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Based on the classic IPCC carbon emission calculation theory, this paper

calculates the agricultural carbon emissions intensity and efficiency in

Zhejiang Province from 2011 to 2020. The LMDI model is further adapted to

carry out the influence factors of agricultural carbon emissions. In addition, the

grey prediction model GM (1, 1) is used to predict the carbon emissions of

Zhejiang Province from 2022 to 2025. The results show that the agricultural

carbon emissions and carbon emission intensity in Zhejiang Province have a

downward trend. Further, it is concluded that Shaoxing, Hangzhou, Jiaxing, and

Huzhou are the cities with low emission and high efficiency, andWenzhou is the

city with high emission and low efficiency. Meanwhile, the improvement of

Total Factor Productivity (TFP) results from the joint action of Technical

Progress Efficiency (TECH) and Technical Efficiency (EFF). TECH is greater

than EFF, and Scale Efficiency (SE) and Pure Technical Efficiency (PTE)

contributions change with the years. In general, the contribution of PTE is

more significant than that of SE, and its improvement mainly rests on technical

progress. Among the factors influencing agricultural carbon emission

efficiency, agricultural carbon emission intensity and labor force size have

inhibiting effects on agricultural carbon emission efficiency growth. In

contrast, agricultural industrial structure, economic development, and

urbanization positively affect agricultural carbon emission efficiency. The

prediction results show that the overall carbon emissions of Zhejiang

Province will get a downward trend. Finally, based on these findings, we

offer policy implications.
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1 Introduction

In recent years, global warming has led to a series of problems, such as rising sea levels,

a frequent increase in flood disasters, infectious diseases, and the destruction of

biodiversity, which threaten global agricultural production. At the same time, China’s

population base continues to increase, and agricultural land is gradually reduced. In order
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to meet the growing needs of people, a large number of

agricultural materials such as pesticides, agricultural films, and

fertilizers are put into agricultural production. However, the

excessive pursuit of high yield leads to the abuse of

agricultural materials, damages the agricultural ecosystem, and

produces more greenhouse gases. Agricultural production has

become the second-largest carbon source of greenhouse gases. In

September 2020, the Chinese government set the goal of “Peak

Carbon Dioxide Emissions” by 2030. Under the future’s

enormous carbon emission reduction task, agriculture, as one

of the primary sources of carbon emissions, has both the dual

properties of carbon sink and carbon source. There is a perfect

space for emission reduction. Therefore, implementing reduced

carbon agriculture is an inevitable trend for China to attain the

“Peak Carbon Dioxide Emissions” goal of overall emission

reduction. Zhejiang, known as “Seven mountains, two rivers,

and one separate farmland,” belongs to the lower reaches of the

Yangtze River Economic Belt and is the core area of the Yangtze

River Economic Belt, as well as the country’s important

“breadbasket,” ecological support and economic pillar.

Zhejiang has more people, less land, and insufficient

agricultural resource endowment, making agricultural

production more dependent on chemical fertilizers, pesticides,

and other agricultural materials. At the same time, Zhejiang, the

only pilot province of modern ecological circular agriculture

development in China, has put forward the development strategy

of “Efficient Ecological Agriculture” and actively explored low-

carbon agriculture. Therefore, it is of great significance to analyze

and study the current situation of agricultural carbon reduction

in Zhejiang Province.

2 Literature review

Scholars from various countries have conducted in-depth

studies on agricultural carbon emissions to develop a low-carbon

economy. The relevant studies mainly focus on carbon emission

accounting, carbon emission efficiency evaluation, and carbon

emission impact factors. From carbon emission accounting, the

current carbon emission measurement methods mainly include

the life cycle method (Pehnt et al., 2008; Mattila et al., 2010;

Berthoud et al., 2011; Turconi et al., 2014; Zhang & Li, 2022),

input-output analysis method (Wiedmann et al., 2009; Davis &

Caldeira, 2010; Huang & Mi, 2011; Su and Ang, 2014; Li et al.,

2020), and IPCC inventory method (West &Marland, 2002; Jane

et al., 2007; Tubiello et al., 2013; Goglio et al., 2017; Liu & Liu,

2022). The life-cycle approach calculates carbon emissions

through carbon emission intensity and emission factors of all

activities and substances in the life-cycle, which is exhaustive and

global. However, the life cycle approach is subjective in defining

the system boundaries and involves the entire life cycle of the

system requiring massive data, which is prone to omissions (Lin

et al., 2022). The input-output method is based on energy

demand at each stage and extrapolates GHG emissions

through energy emission factors, highlighting the holistic

nature of measuring carbon emissions. However, this method

is limited to measuring carbon emissions from energy

consumption during agricultural production. The input-output

table in China is updated every 5 years, which cannot accurately

measure agricultural carbon emissions (Lin et al., 2022). The

IPCC National GHG Inventory published by IPCC is the most

widely accepted and applied guideline for national GHG

emission inventory so far, including GHG emission sources

and emission factors. According to the emission factor

method provided in the guidelines, the IPCC inventory

method combines the information on the degree of human

activities with quantifying emissions per unit activity. It is the

most widely used method to calculate greenhouse gas emissions.

From the perspective of carbon emission efficiency

evaluation, combing the existing research shows that

improving the carbon emission efficiency of agriculture is an

effective way to reduce agricultural carbon emissions and a

meaningful way to achieve China’s “Peak Carbon Dioxide

Emissions” goal. Agricultural carbon efficiency refers to

agricultural productivity under the carbon emission

constraint. Agricultural carbon emissions are considered non-

desired output to reflect the relationship between inputs and

outputs of agricultural production activities under the non-

desired output condition. Scholars usually use data

envelopment analysis (DEA) to calculate agricultural carbon

emission efficiency, which is applicable to multi-input and

multi-output boundary production functions. However, the

traditional DEA can only solve the static efficiency problem.

