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As a main technical tool, the air quality numerical model is widely used in the

forecasts of atmospheric pollutants, and its development is of great significance

to the atmospheric environment and human health. In this study, a hybrid

XGBoost-SMOTE model has been developed and applied for the optimization

of forecasted PM2.5 and O3 concentrations from the Chinese operational air

quality forecasting model - CMA Unified Atmospheric Chemistry Environment

model (CUACE), which automatically finds the optimal hyperparameters and

features without human intervention. Supported by a knowledge base including

the ground-observed, CUACE-forecasted pollutants and meteorological data

as well as some auxiliary variables, and based on the evaluation analysis of

46 selected key national cities, it was found that the XGBoost-SMOTE model

can achieve satisfactory optimization effects for the operational model,

especially the significant improvement of the pollutant extreme values on

high-pollution days. The results show that after optimization, the 5-day

average correlation coefficient (R), mean error (ME) and root mean square

error (RMSE) values can reach 0.87, 10.34 µg/m3 and 16.53 µg/m3 for PM25, and

0.89, 14.53 µg/m3 and 18.83 µg/m3 for O3, far better than those from original

CUACEmodel and XGBoostmodel. Furthermore, the optimization of the spatial

distribution of pollutants from the CUACE model and the impact analysis of the

input features by the SHAP method were also explored. The developed hybrid

model unveils a good application prospect in the field of environmental

meteorology forecasts.
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1 Introduction

With the continuous development of China’s economy and

the acceleration of industrialization and urbanization in the past

40 years, a large number of anthropogenic gases and aerosol

particles have been mitted, making the problem of air pollution

increasingly serious. Especially in recent years, the frequent

occurrence of haze and photochemical pollution incidents in

various regions of China has made air quality a major national

strategic issue and received extensive attention from the

government and the public (He et al., 2017; Zhong et al.,

2019). At present, among the six common air pollutants,

PM2.5 and O3 are the most concerned, which have important

impacts not only on the atmospheric environment but also on

human health, the earth’s radiation balance and ecosystems

(Forouzanfar et al., 2016). Studies have shown that chronic

exposure to high levels of PM2.5 and O3 in humans can lead

to respiratory diseases, diabetes, asthma, myocardial infarction,

and cardiovascular disease (Goldberg et al., 2013; Cohen et al.,

2017; Requia et al., 2017). In addition, the global climate can also

be affected by PM2.5 and O3 by altering the Earth’s radiative

energy balance (Fu et al., 2019). Moreover, high concentrations

of O3 can inhibit vegetation growth and reduce crop yields (Sitch

et al., 2007).

At present, through government action plans such as the Air

Pollution Prevention and Control Action Plan and the Three-

Year Plan on Defending the Blue Sky, China’s air pollution

control has achieved remarkable results. Data from the

Ministry of Ecology and Environment (MEEC) (available at

http://www.mep.gov.cn) shows that the PM2.5 concentration

and the number of heavy pollution days have been

significantly reduced, and ambient air quality has been

significantly improved (Zheng et al., 2018; Fu et al., 2019;

Zhai et al., 2019). However, the concentration of PM2.5 has

not yet reached the transition target-I standard of 35 µg/m3

proposed by the World Health Organization (WHO). At the

same time, the concentration of O3 showed a trend of rapid

increase and spread (Zheng et al., 2018; Gong et al., 2022). The

combined air pollution represented by high concentrations of

PM2.5 and O3 is becoming one of the bottlenecks restricting the

continuous improvement of the atmospheric environment,

which has attracted widespread attention from scientists.

Therefore, accurate forecasting of atmospheric pollutant

concentrations is of great significance for atmospheric

environment monitoring and human health protection.

As a mainstream tool to study air quality, numerical models

use meteorological principles and mathematical methods to

simulate various physical and chemical processes such as

emission, diffusion, transport, transformation, and deposition

in the actual atmosphere to analyze the temporal and spatial

evolution of air pollution and internal mechanism (Gong et al.,

2003; Grell et al., 2005;Werner et al., 2016). However, the current

numerical models also have some limitations. For example,

uncertain factors such as initial meteorological fields,

boundary conditions, emission inventories, and physical and

chemical parameterization schemes will affect the simulation

results of the model, resulting in certain errors (Ritter et al., 2012;

Li et al., 2013; Gavidia-Calderón et al., 2018; Bao et al., 2019; Peng

et al., 2021).

