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Landslide susceptibility assessment is an important support for disaster

identification and risk management. This study aims to analyze the

application ability of machine learning hybrid models in different evaluation

units. Three typical machine learning models, including random forest forest by

penalizing attributes (FPA) and rotation forest were merged by random

subspace algorithm. Twelve evaluation factors, including elevation, slope

angle, slope aspect, roughness, rainfall, lithology, distance to rivers, distance

to roads, normalized difference vegetation index, topographic wetness index,

plan curvature, and profile curvature, were extracted from 155 landslides in

Yaozhou District, Tongchuan City, China. Six landslide susceptibility maps were

generated based on the slope units divided by curvature and 30 m resolution

grid units. Multiple performance metrics showed that the RS-RF model based

on slope units has excellent spatial prediction ability. At the same time, the

method of slope unit division based on curvature is proved to be more suitable

for the typical Loess tableland regions, which provides basis for the selection of

evaluation units in landslide susceptibility assessment.
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1 Introduction

A landslide is a phenomenon where the soil or rock mass on a slope moves down in

the soft direction under the action of gravity (Varnes 1978). With extensive human

activities and increasingly serious surface environmental problems, landslides have

become one of the most severe geological disasters threatening human life and

property (Kannan et al., 2015). On average, landslides cause more than 300 million
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dollars in economic losses each year, especially in mountainous

regions of China (Wang Q. et al., 2016). According to China’s

geological disaster bulletin, a total of 4,220 landslides occurred in

China in 2019, accounting for 68.27% of all geological disasters

nationally and causing more than 200 deaths. Policymakers have

been concentrating efforts to formulatea series of measures

intended to reduce the risk of harm caused by landslides in

relation to people in recent years.

The landslide susceptibility map (LSM) has been considered

an effective tool for landslide control and land use (Nicu and

Asăndulesei 2018). In recent years, studied have been conducted

on landslide susceptibility worldwide, and their results have

provided an essential reference tool for local governments in

disaster management and urbanplanning (Feizizadeh et al.,

2014). The core goal of LSM is obtaining a high-precision

susceptibility map. This work procedure has worked perfectly,

and the most important step is to select an appropriate evaluation

model. Previously, several methods and models were applied to

landslide susceptibility maps, but there was no consistent

standard for selecting models (Chen et al., 2017a). From

previous studies, landslide susceptibility assessment models

can be divided into qualitative, semi-quantitative, and

quantitative methods (Lee et al., 2018). The qualitative

method mainly relies on experts to score the topographical

features and related parameters of a particular slope. The

results depend on expert ability but can have high accuracy

(Pham et al., 2020). However, this method, by nature, is highly

subjective, and the results in applying this approach to a specific

locale are not suitable for other locations. The semi-quantitative

method combines the qualitative method with statistical analysis

of relevant factors, and, accordingly, the results are also subjective

and tend to be one-sided (Tien Bui et al., 2019b).

The quantitative method focuses on analyzing the

relationship between influencing factors and landslides and

quantitatively forecasting the possibility of landslides in a

certain area (Reichenbach et al., 2018). It is divided into two

parts, the first using a probability statistic method and the other a

machine learning method. The probability statistic method can

be divided into binary and multivariate statistical models

(Pourghasemi et al., 2012b). For example, the classical binary

statistical models have frequency ratio, the weight of evidence,

index of entropy, information value, etc. (Che et al., 2012). These

methods were simplistic in terms of model construction and had

a low predictive ability for landslides in more complex areas

(Abedini et al., 2019a). Multivariate statistical models include

logistic regression (Shahabi et al., 2015; Sangchini et al., 2016)

and linear discriminant analysis (Nicu and Asăndulesei 2018).

These models are often superior to binary statistical models but

still have the disadvantage of low accuracy when faced with

complex nonlinear data (Akgun 2012). With the development of

computers, the machine learning model has been widely used in

landslide susceptibility charts and has achieved good prediction

results (Tien Bui et al., 2019a; Fang et al., 2020). Numerous

machine learning models have been developed, including the

artificial neural network (Bragagnolo et al., 2020), decision tree

(Wang L.-J. et al., 2016; Wu et al., 2020), support vector machine

(Chen et al., 2016; Yu et al., 2016), naive Bayes (Tsangaratos and

Ilia 2016) and have performed well overall. These models have

better designed strategies for dealing with nonlinear problems.

