and the development of

family farms is less affected by cultivated land resources.

As shown in Figure 5E, in 74% of the study units, the number of

family farms was positively correlated with traffic conditions,

whereas only 26% were negatively correlated. In addition, the

regression coefficient of the traffic conditions varied

from −1.34760 to 7.28191, and the impact varied significantly in

space (Figure 6E). The regression coefficient of the influencing factor

showed distribution characteristics of high in the east and low in the

west. Traffic conditions had a positive impact on the number of

family farms in the entire PLCG and the central and southern areas

of the CZT-UA. Traffic conditions play a pivotal role in the

development of family farms in the area. In the WMA and

northern areas of the CZT-UA, traffic conditions had a negative

impact on the number of family farms. For these areas, convenient

traffic conditions may lead to a large influx of outsiders, thus

damaging the local ecological and living environments, which is

not conducive to the development of family farms.

Figure 5F shows that in 72% of the study units, the number of

family farms was positively correlated with the level of economic

development, and 28% was negatively correlated. As shown in

Figure 6F, the positive areas of the regression coefficient were

mainly distributed in the WMA and central and eastern parts of

the PLCG. This means that the higher the level of economic

development, the greater the number of family farms in the

region. The negative value area of the regression coefficient was

distributed in the CZT-UA, mainly including Hengyang, Loudi,

Xiangtan, Yi-yang, Changsha, Zhuzhou, southeastern Changde,

and southern Yueyang. This demonstrates that the level of

economic development had restricted the development of

family farms in the region. The reason may be that with the

improvement in the level of economic development, people’s

enthusiasm to engage in agricultural production activities will

decrease, and they will be more willing to engage in other

industries with higher economic benefits.

As shown in Figure 5G, in 59% of the study units, the number

of family farms was positively correlated with population size,

and only 41% was negatively correlated. Figure 6G shows that the

positive areas of the regression coefficients were mainly

distributed in the CZH-UA and southwestern WMA. In these

regions, an increase in population size will bring broad market

prospects, which is conducive to the development of family

farms. The negative value area of the regression coefficient is

mainly distributed in the middle of the PLCG, such as Nanchang,

Yingtan, east of Jiujiang and Shangrao, Fuzhou, Jingdezhen, and

west of Yichun. In recent years, with rapid economic

development and increasing population in these regions, the

large population density caused tension between people and the

land, which will have a negative impact on the development of

family farms.

5 Discussion

Family farms are developing rapidly in various regions (Du et al.,

2020). However, the excessive expansion of family farms has resulted

in a series of practical problems, which not only harm the interests of

farmers but also hinder the process of agricultural modernization

(Shang et al., 2021). Therefore, rationally arranging family farms and

promoting the high-quality development of family farms is an

urgent problem that needs to be solved. From temporal and

spatial perspectives, this study comprehensively used the nearest

neighbor index, kernel density analysis, Ripley’s K-function, grid

analysis, and GWR model to deeply explore the spatiotemporal

distribution patterns and influencing factors of family farms in the

MYR-UA, which can provide a scientific reference for solving the

above problems. The specific theoretical and practical significance of

this study are as follows:

First, this study used a variety of geographic methods to deeply

explore the spatial and temporal distribution patterns and influencing

factors of family farms in the MYR-UA. In addition, this study

classifies family farms and discusses the spatial distribution patterns of

different types of family farms. The results of this study are of great

significance in revealing the trends of modern agricultural

development and enriching relevant theories of agricultural

geography. Previous studies have focused primarily on the

operating efficiency, operating model, and formation mechanism

of certain types of family farms (Bertolozzi-Caredio et al., 2020).

However, few studies have analyzed the spatial distribution

characteristics and trends of different types of family farms. To fill

this gap, this study applied the average nearest neighbor index, kernel

density analysis, and Ripley’s K-function to comprehensively explore

the spatial distribution patterns of the overall family farms and

different types of family farms. As shown by the results of this

study, the overall family farms and different types of family farms

exhibit spatial distribution patterns of dispersion and local

concentration. In addition, overall family farms and various types

of family farms demonstrate a scale effect, which first strengthens and

then weakens with the change in geographical distance.

Moreover, this study applied the OLS model, GWR model,

and grid analysis to systematically explore the influencing factors

and spatial heterogeneity of the spatial distribution pattern of

family farms, which can provide a methodological reference for

the same type of research. By comparing the parameter results of

the twomodels, we found that the GWRmodel was more suitable
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than the OLS model for this study. The GWR model not only

analyzed the positive and negative effects of the influencing

factors but also explains the spatial heterogeneity of such

influencing factors (Pravitasari et al., 2021). However, because

of the large areal differences of the cities in the MYR-UA, for this

analysis scale, the spatial heterogeneity of the influencing factors

could not be accurately analyzed. Therefore, we introduced a grid

analysis in this study, dividing the larger study area into grids of

equal size. Finally, the grid unit was used as the research scale to

analyze the spatial heterogeneity of the influencing factors. This

method has strong applicability and scientific benefits and has

been applied gradually by research institutes [(Zhu et al., 2020),

(Bi et al., 2022)].