In order to study the dynamic evolution of agricultural carbon

emissions, the nuclear density method and malmquist index

method are widely used. (Wu et al., 2014; Gao, 2015; Liu,

2015; Li, 2017; Tian & Zhang, 2017; Zhang et al., 2022a;

Zhang et al., 2022b; Shang et al., 2022). For example, Wu

et al. (2014) constructed a DEA-Malmquist index

decomposition model containing desired and non-desired

outputs to measure the changes in agricultural carbon

emission efficiency in 31 provinces (cities and districts) in

China. Gao (2015) used the DEA-Malmquist index method to

analyze agricultural all-production factors in 31 provinces in

China. The results showed that human capital, irrigated area, and

agricultural fiscal expenditure promote agricultural all-

production factors, while agricultural output value and grain

sown area have a suppressive effect. Tian and Wang (2020)

measured the carbon emission efficiency of agriculture in Hubei

province using the DEA-Malmquist index decomposition

method, analyzed the characteristics of its spatial and

temporal differences, and found that its carbon emission

efficiency showed an overall increasing trend. However, with

the year-to-year changes, the carbon emission efficiency of each

city and state had a large gap. Zhang et al. (2022) used the inter-

provincial agricultural industry panel data from 2001 to 2017 and
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the three-stage measurement data based on relaxation degree to

select the SBM-DEA model and Malmquist Luenberger index

model to measure agricultural carbon emissions.

From the perspective of influencing factors of carbon

emissions, some scholars use the Tobit model (Tian and Wang,

2020), spatial panel regression model (Zhou et al., 2022), Kaya

identity deformation (Li et al., 2011), and spatial econometric

model (Yang et al., 2021; Ma et al., 2022a; Ma et al., 2022b) to

analyze the influencing factors of agricultural carbon emissions.

However, more and more scholars decompose and study the

influencing factors of carbon emissions through the LMDI

decomposition method. The index decomposition method can

quantitatively analyze the contribution rate of each influencing

factor when the total index changes through the decomposition of

factors. LMDI decomposition model is a branch of the IDAmodel,

which is more suitable for data with few variables and time series

characteristics. Compared with IDA, this model does not need to

rely on the data in the input-output table. For example, He et al.

(2018) used the LMDImethod to analyze the influencing factors of

agricultural carbon emissions in Lanzhou. The results showed that

agricultural economic development positively affected the increase

of carbon emissions, which was the critical factor leading to

increased agricultural carbon emissions. In contrast, agricultural

carbon emission intensity and industrial structure harmed the

increase of carbon emissions. Hu et al. (2020) used the LMDI

method to analyze the influencing factors of agricultural carbon

emissions in 31 provinces of China from 1997 to 2017. The results

show that production efficiency, agriculture, industrial structure,

and rural population are three emission reduction factors for

Eastern China. Three emission increase factors are industrial

structure, regional economic development, and urbanization.

For central and Western China, agricultural production

efficiency and rural population are two emission reduction

factors, while agricultural, industrial structure, industrial

structure, regional economic development level, and

urbanization are four emission increase factors.

Through the review of the above relevant literature, it is

found that, in terms of content, the existing researches mainly

focus on carbon emission efficiency at the national level. Most of

them take 31 provinces and regions as the investigation object. At

the same time, few scholars discuss the agricultural carbon

emission efficiency of Zhejiang Province and its cities. In

terms of methods, the IPCC inventory method, DEA method,

and LMDI decomposition method are widely used by scholars,

but these methods are often applied independently in relevant

studies. However, relatively little literature combines the IPCC

inventory method, DEA Malmquist, LMDI decomposition

method, and grey prediction model GM (1,1). To make a

comprehensive study from the perspectives of total

agricultural carbon emissions, emission intensity, carbon

emission efficiency, influencing factors and prediction. Based

on this, this study aims to use appropriate methods to answer the

following questions:

(Q1)What is the current trend of agricultural carbon

emissions and carbon intensity in Zhejiang Province and

its cities?

(Q2)What are the temporal and spatial efficiency of

agricultural carbon emissions in Zhejiang Province and its

municipalities? What is the relationship between carbon

emission and efficiency?

(Q3)What are the inhibiting and driving factors affecting

agricultural carbon emissions in Zhejiang Province?

(Q4)What predictions of agricultural carbon emission values

and carbon peaking in Zhejiang Province and its cities in the

next 20 years?

Firstly, this paper measures agricultural carbon emissions

from the perspective of carbon sources and analyzes the

current situation of agricultural carbon emissions in

Zhejiang Province. Then DEA Malmquist model is used to

measure the efficiency of agricultural carbon emissions, and its

temporal and spatial differences are analyzed. Next, the LMDI

index decomposition model is used to establish the influencing

factor system of agricultural carbon emission efficiency and

explore the key to affecting carbon emission efficiency. Finally,

the future agricultural carbon emissions of Zhejiang Province

and its cities are predicted and analyzed. To provide theoretical

reference for promoting the development of low-carbon

agriculture and accelerating the realization of agricultural

emission reduction and efficiency by region and category in

Zhejiang Province, China. The remainder of this paper is

structured as follows: Section 2 introduces the study method

and data. The third section presents the empirical study of

agricultural carbon emissions in Zhejiang Province. The final

section draws together the conclusions and policy

implications.

The contributions of this study to the existing literature

include: 1) As the core region of the Yangtze River Economic

Belt and the only pilot province for developing modern ecological

circular agriculture in China, Zhejiang’s agricultural carbon

emissions deserve special attention. The investigation of

existing research shows that the relevant research in this area

is still in a blank stage, so this paper has solid practical

significance from the research content. 2) This paper takes all

11 cities in Zhejiang Province as the research object. Compared

with the general provincial research, the research on spatial

resource differences between cities can better reflect the spatial

pattern of agricultural carbon emission efficiency in the extended

region. At the same time, the research period of the paper is just

in the construction period of China’s “12th Five Year Plan” and

“13th Five Year Plan”, which makes the research conclusions and

suggestions more accurate and persuasive. 3) The known

research is often only carried out regarding efficiency and

influencing factors. This paper analyzes the static efficiency,

dynamic efficiency, spatio-temporal evolution process and

characteristics, influencing factors, prediction, and other
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aspects. The research content is more extensive, making the

conclusion more targeted.

3 Methods and data

3.1 Methods of accounting for agricultural
carbon emissions

The IPCC inventory method determines the carbon emission

factor coefficients for accounting according to the national

greenhouse gas inventory provisions and different carbon

emission sources. Agricultural carbon emissions mainly

include 1) carbon emissions from the use of chemical

fertilizers, pesticides, and agricultural films; 2) Using

agricultural machinery to produce and consume fossil fuels

directly or indirectly; 3) Farmland tillage destroys the organic

carbon pool of the soil, resulting in a large amount of organic

carbon loss into the air, resulting in carbon emissions 4) Carbon

emissions generated by the indirect consumption of fossil fuels by

the use of electric energy during irrigation. This paper accounts

for agricultural carbon emissions in Zhejiang Province based on

the emission indicators and calculation methods released

by IPCC.