In order to overcome the above limitations and uncertainties of

numerical models, and with the development of information science

and artificial intelligence technology, a large number of studies have

begun to utilize machine learning or deep learning methods to

optimize model output products. Currently, many surveys employ

multi-source data fusion techniques, based on air quality numerical

models and more datasets, such as satellite aerosol optical depth

(AOD) data and other auxiliary data with long-term records and

high resolution, to improve pollutant concentrations or

spatiotemporal distributions by using machine learning models of

random forests, neural networks or extreme gradient boosting

model (Fang et al., 2016; Ma et al., 2016; Lin et al., 2018; Xiao

et al., 2018; Xue et al., 2019; Geng et al., 2021; Huang et al., 2021;Wei

et al., 2021; Zhong et al., 2021). However, due to the timeliness of

datasets, these studies can only address the optimization of historical

or near real-time model simulations, making them infeasible in

operational air quality numerical models. In addition, previous

studies usually have significant underestimation of extreme PM2.5

concentrations on high-pollution days due to the small number of

high-pollution samples, leading to their associations being masked

by normal samples (Xue et al., 2019; Wei et al., 2020).

In this study, a hybrid XGBoost-SMOTE model was

developed, which can achieve the goal of automatically

selecting the optimal hyperparameter and features without

human intervention, combined with ground-observed

pollutant data, CUACE-forecasted meteorological data,

CUACE-forecasted pollutant data and some auxiliary variables

to optimize PM2.5 and O3 concentrations of the Chinese

operational CUACE model forecasts. Additionally, the

XGBoost-SMOTE model can balance the uneven proportion

of high-pollution and normal samples, significantly improving

the optimization performance of the numerical model at high

concentration levels.

The structure of the paper is organized as follows: Section 2

shows the framework of the proposed XGBoost-SMOTE model

and briefly introduces the knowledge base, CUACE model,

XGBoost algorithm, and SMOTE algorithm. The results and

discussion, which include performance evaluation of XGBoost-

SMOTE model optimization, spatial distribution optimization of

CUACE model, and feature analysis are illustrated in Section 3.

Finally, the conclusion are presented in Section 5.

2 Data and methodology

This study is based on the developed hybrid XGBoost-

SMOTE model to optimize PM2.5 and O3 concentrations from
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the operational CUACE model forecasts. The framework of the

XGBoost-SMOTE model is shown in Figure 1 and consists of

three main components.

(1) The knowledge base: The core basis of the machine learning

system, in this study ground-observed pollutant data,

CUACE-forecasted meteorological data, CUACE-

forecasted pollutant data, and some auxiliary variables are

included.

(2) The data preprocessing: The data from the knowledge base is

combined by date, and then goes through data cleaning,

normalization, and data division of training and test sets. In

addition, the SMOTE technique is used here to reconstruct

samples based on a high-pollution indicator to improve the

forecasting performance of pollutants concentration on

high-pollution days.

(3) The XGBoost algorithm: The processed sample data will

enter this component, which includes the modules of feature

selection, hyperparameter selection, performance evaluation,

feature importance analysis and system memory, achieving

the function of automatically finding the best

“hyperparameter + features” without manual intervention

for different pollutants and cities.

2.1 CMA unified atmospheric chemistry
environment model description

CMA Unified Atmospheric Chemistry Environment model

(CUACE), a national haze numerical forecast operation system,

which couples chemical weather models online based on

Mesoscale Model version 5 (MM5), and has been applied to

the national environmental meteorology operation (Gong and

Zhang, 2008; Zhou et al., 2012). CUACE contains four main

functional subsystems, namely emissions, gas phase chemistry,

aerosol microphysics and data assimilation (Niu et al., 2008). In

the aerosol module, seven aerosol components, i.e., sulfate,

nitrate, ammonium salts, sea salt, black carbon, organic

carbon, and sand/dust, are divided into 12 size bins, where an

internal mixture is assumed for all aerosol components and the

external mix is adopted between different bins for the particle

number density. The major aerosol processes in the atmosphere

of production, transport, moisture absorption growth, collision,

nucleation, condensation, dry and wet deposition, removal in

and under clouds, and aerosol-cloud interaction are involved in

the aerosol module (Gong et al., 2003; Wang et al., 2010).

The gas chemistry module is based on the Regional Acid

Deposition Model (RADM II) mechanism with 63 gaseous

species through 121 photochemical reactions and 121 gas-

phase reactions applicable under a wide variety of

environmental conditions, especially for smog (Stockwell

et al., 1990). In addition, CUACE adopts the thermodynamic

equilibrium ISSOROPIA (Nenes et al., 1999; Yu et al., 2005) to

calculate nitrate and ammonium aerosols.

The simulation domain uses the Lambert projection to cover

the entire territory of China, with a horizontal resolution of

15 km, and the number of east-west and north-south grids are

360 and 320, respectively. The vertical direction is divided into

23 layers from the ground to the height of 100 hpa at unequal

intervals, of which approximately eight layers are within the

boundary layer. The operational Global Forecast System (GFS)

data from the National Centers for Environmental Prediction

(NCEP) is utilized for providing the initial and lateral

meteorological conditions to CUACE, with temporal and

FIGURE 1
The framework of the hybrid XGBoost-SMOTE model.
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spatial resolutions of 3 h and 0.5° × 0.5°. Anthropogenic

emissions are used from the Multi-resolution Emission

Inventory for China version 1.3 (MEIC v1.3, http://www.

meicmodel.org/, last access: 31 June 2022) with the base year

of 2017, developed by Tsinghua University. The operational

CUACE model starts running at 08:00 and 20:00 BJT every

day, with a forecast time of 5 days. In this study, only the model

forecast outputs from 08:00 BJT were used for optimization

experiments with a time interval of 3 h. Since each model

running produces output of 5 days, the entire dataset sample

is divided into five subset samples corresponding to the first–fifth

forecast day. For each forecast day, the independent XGBoost-

SMOTE model is built, and then the best “hyperparameters +

features” are automatically found through training without

manual intervention, to obtain the best optimization results.