However, over fitting and parameter optimization are common

problems in machine learning models (Peng and Bai 2019). It is

noted that with increased promotion of the decision tree model,

some improved models based on the underlying theory have

been applied to landslide susceptibility, such as the J48 tree

(Hong et al., 2018a), reduced error pruning tree (Pham et al.,

2019), alternating decision tree (Shirzadi et al., 2018), logistic

model tree (Chen et al., 2018a; Chen et al., 2018b;), naive Bayes

tree (Chen et al., 2017c), random forest (RF) (Pourghasemi and

Kerle 2016; Chen et al., 2019a; Hong et al., 2019), forest by

penalizing attributes (FPA) (Hong et al., 2020), rotation forest

(ROF) (Chen et al., 2017b; He et al., 2019), among others. The

core of the hybrid model is to combine individual learners

through a range of strategies in order to enhance the diversity

of learners and achieve complementary effects. Hybrid models

such as fuzzy weight of evidence integration (Hong et al., 2017a),

bayesian logistic regression ensemble (Abedini et al., 2019b), data

mining and multi-criteria decision-making methods (Rafiei

Sardooi et al., 2021), among others, were found that the

predictive capability is often higher than that of individual

models (Umar et al., 2014; Pham et al., 2017a). In the present

work, a variety of improved models were used to replace decision

tree, the original base classifier of random subspace algorithm

(RS), aiming to compare the generalization ability of different

hybrid models.

The selection of appropriate mapping units is one of the

prerequisites for generating high-precision landslide

susceptibility maps (Reichenbach et al., 2018). Different

types or sizes of units will present additional landslide

attribute information, affecting the model’s effectiveness. In

previous studies, grid and slope units were mainly selected to

evaluate landslide susceptibility. The grid unit divides the

region into regular squares of a certain size, which has

obvious advantages and disadvantages. Due to the use of

boundary rules, the calculation is convenient and efficient,

conducive to attribute extraction, and for sample training of

the machine learning model. It ignores, however, the unique

factors of topography and geomorphology, and the size of

individual grid units is questionable (Trigila et al., 2015).

Results showed that the size of grid units in different

resolutions affects evaluation accuracy, and evaluation results

do not always increase with smaller resolutions (Chen et al.,

2020b). Based on GIS software, a hydrological analysis model is

commonly used in slope units, dividing a region by valley lines

and ridgelines. It also considers the morphological elements of

hills and mountainous areas. However, the division of slope

units based on this method does not match the geomorphic
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background in a wide area, such as an intermountain basin

(Reichenbach et al., 2018).

In this study, three models based on RS, including ROF, FPA

and RF, were created respectively to compare the applicability of

different hybrid models using slope unit divided by curvature and

grid unit to obtain a more sensitive map of landslide

susceptibility for the Yaozhou District, Tongchuan City, China.

2 Study area

Yaozhou District is located south of Tongchuan City,

Shaanxi Province, China. The coordinates are 108°34′–109°06′
east longitude and 34°50′–35°20′ north latitude, with a total area

of about 1622 km2 (Figure 1). It belongs to the southern Loess

Plateau; the terrain is high in the north and low in the south, with

a relative elevation difference of 1156 m. The north and west are

mainly medium and low elevationmountainous areas, the central

part is a ruined highland gully area, and the south is primarily a

plains and river valley area. The study area is a warm temperate

continental monsoon semi-arid and semi-humid climate zone.

Rainfall is concentrated primarily between July and September,

accounting for more than half of the rainfall for the entire year.

The spatial distribution of rainfall increases from southeast to

northwest. According to data from the main regional observation

station, the maximum rainfall is 830.5 mm (1983), and the

minimum rainfall is 344.1 mm (1977). The annual average

rainfall, therefore, is 616.3 mm. The highest temperature

throughout the year is 39.7°C, and the lowest temperature is

-16°C. The vegetation coverage rate of the whole area is 41%, of

which the vegetation coverage rate of the northern mountainous

area reaches 85%, while the southern plateau area is only 10%.