Carbon emissions are calculated as:

C � ∑Ci � ∑Ti · δi (1)

The formula is the total amount of agricultural carbon

emission, the carbon emission from carbon sources, the

amount of each carbon emission source, and the carbon

emission coefficient of each carbon emission source; the

agricultural carbon emission coefficients are shown in Table 1.

Data sources: Oak Ridge National Laboratory, United States;

Institute of Agricultural Resources and Eco-Environment,

Nanjing Agricultural University; College of Biology and

Technology, China Agricultural University; And Joint

Intergovernmental Panel on Climate Change.

Carbon emission intensity indicates the carbon emission

generated per unit of output value and based on the above

formula (2.1), the formula for calculating carbon emission

intensity can be obtained as follows:

E � C

A
� ∑Ti · δi

A
(2)

In the formula, E is the agricultural carbon emission

intensity, and A is the gross agricultural output.

3.2 Methods for measuring the efficiency
of agricultural carbon emissions

DEA model is used to evaluate the relative effectiveness of

each decision-making unit, which is suitable for the efficiency

evaluation of multi-input and multi-output decision-making

units (DMU) (Luo, 2015). The traditional DEA model

measures the static relative efficiency of DMUs in the same

period, that is, the change of comprehensive technical

efficiency, and does not apply to agricultural carbon

emissions, including unintended outputs. The Malmquist

index model is the dynamic efficiency analysis of the data

of each DMU in different periods, including the complete

technical efficiency change and technological progress index.

Suppose there are n DMUs; each DMU inputs m kinds in

period t and obtains s kinds of outputs.

Then the input index value of DMUi in period t is

expressed as:

xt
i � (xt

1i, x
t
2i, · · · · ··, xt

mi)T (3)

The expected output index value of DMUi in period t is

expressed as:

yt
i � (yt

1i, y
t
2i, · · · · ··, yt

ni)T (4)

Then the value of the non-desired output index for DMUi in

period t is expressed as:

zti � (zt1i, zt2i, · · · · ··, ztpi)T (5)

In the above formula, t � 1, 2, · · · · ··, T.

TABLE 1 Agricultural carbon emission source factor.

Carbon emission sources Carbon emission factor Data selection

Fertilizer 0.8956kg · kg−1 Agricultural fertilizer application discounted amount

Agricultural film 5.18kg · kg−1 Agricultural film use

Pesticides 4.9341kg · kg−1 Pesticide application amount

Diesel 0.5927kg · kg−1 Agricultural diesel use

Irrigation 25kg · hm−2 Effective irrigation area

Tillage 312.6kg · hm−2 Crop sowing area
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Let the distance function of (xt, yt, zt) in period t is denoted

as Dt
C(xt, yt, zt) and the distance function of (xt+1, yt+1, zt+1) in

period t is denoted as Dt
C(xt+1, yt+1, zt+1).

Under the condition of the t period, the change value of

technical efficiency from t period to the t+1 period is expressed as:

Mt � Dt
C(xt+1, yt+1, zt+1)
Dt

C(xt, yt, zt) (6)

Under the condition of the t+1 stage, the change value of

technical efficiency from t period to the t+1 period is

expressed as:

Mt+1 � Dt+1
C (xt+1, yt+1, zt+1)
Dt+1

C (xt, yt, zt) (7)

The productivity change value from t period to t+1 period is

expressed as:

M(xt, yt, zt, xt+1, yt+1, zt+1) � (Mt × Mt+1) 1
2

� [Dt
C(xt+1, yt+1, zt+1)
Dt

C(xt, yt, zt)
×
Dt+1

C (xt+1, yt+1, zt+1)
Dt+1

C (xt, yt, zt) ] 1
2 (8)

Let the change in the efficiency of agricultural carbon emissions

from period t to period t+1 be denoted by TFP, which is

decomposed into EFF and TECH, and technical efficiency can be

further decomposed into SE and PTE, where

EFF � Dt+1
C (xt+1, yt+1, zt+1)
Dt

C(xt, yt, zt) (9)

TECH � [ Dt
C(xt, yt, zt)

Dt+1
C (xt, yt, zt) × Dt

C(xt+1, yt+1, zt+1)
Dt+1

C (xt+1, yt+1, zt+1)] 1
2 (10)

TFP � EFF × TECH� [Dt
C(xt+1, yt+1, zt+1)
Dt

C(xt, yt, zt) ×
Dt+1

C (xt+1, yt+1, zt+1)
Dt+1

C (xt, yt, zt) ] 1
2

(11)
EFF � SE × PTE (12)

Then, if TFP>1, the efficiency of agricultural carbon emission

increases; if TFP = 1, the efficiency of agricultural carbon

emission remains unchanged; if TFP<1, the efficiency of

agricultural carbon emission decreases. Moreover, if EFF>1,
technical efficiency increases; if EFF = 1, technical efficiency

remains unchanged; if EFF<1, technical efficiency decreases. If

TECH>1, technology improves; if TECH = 1, technology

remains unchanged; if TECH<1, the technology deteriorates.

3.3 Methods for decomposing factors
affecting agricultural carbon emissions

The LMDI exponential decomposition model quantifies

the contribution of each influencing factor by decomposing

the changes of each factor in the total index. The LMDI model

can effectively solve the residuals caused by the traditional

linear regression model (Ma and Shao, 2022). In this paper,

the influencing factors of agricultural carbon emissions are

decomposed into five factors: agricultural carbon emission

intensity, agricultural, industrial structure, economic

development level, urbanization level, and labor force scale,

and the influence degree of each factor on agricultural carbon

emissions in Zhejiang Province is analyzed. Expressed by the

formula:

C � C

AGDP
×
AGDP

BGDP
×
BGDP

AP
×
AP

P
× P (13)

Among them,

EI � C

AGDP
,CI � AGDP

BGDP
,AI � BGDP

AP
, SI � AP

P
(14)

In the formula, C is the agricultural carbon emission.

AGDP is the total agricultural output value. BGDP is the

total output value of agriculture, forestry, animal

husbandry, and fishery. AP is the total population. p is

the number of the agricultural population. EI is the

intensity of agricultural carbon emissions, the carbon

emissions per unit of agricultural output value. Ci refers

to the agricultural, industrial structure, that is, the

proportion of agricultural output value in the output

value of agriculture, forestry, animal husbandry, and

fishery. AI is the level of agricultural economic

development, that is, per capita agricultural output value.

Si is the urbanization level, the ratio of the total population

to the agricultural population.