2.2 Knowledge base

Table 1 summarizes all the input data in the knowledge base,

consisting of ground-observed pollutant data, CUACE-

forecasted meteorological data, CUACE-forecasted pollutant

data, and some auxiliary variables from 1 January 2021 to

31 December 2021. The hourly ground-observed pollutant

concentration data used in this study were obtained from the

China National Environmental Monitoring Center (CNEMC,

http://www.cnemc.cn). Regarding the National Air Quality

Forecast Information Release System (https://air.cnemc.cn:

18014), 46 key national cities were selected in this study,

namely Baoding, Beijing, Cangzhou, Changchun, Chengde,

Chengdu, Chongqing, Dalian, Fuzhou, Guangzhou, Guiyang,

Haikou, Handan, Hangzhou, Harbin, Hefei, Hengshui,

Hohhot, Jinan, Kunming, Langfang, Lanzhou, Lhasa,

Nanchang, Nanjing, Nanning, Ningbo, Qinhuangdao,

Qingdao, Shanghai, Shenyang, Shenzhen, Shijiazhuang,

Taiyuan, Tangshan, Tianjin, Urumqi, Wuhan, Xiamen, Xi’an,

Xingtai, Xining, Yinchuan, Zhangjiakou and Zhengzhou

(Figure 2).

The CUACE-forecasted meteorological data includes sea

level pressure (SLP), 2-m temperature (T), 2-m mixing ratio

(Q), 10-m u-component wind (U), 10-m v-component wind (V),

precipitable water (PWAT), 2-m humidity (RH) and visibility

(VIS), and the model-forecasted pollutant data includes PM2.5,

PM10, SO2, CO, NO2, and O3, taking advantage of the data

available in model forecasting results. Moreover, a high-pollution

indicator (HPI) is defined to improve the pollutants forecasting

performance on highly polluted days, when PM2.5 or O3 are

usually underestimated in statistical and machine learning

models (Huang et al., 2021; Wei et al., 2021). This high-

pollution indicator is calculated based on CUACE-forecasted

pollutant data and describes whether the pollutant concentration

at each city exceeds the yearly mean by two standard deviations:

HPIi � { 1, xi ≥ �x + 2σ
0, xi < �x + 2σ

where xi is the forecasted pollutant concentration of the ith

sample, �x and σ refer to the yearly mean value and the standard

deviation of pollutant concentration data. In addition, other

auxiliary variables such as latitude (LAT) and longitude

(LON), altitude (ALTI), and hour indicator (HOUR, from

1 to 24) are added to provide geographic and periodic

information that may affect regional air quality forecasts in

the operational model.

In summary, nineteen input features are used in the study,

including the CUACE-forecasted meteorological variables of

SLP, T, Q, U, V, PWAT, RH, and VIS, the CUACE-forecasted

TABLE 1 Summary of the knowledge base.

Num. Type Variables Resolution Source

1 Ground-observed pollutant data PM2.5, PM10, SO2, CO, NO2, O3 Point, hourly CNEMC, http://www.cnemc.cn

2 CUACE-forecasted meteorological data SLP, T, Q, U, V, PWAT, RH, VIS 15 km * 15 km, 3-hourly CUACE

3 CUACE-forecasted pollutant data PM2.5, PM10, SO2, CO, NO2, O3 15 km * 15 km, 3-hourly CUACE

4 Other auxiliary variables HPI, LAT, LON, ALTI, HOUR — —

FIGURE 2
The locations of 46 selected key national cities in China.
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pollutants of PM2.5, PM10, SO2, CO, NO2, and O3, and the

auxiliary variables of HPI, LAT, LON, ALTI, HOUR. The

output is the optimized pollutant concentration of the

operational CUACE model. All the input data are combined

through the link of date and the sample with missing values will

be removed. In the data preprocessing, the extreme values are not

deleted but remain for more realistic optimized performance

based on the hybrid SMOTE-XGBoost model. The processed

data are then normalized and scaled to (−1, 1) to improve the

accuracy of the algorithm and speed up the algorithm’s

convergence. The whole year of data (2021) is randomly

assigned as training and test sets with a ratio of 3:1, where 5-

fold cross-validation (CV) is used during the training process.

The assigned test set is finally used to evaluate the performance of

the well-trained model.