The earthquake intensity belongs to the VII-degree zone, and

there was no geological background of strong earthquakes.

3 Material and methods

3.1 Preparation of landslide inventory and
datasets

The preparation of a landslide inventory map is the first step

in landslide susceptibility assessments (Rosi et al., 2018). In this

study, 115 landslides were delineated by referring to the detailed

FIGURE 1
Location of the study area and landslide inventory map.
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FIGURE 2
Thematic maps of the study area: (A)elevation; (B)slope angle; (C)slope aspect; (D)roughness; (E)rainfall; (F)lithology; (G)distance to rivers; (H)
distance to roads; (I)NDVI; (J)TWI; (K)plan curvature; (L)profile curvature.
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survey report of geological disasters. The basic data of landslides

for this area was obtained by using field surveys, an interpretation

of remote sensing satellite images, and a 1:50000 scale geological

map. According to the geological map scale of 1:50000, a grid of

30 × 30 mwas selected as the base evaluation unit (Petschko et al.,

2014). The landslide inventory map of current study area was

generated in ArcGIS software (Figure 1) (Tien Bui et al., 2016b).

In order to construct positive and negative sample data, 115 non-

landslide points with the same number were randomly selected

(Pham et al., 2016). The elevation data image was obtained from

the geospatial data cloud (http://www.gscloud.cn/). The sample

data were randomly divided into a training set (170 locations)

and a validation set (60 locations) according to scale of 7:3 (Dou

et al., 2019).

3.2 Selection of landslide influencing
factors

It is particularly significant to select relevant influencing

factors for generating a high-precision landslide susceptibility

map. In selecting these factors using predecessors, due to the

difference in the geological environment conditions and landslide

formation mechanism in this specific study area, the selection of

factors was not clearly defined (Chen et al., 2018c; Abuzied and

Alrefaee 2019). In this paper, referring to the influence factors of

previous references and the geological environment conditions of

the study area, a total of 12 influencing factors were selected for the

model, including elevation, slope angle, slope aspect, roughness,

rainfall, lithology, distance to rivers, distance to roads, normalized

difference vegetation index (NDVI), topographic wetness index

(TWI), plan curvature and profile curvature. This paper used

ASTER GDEM 30M resolution digital elevation data to generate

elevation, slope angle, slope aspect, roughness, TWI, plan

curvature, and profile curvature. NDVI, distance to roads, and

distance to rivers were generated by land imaging from the Landsat

eight OLI images. Rainfall observation data for multiple years were

obtained from the Meteorological Bureau of Tongchuan City,

Shaanxi Province, China (http://sn.cma.gov.cn/).

3.2.1 Elevation
As one of the most critical factors affecting landslides,

elevation is widely used in landslide susceptibility modeling

(Pradhan 2013). It mainly affects the stress distribution of the

slope, which is crucial to the stability of a landslide. In this study,

elevation was classified by the natural break model as 0–815°m,

815–991°m, 991–1170°m, 1170–1358°m, and 1358–1704°m,

totaling five categories (Figure 2A).

3.2.2 Slope angle
The slope angle is also closely related to the stability of a

landslide (Saha et al., 2005). When the slope is larger than the dip

angle of the rock-soil structural surface, the overlying rock-soil

mass will slide along the crack surface. The slope angle was

divided into five classes: 0–8.44°, 8.44–15.83°, 15.83–24.30°,

24.30–36.19°, 36.19–72.56° by the natural break method

(Figure 2B).

3.2.3 Slope aspect
The slope aspect affects the orientation of the slope, and

different orientations are related to differences in sunlight, which

lead to differences in vegetation growth and weathering (Galli

et al., 2008; Trigila et al., 2015). Studies have shown that the soil

moisture of a shady slope is 1.09–1.52°times that of a sunny slope

and the vegetation coverage rate is 4–5°times that of a sunny

slope (Tien Bui et al., 2016a). The temperature of a sunny slope is

higher than that of a shady slope, which may cause weathering

and fragmentation of carbonate rocks and induce landslide

instability. This paper divided the slope aspect into nine

categories: plan, north, northeast, east, southeast, south,

southwest, west, and northwest, based on equal intervals

(Figure 2C).