The results are consistent, and the LMDI model can adopt

both “product decomposition” and “additive decomposition”

models. The above formula is expressed as an additive

decomposition model; let C0 be the agricultural carbon

emissions in the base period and Ct be the agricultural carbon

emissions in the reporting period t. The formula for time

decomposition is expressed as follows:

ΔCT � Ct − C0 � ΔEI + ΔCI + ΔAI + ΔSI + ΔP (15)

The contribution values of influencing factors for each

decomposition are:

ΔEI � Ct − C0

ln Ct − lnC0
× ln

EIt
EI0

(16)

ΔAI � Ct − C0

ln Ct − lnC0
× ln

AIt
AI0

(17)

ΔCI � Ct − C0

ln Ct − lnC0
× ln

CIt
CI0

(18)

ΔSI � Ct − C0

ln Ct − lnC0
× ln

SIt
SI0

(19)

ΔP � Ct − C0

ln Ct − lnC0
× ln

Pt

P0
(20)
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3.4 Methods for projecting agricultural
carbon emissions

Grey prediction model GM (1,1) is a prediction method that

builds a mathematical model for the system with uncertain

factors through a small amount of incomplete information.

Based on the known development law of objective things, it

describes and analyzes the future trend with the help of scientific

methods. Grey prediction establishes correlation analysis

through the system and processes original data to generate

data with solid regularity, and then establishes differential

equations to solve it (Liu et al., 2012). The specific steps are

as follows:

Set the original series x(0)(t) � (x(0)(1), x(0)(2), · · · · · ·
x(0)(n)) and calculate the rank ratio of the original data

λ(0)(t) � x(0)(t − 1)
x(0)(t) , t � 2, 3, 4 · · · · · ·n (21)

If the rank ratios of the original data all fall in the interval

(e −2
n+1, e

2
n+1), then the original data can be used to build the gray

prediction model GM(1,1), otherwise, the original data are

generated cumulatively to obtain the new series

x(1)(t) � (x(1)(1), x(1)(2), · · · · · · x(1)(n)), where
x(1)(t) � ∑t

t�1x
(0)(t) (22)

Establish the differential equation:

dx(1)(t)
dt

+ ax(1)(t) � b (23)

Using the least square method to solve a and b, get

[ a
b
] � (BTB)−1BTyn, where

B �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.5(x(1)(1) + x(1)(2)) 1
−0.5(x(1)(2) + x(1)(3)) 1

..

.

−0.5(x(1)(n − 1) + x(1)(n))
..
.

1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (24)

yn � [x(0)(2), x(0)(3), · · ·x(0)(n)]T (25)

Substituting the parameters, a and b, get

x(1)(t) � [x(0)(1) − b

a
]e−a(t−1) + b

a
(26)

Then the predicted value is

x̂(0)(t + 1) � x̂(1)(t + 1) − x̂(1)(t) , t � 1, 3, 4 · · · · · ·n − 1. (27)

3.5 Indicators selection and data sources

According to the previous data analysis and the combing of

relevant domestic and foreign literature, the agricultural material

inputs and land irrigation and farmland tillage in agricultural

production in Zhejiang Province were firstly used as the primary

agricultural carbon emission sources to measure carbon

emissions (Liu, 2014); regarding the selection of input

indicators of DEA-Malmquist model, agricultural labor, total

power of agricultural machinery and land tillage were recognized

by more scholars (Wu et al., 2014; Tian and Wang 2020); Wang

et al. (2016) also took the discounted amount of agricultural

fertilizer application as an input indicator; for output indicators,

the total agricultural output value is usually taken as the desired

output, while agricultural carbon emissions are regarded as

undesired output (Li et al., 2011; Zhou et al., 2022); and then

the LMDI index decomposition model is used to construct the

agricultural carbon emission influence factor system, which

decomposes the influence factors into agricultural carbon

emission intensity, economic development level, agricultural

industrial structure, urbanization level and labor force size, in

order to explore the key factors affecting carbon emission

efficiency.

This paper selects the relevant data of Zhejiang Province

from 2011 to 2020 as the sample. The data involved are from the

National Bureau of Statistics of China, the Statistical Yearbook of

Zhejiang Province, and the Statistical yearbook of Zhejiang cities.

4 Empirical study

4.1 Status of agricultural carbon emissions

According to the data of various indicators in Zhejiang

province from 2011 to 2020 and the agricultural carbon

emission accounting formula (1), the carbon emissions and

annual growth rate of Zhejiang province in past years are

calculated, as shown in Table 2:

From Table 2, we can see that the carbon emission from

agriculture in Zhejiang Province was 3.508 million tons in 2011,

which will be reduced to 2.497 million tons in 2020, with a

reduced rate of 15.99%; the average annual carbon emission

reduction rate from 2011 to 2020 is 1.88%. The carbon emissions

of each city in Zhejiang Province show a fluctuating downward

trend, and the total carbon emissions of Taizhou City, Ningbo

City, and Zhoushan City are relatively high.

The carbon emission per unit agricultural output value is

called agricultural carbon emission intensity, which reflects the

relationship between economic development and agricultural

carbon emission in Zhejiang Province. According to the

calculated agricultural carbon emissions and the total

agricultural output value of each city in Zhejiang province

from 2011 to 2020, the intensity of agricultural carbon

emissions in Zhejiang Province from 2011 to 2020 is

obtained. The trend of agricultural carbon emission

intensity in Zhejiang Province from 2011 to 2020 is drawn,

as shown in Figure 1.
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As can be seen from Figure 1, agricultural carbon emission

intensity in Zhejiang province presents a trend of continuous

decline. According to the statistical yearbook data, the total

agricultural output value of Zhejiang province shows an

increasing trend year by year, which indicates that the

agricultural carbon emission reduction effect of Zhejiang

province has been significant in recent years. Further, analyze the

spatial difference of agricultural carbon emission intensity, and draw

the annual mean value of agricultural carbon emission intensity of

cities in Zhejiang province from 2011 to 2020, as shown in Figure 2.

It can be seen from Figure 2 that the annual mean value of

agricultural carbon emission intensity varies greatly among cities.

Zhoushan city has the highest annual mean of agricultural carbon

emission intensity, which is 0.175 million tons/billion yuan. Since the

agricultural population in Zhoushan accounts for aminor proportion

of Zhejiang Province, the average use of agricultural diesel is relatively

high, which leads to the high agricultural carbon emission intensity in

Zhoushan, which is consistent with the findings of Sun et al. (2018) in

their analysis of carbon emission measurement in Zhoushan City.