2.3 XGBoost model description

XGBoost (Extreme Gradient Boosted Decision Tree) is an

algorithm or engineering implementation based on Gradient

Boosted Decision Tree (GBDT). The basic idea of XGBoost is

the same as GBDT, but some optimizations have been made,

such as the second derivative to make the loss function more

accurate, the regular term to avoid tree overfitting, and the block

storage can be calculated in parallel (Chen and Guestrin, 2016).

XGBoost is efficient, flexible and lightweight, and has been widely

used in data mining, recommendation systems and other fields.

The principle of the algorithm is as follows:

Assuming that K decision trees have been trained, the final

predicted value for the ith sample is:

ŷi � ∑K
k�1

fk(xi) , fk ∈ F

where xi is the features of the sample, andfk(xi) uses the kth tree
to predict the ith sample. Adding the results together gives the

final predicted value ŷi, and the true label of the sample is yi. So

the objective function is constructed as follows:

Obj � ∑n
i�1
l(yi, ŷi) +∑K

k�1
Ω(fk)

where the first term ∑n
i�1l(yi, ŷi) is the loss function, which

calculates the loss of the model predicted value and the true value.

The second term ∑K
k�1Ω(fk) is the regular item to control the

complexity of the model and prevent overfitting.

2.4 Synthetic minority oversampling
technique algorithm description

SMOTE (Synthetic Minority Oversampling Technique) is

an improved algorithm for the random oversampling method.

The random oversampling method directly re-uses the

minority class, which will cause many duplicate samples in

the training set, and may easily lead to the problem of model

overfitting. While the basic idea of the SMOTE algorithm is to

randomly select a sample x̂i from its nearest neighbors for

each minority class sample xi (x̂i is a sample in the minority

class, denoted by one by default), and then a point is randomly

selected as a newly synthesized minority class sample on the

connection line between xi and x̂i. In this study, the minority

class refers to the high-pollution samples and the majority

class means the normal samples. The detailed algorithm flow

is described as three steps:

1) For each sample xi in the minority class, the Euclidean

distance is used as the standard to calculate the distance

from it to all samples in the minority class sample set S min,

and get the k-nearest neighbors. In the actual algorithm

execution process, the determination of the k value needs

to be set by the user in advance, and it is unknown to

select the most suitable k value to make the algorithm

optimal, which is a defect of the SMOTE algorithm. This

study uses the imblearn library provided by python to

implement the SMOTE algorithm, and the k value is set to

five by default.

2) A sampling rate N, which depends on the number of majority

and minority class samples, is used to resample the dataset to

equalize the number of samples in different classes. For each

minority class sample xi, several samples are randomly

selected from its k-nearest neighbors, denoted as x̂i.

3) For each randomly selected nearest neighbor x̂i, construct a

new sample with xi according to the following formula:

xnew � xi + rand(0, 1) × (x̂i − xi)

In the study, as high-pollution days only accounted for about

4.0% of our training data set, which hinders the model’s ability to

characterize the relationship between high-pollution events and

selected input features, the SMOTE technique is adopted to

oversample our data set and strike a balance between high-

pollution and normal samples.

3 Results and discussion

3.1 Performance evaluation of XGBoost-
SMOTE optimization

The assigned test set of 46 key national cities from the

knowledge base is used to study the effectiveness of the

proposed hybrid XGBoost-SMOTE model in optimizing the

forecasting results from the operational CUECE model. To

reflect the advantages of the XGBoost-SMOTE model,

especially on high-pollution days, the results of the separate

XGBoost model are also compared.
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FIGURE 3
Scatter plots of performance comparison on the 1st-day PM2.5 and O3 forecasting results for the original CUACE, XGBoost, and XGBoost-
SMOTE model.

FIGURE 4
Performance comparison of the 1st-day PM2.5 forecasting results for the original CUACE, XGBoost, and XGBoost-SMOTE model.
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Figures 3, 4 show the performance comparison of the first-

day PM2.5 forecasting results for the original CUACE, XGBoost,

and XGBoost-SMOTE model. It can be seen that after the

optimization of the XGBoost or XGBoost-SMOTE model, the

PM2.5 forecasting performance of the CUACE model has been

greatly improved, with the average R values increasing from

0.51 to 0.75 and 0.88, the average ME values decreasing from

20.71 µg/m3 to 11.69 µg/m3 and 9.85 µg/m3, and the RMSE values

dropping from 35.80 µg/m3 to 22.54 µg/m3 and 16.21 µg/m3,

respectively for XGBoost and XGBoost-SMOTE model. In the

original CUACE model, the forecasting performance of North

China and Central China is generally better, with the R values

basically above 0.6, followed by the southeast coast and Northeast

China, with the R values of 0.4–0.5, and Northwest China and

Qinghai-Tibet Plateau are the worst, with R values of many cities

even lower than 0.3. From the perspective of ME and RMSE

values, Northwest China and some cities of Central China

performed poorly, possibly due to the influence of northwest

dust weather and regional pollutant transport. Overall, the values

in southern China are significantly lower than those in northern

China, which is also in line with the current pollution situation.