3.2.4 Roughness
Roughness refers to the ratio of the surface area of a

particular area to its projected area, which is a dimensionless

parameter. It was divided into 1–1.05, 1.05–1.14, 1.14–1.30,

1.30–1.59, and 1.59–3.34 through the natural break model

(Figure 2D).

r � 1
cos α

(1)

Where r is the surface roughness and α is the slope angle.

3.2.5 Rainfall
Rainfall is one of the factors that cause landslide instability

and sliding and is closely related to subsequent landslides (Bai

et al., 2013). It causes the soil to soften with water and lose its

original strength. The rainfall at equal pitches was divided into

seven classes, as follows: <560°mm, 560–580°mm, 580–600°mm,

600–620°mm, 620–640°mm, 640–660°mm, and >660 mm

(Figure 2E).

3.2.6 Lithology
The weathering resistance and cohesion of different strata are

different, so lithology is one of the important factors affecting

landslide stability (Chen et al., 2019b). This paper is divided into

five categories according to the age and composition of the

lithology: Group A: Quaternary Holocene (Q4) silty sand, fine

sand, medium sand, and gravel sand; Group B: Upper Triassic

(T) sandstone, fine sandstone, mudstone, and sandy mudstone

interbedded; Group C: Malan loess, fine sand, and silt from the

Upper Pleistocene quaternary system (Qeol
3 ); Group D:

Ordovician (O) limestone, dolomite, and dolomite limestone;

And, Group E: Lower Cretaceous (K1) sandstone, argillaceous

sandstone and mudstone (Figure 2F).
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3.2.7 Distance to rivers
The lateral erosion of a river will weaken the rock and soil

stability on both banks’ slopes (Pourghasemi et al., 2012a). The

distance to rivers was generated by Euclidean distance and

divided into five categories according to the natural break

method: 0–876.18m, 876.18–1833.93m, 1833.93–2920.50m,

2920.50–4274.03m, 4274.03–8034.23 m (Figure 2G).

3.2.8 Distance to roads
Road construction is usually accompanied by excavating the

slope toe, which changes the slope’s stress distribution and

significantly impacts landslides (Pham et al., 2017c). The

distance to roads was divided into five categories by the

natural break method: 0–819.39°m, 819.39–1914.60°m,

1914.60–3291.94°m, 3291.94–5210.08°m, 5210.08–9406.85 m

(Figure 2H).

3.2.9 NDVI
NDVI is the difference between the near-infrared band’s

reflection value and the red band’s reflection value divided by

their sum, which is a dimensionless parameter (Ada and San

2018). It was divided into five categories by natural break

method: 0.01–0.04.0.04–0.05, 0.05–0.07, 0.07–0.12, 0.12–0.31

(Figure 2I).

NDVI � NIR − R

NIR + R
(2)

WhereNIR is the reflection value of the near-infrared band and R

is the reflection value of the red band.

3.2.10 TWI
The TWI reflects the dry and wet conditions of the soil under

the ideal condition, which is a dimensionless parameter (Hong

et al., 2018b). It was divided into 2.14–5.53.5.53–7.86.7.86–15.17,

15.17–22.79, and 22.79–29.25 by the natural break method

(Figure 2J).

TWI � ln( As

tan β
) (3)

Among them, As stands for specific catchment area β stands

for slope angle.

3.2.11 Plan curvature
The plan curvature is the rate of change in the direction

perpendicular to the maximum slope, which is a dimensionless

parameter (Ohlmacher 2007). The natural break method divided

into five categories: −8.01–−1.12, −1.12–−0.35, −0.35–0.06,

0.06–0.75, and 0.75–9.65 (Figure 2K).

3.2.12 Profile curvature
The profile curvature is the variability of the slope along the

maximum slope, which is a dimensionless parameter. It was

divided into five categories by the natural break method:

−9.48–−1.10, −1.10–−0.34, −0.34–0.14, 0.14–0.89 and

0.89–7.97 (Figure 2L).