Hangzhou has the lowest agricultural carbon emission intensity, with

an annual average of 0.067 million tons/billion yuan. As the capital

city of Zhejiang Province, Hangzhou has developed rapidly in the

process of modernization, and the total agricultural output value has

increased significantly. In addition, as a pilot city for the development

TABLE 2 Agricultural carbon emissions in 2011–2020 of Zhejiang province and its cities (unit: million tons).

2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

Hangzhou 32.8 33.0 32.0 29.0 29.05 28.7 27.5 27.1 25.4 23.4

Ningbo 48.9 49.8 49.9 48.7 49.1 48.0 46.3 45.1 43.9 42.4

Jiaxing 27.7 27.8 27.8 26.8 26.7 26.1 25.0 24.6 22.8 21.8

Huzhou 20.3 19.9 19.7 17.5 16.7 15.9 15.0 14.7 14.3 14.1

Shaoxing 26.2 26.3 26.3 25.3 25.1 25.0 23.6 27.0 20.3 19.6

Zhoushan 35.4 35.3 35.7 36.1 36.7 42.8 38.0 38.5 38.0 37.4

Wenzhou 36.9 36.9 36.8 35.7 35.5 38.9 34.4 33.9 33.2 32.1

Jinhua 28.4 29.1 30.1 27.0 26.0 24.1 22.4 22.1 21.2 19.6

Quzhou 19.6 19.7 19.7 18.5 18.3 17.2 15.9 14.9 14.4 14.2

Taizhou 58.9 59.2 61.1 60.1 61.2 60.8 60.4 58.9 56.1 57.3

Lishui 15.7 15.7 15.7 15.5 15.3 14.8 13.9 13.6 13.1 12.8

Zhejiang 350.8 352.7 354.8 340.2 339.7 342.3 322.4 320.4 302.7 294.7

FIGURE 1
The 2011–2020 in Zhejiang province agricultural carbon
intensity (unit: million tons/billion yuan).

FIGURE 2
Annual mean value of agricultural carbon emission intensity
of cities in Zhejiang Province from 2011 to 2020.
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of modern ecological and circular agriculture, Hangzhou has

achieved remarkable results in carbon emission reduction

measures, and agricultural carbon emissions decrease yearly.

Therefore, with economic growth, agricultural carbon emission

intensity in Hangzhou is relatively low, forming an excellent low-

carbon development model, which is consistent with the findings of

Cheng et al. (2022) on the carbon emission efficiency study in

Zhejiang Province from 2010 to 2019.

4.2 Measurement analysis of agricultural
carbon emission efficiency

4.2.1 Static analysis of agricultural carbon
emission efficiency

According to the agricultural carbon emission and index data

of Zhejiang province from 2011 to 2020, the agricultural carbon

emission efficiency of Zhejiang Province and each city from

2011 to 2020 is calculated using the DEAmodel. Considering the

space, referring to Tian and Chan (2021) andWu et al. (2021), the

paper extracts 4 years of (2011, 2014, 2017, 2020) data with

meantime during the 10-year research period and uses

ArcGIS10.7 software for visualization. The result is shown in

Figure 3.

As shown in Figure 3, the agricultural carbon emission

efficiency of Zhejiang province is relatively high. However,

there are still invalid emissions, indicating that agricultural

carbon emission reduction still has ample space for emission

reduction and excellent development potential. It is necessary

to continue strengthening the control of agricultural carbon

emission reduction and improving carbon emission efficiency.

The efficiency of each city is dissimilar, which indicates that

Zhejiang province should continue to promote its agricultural

carbon emission reduction according to the geographical

FIGURE 3
Visualization of agricultural carbon emission efficiency in Zhejiang Province and its cities. (A) 2011; (B) 2014; (C) 2017; (D) 2020.
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characteristics of each city and the characteristics of

agricultural development. In specific cities, the carbon

emission efficiency of Jinhua city and Quzhou City is

relatively low. In increasing carbon emission reduction

efforts in the future, attention should be paid to the

rational allocation of agricultural production technology.

The efficiency of Jiaxing, Ningbo, and Zhoushan cities is

high in all years, indicating that their agricultural input

factors and agricultural production technologies are

reasonably distributed and highly utilized.

In order to explain the relationship between the efficiency and

total amount of agricultural carbon emissions in various regions,

these two indicators are expressed in the same coordinate axis. Take

the average value of agricultural carbon emissions and efficiency in

Zhejiang from 2011 to 2020 as the coordinate origin. Based on the

dual dimensions of total agricultural carbon emissions and

efficiency, cities are divided into four categories: high emission

efficiency (quadrant I), high emission efficiency (quadrant II),

low emission efficiency (quadrant III), and low emission

efficiency (quadrant IV), as shown in Figure 4.

In Figure 4, Taizhou, Ningbo, and Zhoushan belong to high-

emission and high-efficiency areas with more agricultural carbon

emissions. However, the improvement of agricultural technology

production and the reasonable allocation of investment

indicators in agricultural production makes the efficiency of

agricultural carbon emissions very high. Such regions still

need to strengthen the promotion of carbon emission

reduction to avoid the efficiency reduction caused by their

higher agricultural carbon emissions. Wenzhou is a high

emission and low-efficiency area, its agricultural carbon

emissions are high, but the carbon emission efficiency is low;

this area should be a critical concern for agricultural carbon

emission reduction. Jinhua, Quzhou, Lishui, and Shaoxing are

low emission and low-efficiency areas. These cities’ carbon

emissions are not high, but there are ineffective emissions. It

must improve its input structure and agricultural production

technology to improve agricultural carbon emissions’ efficiency.

Hangzhou, Jiaxing, and Huzhou belong to the low-emission,

high-efficiency zone, and these cities have a good performance in

balancing agricultural carbon emission reduction and

agricultural carbon emission efficiency. This is similar to the

findings of Fang et al. (2022), who analyzed the agricultural

carbon emissions in Zhejiang Province by city.

FIGURE 4
Agricultural carbon emission efficiency and agricultural carbon emission matrix in Zhejiang Province from 2011 to 2020.

TABLE 3Change of agricultural carbon emission efficiency in Zhejiang
Province.