After the optimization of the XGBoost model, the forecasting

performance of the operational CUACE model for various cities

has significantly improved, with the R values increasing by more

than 0.2, the ME values decreasing by about 9.0 µg/m3, and the

RMSE values decreasing by about 12.0 µg/m3. However, in

Northwest China and Southwest China, the forecasting effect

is still somewhat unsatisfactory, and a considerable gap is

remained compared with eastern China. The XGBoost-

SMOTE model adopts the high-pollution indicator and

SMOTE technology, so it can better capture the relationship

between the pollutant concentration and the input features,

whether in normal events or high-pollution events, thus

further improving the forecasting ability of the CUACE model

and achieving excellent forecasting results, and the details are

shown in Figure 5. Test samples from four central cities (Beijing,

Xi’an, Guangzhou, and Harbin) in different regions were selected

to compare the performance of XGBoost and XGBoost-SMOTE

models in optimizing PM2.5 concentration from the operational

CUACE model, especially in high-pollution samples. It can be

seen from the figure that for different cities, compared with the

XGBoost model, the forecasting improvement of the XGBoost-

SMOTE model for high-pollution samples is extremely

significant, with the PM2.5 concentration bias being reduced

by tens to hundreds of µg/m3.

Figures 3, 6 show the performance comparison of the first-

day O3 forecasting results for the original CUACE, XGBoost

and XGBoost-SMOTE model. It can be also seen that after the

optimization of the XGBoost or XGBoost-SMOTE model, the

O3 forecasting performance of the CUACE model has also

FIGURE 5
Results of PM2.5 concentration for OBS (observation), XGBoost, and XGBoost-SMOTE model.
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been greatly improved, with the average R values increasing

from 0.55 to 0.90 and 0.91, the average ME values decreasing

from 36.03 µg/m3 to 13.83 µg/m3 and 13.27 µg/m3, and the

RMSE values dropping from 47.17 µg/m3 to 18.39 µg/m3 and

17.31 µg/m3, respectively for XGBoost and XGBoost-SMOTE

model. In the original CUACE model, the forecasting

performance of North China is generally better, with the R

values basically above 0.7, followed by Northwest China,

Central China, and East China, with the R values of

0.4–0.6, and Northwest China and Southwest China are the

worst, with R values of many cities even lower than 0.3. From

the perspective of ME and RMSE values, North China and

Northeast China performed the best, while Central China and

Southwest China performed poorly. After the optimization of

the XGBoost model or XGBoost-SMOTE model, O3

forecasting results are all satisfactory, where XGBoost-

SMOTE shows a little advantage over XGBoost, which is

obviously different from the optimization of PM2.5. This

may be due to the better periodicity of O3 concentrations,

leading to the fact that the single XGBoost model combined

with the input features selected in this study can already fit

their associations well, also including high-pollution events,

which can be verified from Figure 7.

Statistics of three evaluation criteria (R, ME, and RMSE)

for different forecast days are depicted in Table 2. It is easy to

find that as the increase of forecast days (from first day to fifth

day), the PM2.5 and O3 forecasting performance of CUACE

gradually deteriorates, the same as that for the XGBoost or

XGBoost-SMOTE model, which is in line with our cognition

due to the inevitably increasing error of the input

meteorological field. For different forecast days, the

optimization performance of XGBoost-SMOTE for CUACE

forecast is always better than that of XGBoost, especially for

PM2.5. For example, the 5-day average R, ME, RMSE values for

XGBoost-SMOTE are 0.87, 10.34 µg/m3 and 16.53 µg/m3,

respectively, better than those of 0.73, 12.34 µg/m3and

22.79 µg/m3 for XGBoost. In addition, to further

demonstrate the advantages of the hybrid XGBoost-SMOTE

model, the evaluation criteria of the XGBoost-SMOTE model

and other machine learning models are shown in Table 3. The

results show that the hybrid XGBoost-SMOTE model

consistently outperforms the Multiple Linear Regression

(MLR), Multilayer Perceptron (MLP), Random Forest (RF),

and Gradient Boosted Decision Tree (GBDT) for different

pollutants and forecast days. In general, combined with the

evaluation criteria, it can be found that the built hybrid

XGBoost-SMOTE model can achieve satisfactory forecasting

performance in optimizing the forecasting results of multiple

pollutants and cities with different climate and pollution

characteristics from the operational CUACE model.

FIGURE 6
Comparison of the 1st-day O3 forecasting results for the original CUACE, XGBoost, and XGBoost-SMOTE model.
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FIGURE 7
Results of O3 concentration for OBS (observation), XGBoost, and XGBoost-SMOTE model.

TABLE 2 Statistics of evaluation criteria for different pollutants and forecast days.