3.3 The division of evaluation units

The study area was divided into grid units and slope units.

The grid unit mainly determines the resolution size, and an

empirical formula was used to determine the resolution (Formula

4). The slope unit division method based on curvature was

proposed by Yan Ge, which was applied to the evaluation of

landslide susceptibility in other studies (Yan G 2016). Results

showed that this method has a better evaluation result than the

traditional hydrological analysis model. Combined with previous

studies, 30 m resolution grid unit and slope unit based on

curvature division were selected to evaluate the applicability of

different units in this paper. Then, the study area was divided into

1,799,237 grid units and 42,981 slope units.

Gs � 7.5 + 0.0006S − 2.01 × 109S2 + 2.91 × 1015S3 (4)

Where Gs is the grid size, and S is the denominator of the

geological map scale.

3.4 Random subspace

The random subspace algorithm (RS) was first proposed in

1998 (Tin Kam Ho 1998). This method constructed a classifier

based on a decision tree, which maintained the highest accuracy

in training data, and the generalization accuracy also increased

with the increase of complexity. The classifier comprises several

trees constructed by a pseudo-random selection of feature

vectors, and one classifier is trained by using each subspace

(Kuncheva and Plumpton 2010). Overfitting can be avoided to a

certain extent by remaining part of the training data. First, there

are k attributes (1 < k < n) selected from the attribute set of the

training set (a1, a2, ... an) randomly. Each sample of the initial

training set was described to obtain the new training set. Then, it

was continuously randomly sampled until the bootstrap sample

sets were consistent with the number of the training set. Finally,

the reduced-error pruning tree model was used as the base

classifier. The classification results are combined with the

simple majority voting rule to obtain the final classification

results.

3.5 Random forest

The random forest (RF) was first proposed in 2001 (Breiman

2001). First, the bootstrap resampling method was used to extract

multiple samples from the original sample, among which 2/

3 samples were randomly put back. For each bootstrap sample,

decision trees were established through feature sampling and
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optimal segmentation. The decision tree was generated using

classification and regression tree algorithms, and some factors

were randomly selected for internal node branching, unrestricted

growth, and no pruning (Trigila et al., 2015). Then the out-of-bag

error was calculated by 1/3 of the data. Finally, these decision

trees were combined, and the final classification result was

obtained by voting.

3.6 Forest by penalizing attributes

The forest by penalizing attributes (FPA) was developed in

2017 (Adnan and Islam 2017). It comes from the forest by

continuously excluding the root node and has become a more

balanced and accurate decision forest algorithm. It systematizes

weights by penalizing attributes, effectively avoiding the

attributes of low-level trees. It generates a bootstrap data set

from training data samples and uses attribute weights to create a

decision tree, similar to a classification and regression tree. Still,

the difference is that the attribute is divided based on merit

values rather than classification ability, and the attribute weight

of the tree is constantly updated. It is worth mentioning that

FPA avoids switching between similar trees by preserving the

weight of the previous tree, so the test attributes of the previous

tree will not be penalized. The weight of the attribute mainly

considers the attribute level of the nearest tree (λ). It randomly

generates weight range (WR) (Formula 5). ρ is used to ensure

the WR for different levels be non-overlapping. Finally, the

weight of the applicable attribute is updated, and its increment

value σ i is calculated as shown in Formula 6. This incremental

parameter is used to avoid being unable to test in subsequent

tree nodes due to the low weight when testing at the previous

tree node.

WRλ �
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

[0.000, e−1
λ], if λ � 1

[e− 1
λ−1 + ρ, e−

1
λ], ifλ> 1

(5)

σ i � 1.0 − ωi(η + 1) − λ
(6)

Where ωi is the weight of the attribute; η it is equal to the height

of the highest tree.

3.7 Rotation forest

The rotation forest model (ROF) has been widely used to

evaluate landslide susceptibility and has achieved high

prediction accuracy (Pham et al., 2018; Pham et al., 2020).