Year TECH EFF PTE SE TFP

2012 0.992 1.049 1.026 1.023 1.041

2013 1.131 0.939 0.952 0.986 1.062

2014 1.056 0.990 0.997 0.993 1.045

2015 1.023 1.014 1.001 1.013 1.037

2016 1.140 0.951 0.974 0.977 1.084

2017 1.071 0.980 0.983 0.997 1.050

2018 1.080 0.967 0.994 0.973 1.045

2019 1.130 0.966 0.994 0.972 1.092

2020 1.082 1.002 1.007 0.996 1.084

Average 1.077 0.984 0.992 0.992 1.060
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4.2.2 Dynamic analysis of agricultural carbon
emission efficiency

To better grasp the dynamic trend of agricultural carbon

emission efficiency in Zhejiang Province, the total factor

productivity and its decomposition index of agricultural

carbon emission efficiency of 11 cities in Zhejiang Province

from 2011 to 2020 are measured based on the Malmquist

productivity index (Table 3 and Table 4).

As can be seen from Table 3, agricultural carbon emission

efficiency in Zhejiang Province showed an overall growth trend

from 2011 to 2020, with an average annual growth rate of 6%.

The improvement of TFP of agricultural carbon emissions

mainly comes from Tech, and the annual contribution rate is

7.7%. The overall Eff is deteriorating, with an average annual

decrease of 1.6%.When it is decomposed, both PTE and SE are in

a deteriorating situation, with an average annual decrease of

0.8%. Each year, TFP is more significant than 1.0, indicating that

all cities in Zhejiang province had an excellent agricultural

carbon emission reduction development. The TFP is the

highest in 2019, which is 1.092, indicating that the agricultural

carbon emission efficiency of Zhejiang province in that year

increased by 9.2% compared with 2018. The carbon emission

efficiency of agriculture in 2015 is the lowest, at 1.037. Further

analysis of its contribution rate shows that the improvement of

TFP largely depends on TECH, and the loss caused by the

deterioration of EFF is less than the contribution of TECH.

Comprehensive, the TFP is the result of Tech and EFF. However,

the contribution of TECH is slightly more significant than the

contribution of EFF, decomposition of EFF, SE, and PTE changes

along with the years, and the contribution of its contribution

degree is not the same. However, the contribution of PTE is more

significant than SE’s.

Table 4 shows the changes in TFP and decomposition

efficiency of all cities in Zhejiang Province, from which it can

be found that the average TFP of all cities in Zhejiang Province is

more significant than 1.0. Taizhou has the highest value, reaching

1.105. From the basic agricultural situation of Taizhou, its

agricultural output value proliferates and will reach its highest

value in 2020, indicating that its agriculture is developing rapidly.

This shows that Taizhou has made efforts to promote the

integrated development of urban and rural areas, help

modernize agriculture and rural areas, to attach importance to

the revitalization of talents, and promote the green and low-

carbon transformation of agriculture and rural areas during the

study period. Overall, Taizhou’s green and low-carbon

agricultural development measures have achieved remarkable

results in carbon emission reduction with high efficiency. Jiaxing

City is the lowest, 1.024. Compared with other cities in Zhejiang

Province, Jiaxing’s land planting area accounts for the most

significant proportion. However, the expected total

agricultural output value is low, and its development is

relatively slow compared with other cities, resulting in the low

efficiency of agricultural carbon emissions. The TECH in each

city is greater than 1, indicating that TECH has a significant

positive effect on improving carbon emission efficiency. By

decomposing the EFF of the above cities, PTE includes

constant and deteriorating conditions, while SE includes

improvement, constant and deteriorating conditions. The

lower carbon emission efficiency regions lie in the

deterioration of agricultural EFF. Although cutting-edge

TECH is limited, the efficiency loss caused by the

deterioration of EFF cannot be avoided. Overall, TECH plays

a more prominent role in improving agricultural carbon

emission efficiency in each city. EFF has a minor impact on

it. The decomposition of EFF shows that the contribution of SE

and PTE varies from region to region. However, the contribution

of SE to agricultural carbon emission efficiency is more

significant than that of PTE.

4.3 Study on factors affecting agricultural
carbon emissions

Refer to Li et al. (2011), He et al. (2018), and Hu et al. (2020).

According to the calculated data of agricultural carbon emissions

and each index in Zhejiang Province from 2011 to 2020, the

decomposition results of the factors influencing agricultural

carbon emissions in Zhejiang Province are calculated by

applying the LMDI index decomposition model shown in

Table 5.

4.3.1 Inhibiting factors
FromTable 5, among the factors affecting agricultural carbon

emission efficiency in Zhejiang Province, the cumulative effect of

agricultural carbon emission intensity is negative, indicating that

this factor inhibits the growth of agricultural carbon emission

efficiency in Zhejiang Province to a certain extent. Agricultural

TABLE 6 Agricultural carbon emission prediction model.

Region Prediction model functions

Zhejiang x(1)(t) � [350.8 − 371.89/0.02]e−0.02(t−1) + 371.89/0.02

Hangzhou x(1)(t) � [32.8 − 34.60/0.04]e−0.04(t−1) + 34.60/0.04

Ningbo x(1)(t) � [48.9 − 52.41/0.02]e−0.02(t−1) + 52.41/0.02

Jiaxing x(1)(t) � [27.7 − 29.77/0.03]e−0.03(t−1) + 29.77/0.03

Huzhou x(1)(t) � [20.3 − 21.24/0.05]e−0.05(t−1) + 21.24/0.05

Shaoxing x(1)(t) � [26.2 − 28.88/0.02]e−0.03(t−1) + 28.88/0.02

Zhoushan x(1)(t) � [35.4 + 35.74/0.01]e0.01(t−1) − 35.74/0.01

Wenzhou x(1)(t) � [36.9 − 38.48/0.02]e−0.02(t−1) + 38.48/0.02

Jinhua x(1)(t) � [28.4 − 32.45/0.05]e−0.05(t−1) + 32.45/0.05

Quzhou x(1)(t) � [19.6 − 21.68/0.05]e−0.05(t−1) + 21.68/0.05

Taizhou x(1)(t) � [58.9 − 61.80/0.01]e−0.01(t−1) + 61.80/0.01

Lishui x(1)(t) � [15.7 − 16.83/0.03]e−0.03(t−1) + 16.83/0.03
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carbon emission intensity is the main factor restraining

agricultural carbon emission efficiency, contributing

significantly to carbon emission reduction. In addition,

agricultural carbon emissions can reflect agricultural

production efficiency to a certain extent. The lower the

carbon emission intensity is, the higher the agricultural

production efficiency is.

The factor of labor force size is another inhibiting factor of

agricultural carbon emission efficiency in Zhejiang Province.