Pollutants Days R ME (µg/m3) RMSE (µg/m3)

CUACE XGB XGB_s CUACE XGB XGB_s CUACE XGB XGB_s

PM2.5 1st 0.51 0.75 0.88 20.71 11.69 9.85 35.80 22.54 16.21

2nd 0.53 0.75 0.87 21.67 11.83 10.00 36.76 22.06 16.19

3rd 0.51 0.74 0.87 22.46 12.17 10.24 38.20 21.62 15.88

4th 0.47 0.70 0.86 23.02 12.67 10.56 40.64 24.24 17.45

5th 0.44 0.69 0.85 23.91 13.33 11.04 41.20 23.47 16.93

Ave 0.49 0.73 0.87 22.35 12.34 10.34 38.52 22.79 16.53

O3 1st 0.55 0.90 0.91 36.03 13.83 13.27 47.17 18.39 17.31

2nd 0.52 0.89 0.90 36.31 14.57 13.86 47.34 19.31 18.02

3rd 0.48 0.87 0.89 37.29 15.39 14.66 48.84 20.52 19.03

4th 0.44 0.86 0.88 38.64 16.09 15.13 50.84 21.38 19.58

5th 0.38 0.85 0.87 40.43 16.78 15.72 53.39 22.16 20.21

Ave 0.47 0.87 0.89 37.74 15.33 14.53 49.52 20.35 18.83

*XGB refers to the XGBoost model and XGB_s refers to the XGBoost-SMOTE model. *1st, 2nd, 3rd, 4th, and 5th correspond to the first, second, third, fourth and fifth forecast day,

respectively.
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TABLE 3 Statistics of evaluation criteria between XGBoost-SMOTE model and other machine learning models.

Pollutants Days R ME (µg/m3) RMSE (µg/m3)

MLR MLP RF GBDT XGB_s MLR MLP RF GBDT XGB_s MLR MLP RF GBDT XGB_s

PM2.5 1st 0.57 0.71 0.75 0.70 0.88 15.4 13.5 11.7 12.6 9.9 27.9 24.1 22.7 24.3 16.2

2nd 0.59 0.69 0.74 0.71 0.87 15.3 13.1 11.8 12.6 10.0 26.7 24.1 22.1 23.3 16.2

3rd 0.57 0.68 0.74 0.70 0.87 15.6 13.6 12.2 13.0 10.2 26.5 24.0 22.0 23.0 15.9

4th 0.53 0.66 0.69 0.66 0.86 16.0 14.4 12.6 13.5 10.6 28.7 25.5 24.5 25.6 17.4

5th 0.52 0.62 0.69 0.63 0.85 16.5 14.5 13.2 14.3 11.0 27.7 25.6 23.6 25.2 16.9

Ave 0.56 0.67 0.72 0.68 0.87 15.8 13.8 12.3 13.2 10.3 27.5 24.6 23.0 24.3 16.5

O3 1st 0.72 0.87 0.89 0.88 0.91 22.6 15.8 14.6 14.8 13.3 28.9 20.5 19.4 19.5 17.3

2nd 0.71 0.86 0.88 0.87 0.90 23.1 16.4 15.1 15.5 13.9 29.5 21.4 20.0 20.4 18.0

3rd 0.69 0.84 0.86 0.86 0.89 23.6 17.2 15.9 16.3 14.7 30.2 22.6 21.2 21.5 19.0

4th 0.68 0.83 0.85 0.85 0.88 24.1 17.8 16.4 16.9 15.1 30.9 23.3 21.9 22.3 19.6

5th 0.65 0.81 0.84 0.83 0.87 24.6 18.7 17.1 17.5 15.7 31.3 24.3 22.6 23.0 20.2

Ave 0.69 0.84 0.86 0.86 0.89 23.6 17.2 15.8 16.2 14.5 30.2 22.4 21.0 21.4 18.8

*XGB_s refers to the XGBoost-SMOTE model.
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3.2 Optimization of spatial distribution of
CUACE model

In order to obtain the grid-optimized pollutant concentration

distributions in other regions of the CUACE model, this study

adopts the well-trained XGBoost-SMOTE hybrid algorithm

based on the selected 46 cities and applies it to the

optimization of model grid points. To increase the

optimization efficiency, cyclic optimization is carried out with

every four grid points as a group, and the optimized data set

corresponding to the grid point data of the CUACE model in the

simulation area is obtained.

Figure 8 show the spatial distribution of PM2.5 and O3

concentrations at the high pollution event on CUACE forecast

and XGBoost-SMOTE algorithm optimization, respectively.