It is assumed that N is a training sample data composed of an

A×B matrix (A represents the training instances and B

represents the landslide influencing factors), and the

decision tree classifiers and feature set in the ensemble

model are represented by Di (i = 1.2, . . . ,L) and F. First, F

is randomly divided into K subsets. K represents M features

contained by B in each feature subset, where M = B/k. The ith

decision tree classifier of the jth subset can be represented by

Fij. Then 75% of the training data is selected to generate the

random non-empty subset, and the principal component

analysis (PCA) is run through the subset of N and M

features (J. J. Rodriguez et al., 2006). Finally, its coefficients

are stored to obtain vectors, a(1)i,j ,. . ., a
(Mj)
i,j , of the same size as

the M × 1 matrix. Therefore, the “rotation” matrix Ri is

constructed (Formula 7). Thus, the training set Di (XRa
i , B)

is also constructed, and x is assumed to come from ωj class.

The confidence of each class ωj is calculated by the average

grouping method (Formula 8):

Ri �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
a(1)i,1 , a

(2)
i,1 , . . . , a

(M1)
i,1 , [0] . . . [0]

[0] a(1)i,2 , a
(2)
i,2 , . . . , a

(M2)
i,2 , . . . [0]

..

.
1 1 ..

.

[0] [0] . . . a(1)i,K , a
(2)
i,K , . . . , a

(MK)
i,K

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(7)

μj(x) �
1
L
∑L
i�1
di,j(xRa

i ) (8)

3.8 Model performance evaluation

The evaluation of the generalization ability of different

models requires effective experimental methods and effective

experimental methods and evaluation criteria to measure the

generalization ability of the models (Abedini et al., 2019b). When

the evaluation of landslide susceptibility is taken as the task

requirement, it is significant to verify the relative good or bad of

different models to select evaluation models (Nguyen et al.,

2019). In this study, the commonly used statistical test

methods were selected, such assensitivity, specificity, accuracy

(ACC), mean absolute error (MAE), precision, kappa statistics,

F-score, and Matthews correlation coefficient (MCC).

Sensitivity � TP

TP + FN
(9)

Specificity � TN

TN + FP
(10)

ACC � TP + TN

TP + TN + FP + FN
(11)

MAE �
∣∣∣∣p1 − a1

∣∣∣∣ + ∣∣∣∣p2 − a2
∣∣∣∣ + ... + ∣∣∣∣pn − an

∣∣∣∣
n

(12)

Precision � TP

TP + FP
(13)

k � k0 − ke
1 − ke

(14)

F − score � 2 × TP

2 × TP + FP + FN
(15)
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MCC � TP × TN − FP × FN��������������������������������������������(TP + FP) × (TP + FN) × (TN + FP) × (TN + FN)√
(16)

True positive (TP) and true negative (TN) are correctly

predicted and classified as landslides and non-landslides,

respectively. False-positive (FP) and false-negative (FN) are

misclassified as landslides and non-landslide, respectively. pi is

the predicted value of landslide sensitivity, while ai is the actual

value of landslide sensitivity (i = 1, 2, 3, . . . , n, n is the number of

sample instances). k0 represents the sum of the number of

correctly classified samples in each category divided by the

total number of samples, and ke represents the product of the

true and predicted samples in each category divided by the square

of the total number of samples.

3.9 Data processing

The main steps of this study are shown in Figure 3. The

first step is to determine the distribution of landslides in the

study area by interpreting remote sensing images, field

investigation, and verification. In the second step, 12 types

of influencing factors such as elevation, slope angle, and

slope aspect were selected to establish a database divided

into grid units and slope units. Then the data were

screened through VIF and CAE. The third step is to show

the RS model through WEKA software, mix it with the ROF,

FPA, and RF models, respectively, and continuously adjust the

iterations to determine the optimal parameters. The

fourth step is to get the map of landslide susceptibility,

divided into five grades from very low to very high. The

FIGURE 3
Flow chart of the study.
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fifth step used the ROC curve, AUC, MAE, and SE to verify

the model and obtains the most sensitive model through

analysis.