Ultimately, this study can provide scientific guidance for

government departments to reasonably plan family farmland.

Through the above analysis, we know that the spatial pattern of

family farms is affected by many natural and social factors. The

traditional view is that natural factors are the internal

determinants of the distribution of family farms, while social

factors are the external driving factors (Xing et al., 2021).

However, the results of this study show that the absolute

value of the regression coefficient of social factors, such as

traffic conditions, population size, and economic development

level, is higher than that of natural factors, such as terrain,

temperature, precipitation, and cultivated land resources. This

shows that social factors have a greater impact on the spatial

layout of family farms. This is because natural factors that affect

spatial distribution have gradually become controllable with the

development of science and technology. For example,

greenhouse planting technology and temperature-control

equipment can reasonably adjust the temperature conditions

required for family farm production. Automatic sprinkler

irrigation equipment and artificial precipitation can improve

the water resources required for family farm production. Crop

grafting and seed improvement technologies can improve the

yield of agricultural products, which makes cultivated land

resources no longer a decisive factor for the development of

family farms [(Washizu and Nakano, 2022), (Ruzzante et al.,

2021)]. It can be preliminarily predicted that the spatial

distribution of family farms in the future will be affected

more by social factors than by natural factors.

The limitations of this study are mainly reflected in the

research on the influencing factors. First, owing to the limited

availability of data, influencing factors, such as the rural labor

force, government policies, and land rent, were not considered in

this study. In future research, we will combine management,

anthropology, and other interdisciplinary research methods to

improve the research on the factors affecting the spatial

distribution pattern of family farms. In addition, this study

did not consider the factors influencing the spatial

distribution patterns of different types of family farms. In the

future, we will supplement these data to explore these factors and

conduct a comparative analysis.

6 Conclusions and suggestions

By analyzing the spatiotemporal dynamic evolution and

influencing factors of family farms in the MYR-UA, we

obtained the following findings:

1) In terms of temporal changes, the overall family farms and

different types of family farms in the MYR-UA exhibited an

increasing annual trend and underwnt three stages: rapid,

stable, and slow growth.

2) Regarding the spatial distribution patterns, family farms in

the MYR-UA had significant agglomeration characteristics,

and the degree of agglomeration continued to increase,

showing a distribution pattern of density in the southeast

and scattered in the northwest. The spatial evolution

characteristics of the different types of family farms were

roughly consistent with the overall family farms.

3) For multiscale spatial characteristics, the overall family farms

and various types of family farms demonstrate a scale effect,

which first strengthened and then weakened with the change

in the geographical distance; however, there were significant

differences in the scope of the location selection space.

4) The spatial pattern of family farms in the MYR-UA was

affected by both natural and social factors. The influence of

social factors was greater than that of natural factors.

Precipitation and cultivated land resources had a positive

effect on the spatial distribution of family farms, topographic

features had a negative effect, and temperature, traffic

conditions, economic development level, and population

size had both positive and negative effects.

Based on the results of this study, the following policy

implications are proposed for the construction and

development of family farms in the MYR-UA. First, land for

family farms should be rationally planned according to the

principle of adapting measures to the local conditions.

Specifically, the government should divide the land types of

family farms according to topographic features and water

resource conditions. For example, Nanchang, Changde,

Tianmen, Yingtan, and Yichun have relatively flat terrain and

abundant precipitation suitable for planting crops and small-area

family farming. Therefore, these areas are conducive to the

development of planting and comprehensive family farms.

Xiantao, Xinyu, Yueyang, and Pingxiang have complex terrain

conditions, predominantly low mountains and hills, suitable for

raising poultry. In addition, many lakes in these areas provide

good conditions for fishery breeding.

Second, road infrastructure construction should be

strengthened to ensure the transportation of family farm

products. Most products produced by family farms are not

suitable for long-term storage and must be marketed in a

timely manner. Therefore, the government should increase the

construction of agricultural support infrastructure, especially to
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ensure smooth access to roads in rural and remote areas.

Additionally, the government should focus on road

construction in family farm cluster areas. For example, cities

in the eastern part of the PLCG have numerous family farms, and

a high degree of agglomeration, and are greatly affected by road

facilities. The government should strengthen the construction

and optimization of transportation facilities in this area.

Third, strengthening the protection of cultivated land, strictly

prohibiting the occupation of cultivated land by construction

projects, and avoiding the pollution and destruction of cultivated

land. The government should focus on ensuring the quality of

arable land, especially in areas with well-developed family farms,

such as PLCG and CZT-UA. Only in this way can the output of

family farms be guaranteed and their economic benefits

maximized.

Finally, the construction of a market information service

platform should be accelerated so that family farmers can receive

comprehensive market information more rapidly and then make

more effective production and operation decisions. Family

farmers should pay attention not only to the local market but

also to the foreign market so that they can produce and sell their

products rationally. In addition, the government can build a

regional cooperation and exchange platform, establish an

industrial alliance, encourage farmers to share their practical

experience, and finally form a family farm development model

with healthy regional competition, coordinated development,

and mutually beneficial cooperation.
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