Observation values for all cities in the model domain from

the China National Environmental Monitoring Center are

represented by colored dots. To make it easier to compare

observations with CUACE forecast and XGBoost-SMOTE

optimization, the same color bar is shared for all data. It can

be seen from the figure that the spatial distribution of pollutant

concentrations optimized by the XGBoost-SMOTE algorithm is

closer to the observed results. The operational CUACEmodel has

a poor forecasting effect on pollutant concentrations during the

study period, with significantly overestimated PM2.5

concentrations in central and southern Hebei Province,

southern Henan Province, central Shaanxi Province, and

southern Hubei Province, and general overestimated O3

concentrations in northern China. The spatial distribution of

pollutants shows that the built XGBoost-SMOTE hybrid

algorithm can well calibrate the simulation results of the

CUACE model, making the pollutant concentrations closer to

FIGURE 8
PM2.5 and O3 observed (spot), CAUCE forecasted and XGBoost-SMOTE optimized concentration spatial distribution map.

Frontiers in Environmental Science frontiersin.org11

Ke et al. 10.3389/fenvs.2022.1007530

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2022.1007530


the actual observed values. Compared with the tens of thousands

of model grid points, the number of 46 cities selected in this study

is small, which leads to certain errors in the pollutant

concentrations optimized by the XGBoost-SMOTE algorithm.

For example, in some cities in central Hebei Province and

Shaanxi Province, the optimization effect of PM2.5

concentration is poor, showing a relatively underestimation.

3.3 Feature analysis of the hybrid
XGBoost-SMOTE model

To explore the effect of input features on the optimization of

pollutant concentrations, a unified framework called Shapley

Additive Interpretation (SHAP), a post-interpretation model

with three desirable properties of local accuracy, consistency,

and absence, was used to explain some sophisticated machine

learning models (Roth, 1988; Lundberg and Lee, 2017). SHAP

simulates feature contribution to individual predictions by

calculating the Shapley value for each feature per sample

(Lundberg et al., 2020).

Figure 9A shows the SHAP summary plot for the

optimization of the first-day PM2.5 forecasting, which is

used to demonstrate feature importance and feature impact.

Each point on the summary plot is the Shapley value of each

feature per sample, and the larger the Shapley value is, the

more influence of feature has on the model output. The y-axis

represents the input features, sorted by feature importance

from top to bottom, and the x-axis represents the Shapley

value of the corresponding point. The color (from red to blue)

represents the values of the input features (from high to low),

and the overlapping points are jittered in the y-axis direction,

showing the distribution of Shapley values for each feature. It

can be seen from the feature importance ranking in the figure

that the feature of the high-pollution indicator ranks first,

which means the greatest impact on the model optimization of

PM2.5 concentration, with the positive and negative

contribution of Shapely value reaching tens to hundreds of

micrograms per cubic meter. When the sample is a high-

pollution sample with the feature value of INDICATOR

marked as 1, the SHAP value is higher, indicating that the

feature has a positive contribution to the optimization of

PM2.5. When the sample is a normal sample with the

feature value of INDICATOR marked as 0, the feature has

a negative contribution to the optimization of PM2.5. This also

explains why high-pollution indicators combined with

SMOTE technology can significantly improve the

advantages of the XGBoost model in high-pollution events.

In addition, auxiliary geographic features such as LAT and

ALTI significantly affect the optimized PM2.5 concentration

with positive correlation, i.e., higher values of LAT and ALTI

tend to increase the optimized value (Figures 9B,C). In fact,

FIGURE 9
SHAP summary plot (A), partial dependence plot of LAT (B) and partial dependence plot of ALTI (C) for the optimization of the 1st-day PM2.5

forecasting.
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LAT and ALTI represent not only the longitude and altitude in

the geographical sense but also the local topographic

conditions and industrial structure data behind them,

which are temporarily not included in the knowledge base

in this study. The higher LAT values tend to increase the

optimized values, which is the rule learned by the XGBoost-

SMOTE model from 46 central cities, i.e., the concentration of

pollutants in the relatively northern region is higher, basically

conforming to the current pollution situation in China.

Higher ALTI values are associated with higher Shapley

values, mainly due to the generally higher PM2.5

concentrations in central and western cities with higher

terrain, which are caused by sparse vegetation coverage and

strong secondary industries. Furthermore, the features of

PM2.5, PM10, RH, and HOUR also affect the optimized

PM2.5 concentration basely with positive correlation, while

physical features of Q, PWAT, T, SLP, U, and V are negatively

correlated with the optimized PM2.5 concentration.