Compared with the factor of agricultural carbon emission

intensity, the factor of labor force size plays a minor role in

agricultural carbon emission reduction. As shown by the data in

the statistical yearbooks of each city, the labor force size in

Zhejiang Province gradually decreases. However, the lack of

agricultural resources endowment due to a large number of

people and small land in Zhejiang Province may lead to a

significant input of agricultural materials, increasing

agricultural carbon emission. The size of the agricultural labor

force in Zhejiang Province collectively inhibits the growth of

agricultural carbon emission efficiency with other factors

unchanged.

4.3.2 Driving factors
The cumulative effect of the agricultural industry structure

factor is positive, and this factor promotes the growth of

agricultural carbon emission efficiency in Zhejiang Province.

There are differences in the characteristics of different

industries, and their carbon emission levels are slightly

different. The plantation industry has enough carbon sink

functions (Wang et al., 2022). According to the analysis of the

current situation of agricultural carbon emission in this paper,

the plantation industry accounts for the most significant

proportion of the agricultural industry structure of Zhejiang

Province. The increase in the proportion of agricultural

industry structure will increase the efficiency of agricultural

carbon emissions in Zhejiang Province.

Economic development is the factor in promoting

agricultural carbon emission efficiency in Zhejiang

Province. Economic development factor reflects agricultural

development level and farmers’ living standard to a certain

extent, so it is an essential index of influencing factors of

agricultural carbon emissions (Tian and Wang, 2020). In

TABLE 7 Projected value of agricultural carbon emissions in zhejiang province (unit: ten thousand tons).

Region 2022 2023 2024 2025 Region 2022 2023 2024 2025

Zhejiang 288.3 282.0 275.8 269.7 Zhoushan 39.7 40.1 40.5 40.9

Hangzhou 22.6 21.7 20.9 20.2 Wenzhou 32.0 31.5 31.0 30.5

Ningbo 41.6 40.8 40.0 39.2 Jinhua 17.8 16.8 16.0 15.1

Jiaxing 21.4 20.7 20.2 19.6 Quzhou 12.8 12.2 11.6 11.1

Huzhou 12.2 11.6 11.1 10.5 Taizhou 57.0 56.6 56.1 55.8

Shaoxing 20.4 19.8 19.3 18.7 Lishui 12.2 11.9 11.6 11.2

TABLE 8 Total agricultural carbon emissions and their relative errors 2011–2020.

Year 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

Original value (million tons) 350.8 352.7 354.8 340.2 339.7 342.3 322.4 320.4 302.7 294.7

Predicted value (million tons) 350.8 360.1 352.2 344.4 336.8 329.4 322.2 315.1 308.2 301.4

Relative Error 0 0.0209 0.0074 0.0124 0.0084 0.0376 0.00061 0.0165 0.0182 0.0228

FIGURE 5
Total agricultural carbon emissions and their relative errors
2011–2020.
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general, the higher the per capita income of farmers in regions

with high economic development levels, the more capital will

be invested in agriculture to promote agricultural production

and improve the efficiency of agricultural carbon emissions.

The urbanization level also makes one of the influencing

factors in promoting the efficiency of agricultural carbon

emissions. With the advancement of urban industrialization,

many rural populations flock to cities, increasing the

proportion of the urban population in Zhejiang Province. This

will significantly improve the population’s overall cultural quality

and further promote modern agriculture’s development. With

the deepening and improvement of the reform of China’s rural

land circulation system, many people choose to transfer the land

they cannot cultivate. This is conducive to the intensive

management of land, mechanized farming, and the

adjustment of crop planting structures. Then improve the

efficiency of land output and improve the efficiency of

agricultural carbon emissions.

4.4 Agricultural carbon emissions
prediction

In this part, a gray prediction model is used to calculate the

agricultural carbon emissions in Zhejiang Province from 2011 to

2020. The original series is constructed to forecast the trend of

agricultural carbon emissions in each city of Zhejiang Province

from 2022 to 2025. Each city’s agricultural carbon emissions

prediction model is obtained (Table 6).

Using the 2011–2020 agricultural carbon emissions of

Zhejiang Province and each city as the original data, the gray

prediction model GM (1, 1) is constructed to predict the

agricultural carbon emissions from 2022 to 2025, as shown in

Table 7.

According to the prediction results, the overall

agricultural carbon emissions in Zhejiang Province have

continued to decline, indicating that the relevant measures

formulated to control agricultural carbon emissions in

Zhejiang Province have been significantly effective.

However, the future agricultural carbon emissions in

Zhoushan will continue to rise. Zhoushan City should

strengthen government intervention, implement green

agricultural development, formulate corresponding

emission reduction measures according to the regional

characteristics of Zhoushan City, and reach the peak of

carbon emissions as soon as possible.

In order to verify the validity of the prediction model, the

carbon emission data from 2012 to 2020 are predicted, and the

error between the predicted value and the actual value is

analyzed, as shown in Table 8 and Figure 5.

It can be seen from Table 8 and Figure 5 that the relative

error between the actual value and predicted value in 2016 is the

largest, which is 0.0376. However, this data is a small error

value, so we can judge the prediction model is reasonable and

adequate.

5 Conclusions and policy implications

Conclusions

This paper analyzes the agricultural carbon emission

efficiency and influencing factors in Zhejiang Province by

measuring agricultural carbon emissions and using the DEA-

Malmquist model, LMDI index decomposition model, and gray

prediction GM (1, 1) model. It is found that the relevant

measures in Zhejiang Province as a pilot construction of

modern ecological recycling agriculture development have

been effective, and the agricultural carbon emissions have

been reduced year by year. The agricultural carbon emission

efficiency trend in Zhejiang Province is increasing, and its

improvement mainly comes from TECH. Further

decomposition of EFF shows that the role of PTE is more

evident than that of SE, and the difference in agricultural

carbon emission efficiency among regions in Zhejiang

Province is also apparent. The study on the relationship

between agricultural carbon emission efficiency and the total

amount of each city found that: Wenzhou is a high emission low-

efficiency city; Jinhua, Quzhou, Shaoxing, and Lishui are low

emission low-efficiency cities; Taizhou, Ningbo, and Zhoushan

are high emission high-efficiency cities; Hangzhou, Jiaxing, and

Huzhou are low emission high-efficiency cities. Among the

influencing factors of agricultural carbon emission efficiency,

agricultural carbon emission intensity and labor force scale have

a restraining effect on the growth of agricultural carbon emission

efficiency. Agricultural, industrial structure, economic

development, and urbanization levels can promote the

efficiency of agricultural carbon emissions. By predicting

agricultural carbon emissions in Zhejiang Province and each

city, it is known that Zhejiang cities’ overall agricultural carbon

emissions continue to decline. However, the carbon emissions in

Zhoushan City are on the rise, and corresponding carbon

emission reduction measures need to be formulated according

to the characteristics of Zhoushan City.