Additionally, Figure 10A shows the SHAP summary plot for the

optimization of the first-day O3 forecasting. Based on the feature

importance ranking, it is observed that the feature of the high-

pollution indicator also ranks first, which means the greatest impact

on the model optimization of O3 concentration, with the positive

and negative contribution of Shapely value reaching 20 µg/

m3–50 µg/m3. Compared with the optimization process of PM25,

the contribution of high-pollution indicators to the O3

concentration is greatly reduced, which also indirectly verifies

that the improvement of O3 optimization by XGBoost-SMOTE is

far less than that of PM25 optimization. In addition, the features of

temperature T significantly affect the optimized O3 concentration

with a positive correlation, i.e., the optimized value increases with the

high values of T. The main reason for this phenomenon is that solar

radiation is strongly correlated with surface temperature, and solar

radiation can directly affect the production of O3, resulting in T can

significantly affecting the surface O3 concentration, which is

consistent with the conclusion of other studies (Chen et al., 2020;

Jodzis and Baran, 2022). Figure 10B shows more details about the

effect of T on the SHAP values. When T is low, the SHAP value is

negative with the extreme T value around 270K, reducing the

optimized O3 concentration. As T exceeds around 290 K, the

temperature starts to make a positive contribution to SHAP

values and gradually increases as T increases. Figure 10C shows

details about the effect of the feature HOUR on the SHAP values. It

can be seen that HOURhas a significant periodic contribution to the

generation of O3 with the largest positive contribution to the SHAP

values at about 14:00–17:00 and the largest negative contribution to

the SHAP values at about 7:00–8:00 each day. Furthermore, the

features of O3, LAT, V, and VIS also affect the optimized O3

concentration basely with a positive correlation, while the

features of RH, SLP, PWAT, NO2 and U are negatively

correlated with the optimized O3 concentration, which may be

mainly related to photochemical reaction and ozone production (He

et al., 2017; Chen et al., 2019; Chen et al., 2020; Ma et al., 2021;

Mousavinezhad et al., 2021).

FIGURE 10
SHAP summary plot (A), partial dependence plot of T (B) and partial dependence plot of HOUR (C) for the optimization of the 1st-day O3

forecasting.
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4 Discussion

It is worth noting that since only 46 cities are used in this study

to train the XGBoost-SMOTE model, leading its performance in

optimizing the spatial distribution of pollutants from the CUACE

model somewhat unsatisfactory, which is understandable based on

the fact that the pollution mechanism learned from the 46 cities is

hard to apply to the whole country, especially the vast border areas

with no or only individual training cities. In our subsequent work,

more cities will add to better capture the pollution mechanisms of

various regions across China with different climatic and

topographical characteristics. In addition, the knowledge base

needs to be supplemented with more auxiliary data, such as

emission source inventory, vegetation cover data, etc., so that the

XGBoost-SMOTE model can better analyze the dominant

physicochemical processes or dominant factors of the pollutant

generation, transport, and dissipation in different regions.

5 Conclusion

A hybrid XGBoost-SMOTE model was established in this study

and applied for the optimization of PM2.5 andO3 concentrations from

the operational CUACE model. Ground-observed pollutant data,

CUACE-forecasted meteorological data, CUACE-forecasted

pollutant data and some auxiliary variables form the basis of the

model application. The XGBoost-SMOTEmodel can achieve the goal

of automatically selecting the optimal hyperparameter and features

without human intervention, and significantly improving the

pollutant forecasting performance from the numerical model on

high polluted days combined with a self-defined high-pollution

indicator.

Results showed that after the optimization of the XGBoost-

SMOTE model, the PM2.5 forecasting performance of the

CUACE model has been greatly improved, with the 5-day

average R, ME, RMSE values changing from 0.49 to 0.87,

22.35 µg/m3 to 10.34 µg/m3, and 38.52 µg/m3 to 16.53 µg/m3,

respectively, which are far better than those of 0.73, 12.34 µg/

m3, and 22.79 µg/m3 by using XGBoost model. For the

optimization of O3 forecasting performance, the 5-day average

R, ME, RMSE values have changed from 0.47 to 0.89, 37.74 µg/m3

to 14.53 µg/m3, and 49.52 µg/m3 to 18.83 µg/m3, respectively,

which are also better than those of 0.87, 15.33 µg/m3, and

20.35 µg/m3 by using XGBoost model. And through the

comparison of the time series diagrams of the four central

cities (Beijing, Xi’an, Guangzhou, and Harbin), it can be

verified that the XGBoost-SMOTE model has a great

improvement in the extreme values of forecasted pollutant

concentrations from the CUACE model in high-pollution

days, thereby achieving excellent forecasting results, especially

for PM2.5. In addition, the application of the optimization for

other model grid points showed that the spatial distribution of

pollutant concentrations optimized by the XGBoost-SMOTE

algorithm was closer to the observed results. Furthermore,

through the impact analysis of the input features by SHAP, it

was found that the high-pollution indicator ranked first in feature

importance. For PM2.5 optimization, the features of LAT, ALTI,

PM2.5, PM10, RH, and HOUR display positive correlation, while

physical features of Q, PWAT, T, SLP, U, and V display negative

correlation. For O3 optimization, the features of T, HOUR, O3,

LAT, V, and VIS display positive correlation, while the features of

RH, SLP, PWAT, NO2 and U display negative correlation. To

summarize, the built hybrid XGBoost-SMOTE model can

achieve reliable optimization results of the operational

CUACE model and implies a good application prospect in the

field of atmospheric environmental forecasting.
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