Despite some achievements, this study still has some limitations.

In terms of research data, considering the availability of data, carbon

emission sources such as animal husbandry and crop straw burning

are not considered when calculating agricultural carbon emissions of

Zhejiang cities. In terms of research content, due to the geographical

characteristics of agricultural carbon emissions, administrative

division as the research object cannot fully reflect the regional

regularity of agricultural carbon emissions between cities. In

future studies, data available from more dimensions will be

considered, and geographical features will be used as the basis for

dividing research objects to improve the accuracy and pertinence of

the research.
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Policy implications

Based on the above conclusions, this paper puts forward the

following suggestions:

Focus on the key areas of agricultural emission reduction,

and develop a bureau-wide agricultural emission reduction and

efficiency program. Different urban areas have different

responsibilities for agricultural production and should

respect the geographical differentiation of agricultural carbon

emission efficiency. For example, cities with high carbon

emissions in Zhoushan, Taizhou, and Ningbo can accelerate

the research and development of advanced agricultural

machinery and equipment and develop smart agriculture.

Cities in low emission and low-efficiency areas such as

Jinhua, Quzhou, Lishui, and Shaoxing can develop high-

quality agriculture. The government actively promoted new

technologies integrating organic fertilizer and water fertilizer,

improved the recycling and disposal mechanism of waste

fertilizer and drug packaging and agricultural film, and

reduced chemical fertilizer and agricultural film use. Further,

promote its transformation into a high-efficiency zone. In

addition, cities with a large share of agriculture involve

many agricultural materials and energy use, which will

inevitably produce higher carbon emissions. In contrast, the

carbon emissions of vital non-agricultural areas such as Lishui

and Quzhou are already low, so high-emission and low-

efficiency zones are relatively ideal. Each region should

consider the level of agricultural development and resource

endowment. Learn from the program measures of progressive

cities according to their positioning and development

characteristics. Establish regional cooperation mechanisms

and actively absorb the experience of agricultural

industrialization and scale development in advanced regions

through industrial docking, project cooperation, and

technology exchange to promote their own agricultural green

and high-quality development. For example, high emissions in

low-efficiency cities can learn from the experience of high

emissions in high-efficiency sample cities. Such as Ningbo

and Taizhou, in developing low-carbon agriculture,

strengthening the interaction and exchange of talents and

technologies, and combining the current situation of their

agricultural development to ensure rapid economic

development while developing low-carbon agriculture.

Focus on the key factors influencing the efficiency of

agricultural carbon emissions. Agricultural carbon emission

efficiency is affected by several factors such as agricultural

carbon emission intensity, industrial structure, economic

development level, urbanization level, and labor force scale.

Therefore, Zhejiang Province needs to deepen the structural

reform on the supply side of agriculture. Accelerate the

process of agricultural modernization while ensuring food

security. Implementing the return of farmland to forest and

enhancing the function of a forestry carbon sink; adjusting the

planting ratio of food crops, economic crops, and fodder crops

according to the actual situation of each region, and optimizing

the structure of the planting industry; implementing the model of

combining planting and breeding, and reasonably developing

industries such as fishery and animal husbandry; making full use

of the valuable resources in rural areas, carrying out the deep

integration of agriculture, culture and tourism, accelerating the

development of agricultural specialty industries, improving the

quality of agricultural supply, and thus realizing the low-carbon

development of agriculture. Moreover, it is necessary to

strengthen local financial capacity building and solidify the

economic basis for effectively solving agricultural carbon

emissions. Also, the government needs to improve the

supervision and management of the actual use of local

government financial funds. Effectively guarantee the

efficiency of the actual use of monetary funds. Increase the

investment in increasing financial support for agriculture, and

promote the prosperity of the rural economy. Implement good

food production support policies and food security, strengthen

quality construction and arable land protection, establish special

trading channels for food, and promote the sustainable and rapid

development of the agricultural economy. Also, the government

needs to improve the efficiency of the use of surplus agricultural

land in the process of urbanization and vigorously develop low-

carbon agriculture. Such financial subsidies can guide farmers to

reduce the consumption of high-energy-consuming agricultural

production resources and improve the production efficiency of

existing agriculture. To effectively distinguish between

subsistence carbon emissions and non-subsistence carbon

emissions in rural areas in the process of urbanization,

gradually reduce subsistence carbon emissions in rural areas

without affecting the production and livelihood of farmers.

Control non-subsistence carbon emissions to a minimum to

create conditions for solving the problem of agricultural

carbon emissions.

Increase agricultural science and technology investment,

and strengthen agricultural technology innovation. From the

analysis of this paper, it can be seen that TECH has a great

driving role in the efficiency of agricultural carbon emission in

Zhejiang Province, and the progress of technology is quite

conducive to improving the efficiency of agricultural

production and the efficiency of agricultural carbon

emission. Hence, Zhejiang Province should increase the

investment in agricultural technology innovation, actively

guide agricultural technology innovation, attach great

importance to the role of financial policies, strengthen the

actual effectiveness of agricultural subsidy policies, attach

importance to the research and development of technologies

that have an important supporting role in building modern

agriculture, do a good job in the construction of agricultural

research infrastructure, the research and development and

application of new technologies and the purchase of related

equipment and other security work, and support the
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development of leading agricultural enterprises, agricultural

industry associations and farmers’ professional cooperatives

and other social forces in agricultural science and technology

innovation (Zhang et al., 2012); Increase investment in

agricultural science and technology promotion, raise farmers’

awareness of low-carbon production, make low-carbon

production and low-carbon living a consensus among

farmers, guide farmers to consciously and actively adopt

advanced agricultural science and technology, use chemical

fertilizers, pesticides and agricultural films scientifically and

reasonably, reduce the use of high-energy and low-efficiency

agricultural machinery in the agricultural production process,

and make every effort to reduce carbon emissions in the

agricultural production process; Invest more in the

construction of agricultural science and technology teams,

effectively strengthen the training of high-level agricultural

science and technology managers and the introduction of

high-level, highly educated agricultural science and

technology personnel, establish a sound mechanism for the

training and introduction of agricultural personnel, organize

training for agricultural instructors, responsible agricultural

technicians and social agricultural support extension

personnel in a planned and systematic manner, strengthen

the construction of grass-roots agricultural extension teams,

and create conditions for the development of low-carbon

agriculture.
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