4 Results and analysis

4.1 Landslide influencing factor analysis

In the landslide susceptibility assessment, the analysis of

influencing factors is mainly divided into two aspects: one is

the multicollinearity between factors, and the other is the

importance of the influencing factors on landslides in the

study area. Tolerance (TOL) and variance inflation

factors (VIF) are measures of collinearity severity of

multiple linear regression models. It is generally believed

that when TOL is less than 0.1 or VIF is greater than 10,

there is more severe collinearity among data (Toebe and

Cargnelutti Filho 2013). The results of the collinearity

analysis are shown in Table 1.

Correlation attribute evaluation (CAE) is used to evaluate

the worth of an attribute by measuring the correlation

(Pearson’s) between it and the class. In previous work, it

was also used to select relevant factors for landslide

susceptibility. CAE was used to calculate the importance of

12 types of factors in this paper, and the results are shown in

Table 2. If average merit (AM), the weight of a factor, is

greater than 0, it indicates that it is beneficial to evaluating

landslide susceptibility. It can be clearly seen from the results

that all the 12 types of factors selected in this paper are

suitable for landslide susceptibility evaluation in the

study area.

4.2 Selection of model parameters

The parameter adjustment of the machine learning model is a

complex task. In order to reduce the complexity of parameter

optimization and obtain more reliable parameters, we obtained the

test results of the training set and validation set by comparing the

changes of AUC andMAE values of eachmodel under the number

of iterations ranging from 10 to 200 times (Figure 4). In order to

select the number of iterationsmore in line with the overall sample,

the difference between AUC and MAE was calculated, and the

mean value was calculated to obtain average statistical index (ASI),

which represented the average level of model fitting under the

number of iterations (Figure 5). The results show that RS-ROF, RS-

FPA, and RS-RF models have the best fitting degree under 190, 50,

and 200 iterations, respectively, to adjust the model’s parameters.

4.3 Generation of landslide susceptibility
maps

As mentioned previously, we used different datasets applied to

RS model, and the ROF, FPA, and RF models were selected as base

classifiers to construct RS-ROF, RS-FPA, and RS-RF models. Then,

the success rate and prediction rate curves based on three models

were obtained. After the training of models was completed, the data

in the study area {Ai, Bi, . . . , Li} (0 < i ≤ n, where n is the number of

instances in the study area) were substituted, respectively. The

probability of landslide occurrence for each unit, also known as

the landslide susceptibility index (LSI), was calculated (Figure 6).

The natural break method was used to classify LSI in this paper to

eliminate the differences between the three models. There are five

categories, very low, low, moderate, high, and very high. Therefore,

TABLE 1 Multicollinearity analysis.

Landslide influencing factors Collinearity statistics

Tolerance (TOL) Variance inflation factors
(VIF)

NDVI 0.635 1.574

TWI 0.651 1.535

Roughness 0.177 5.665

Distance to roads 0.559 1.788

Elevation 0.274 3.647

Rainfall 0.36 2.779

Slope angle 0.155 6.462

Slope aspect 0.942 1.062

Plan curvature 0.768 1.303

Profile curvature 0.843 1.187

Distance to rivers 0.74 1.352

Lithology 0.649 1.542
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TABLE 2 Importance of influencing factors based on correlation attribute evaluation (CAE).

Landslide influencing factor Average merit (AM) Standard deviation (SD)

Elevation 0.506 ±0.019

Lithology 0.425 ±0.014

Slope angle 0.275 ±0.018

Roughness 0.267 ±0.010

NDVI 0.228 ±0.026

Distance to roads 0.236 ±0.021

TWI 0.205 ±0.048

Distance to rivers 0.183 ±0.022

Rainfall 0.162 ±0.020

Slope aspect 0.061 ±0.023

Plan curvature 0.035 ±0.019

Profile curvature 0.027 ±0.022

FIGURE 4
AUC and MAE of training set and validation set under different iteration times; (A) AUC value of the training set; (B) AUC value of the validation
set; (C) MAE value of the training set; (D) MAE value of the validation set.
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six visual landslide susceptibility maps were obtained for three

models of different units (Figure 7).

4.4 Model performance and comparison

Model performance is a critical step in detecting the

predictive ability of the model and the last stage of a landslide

susceptibility evaluation (Ozdemir and Altural 2013; Hussin

et al., 2016). Test indicators were calculated according to

Formulas 9 to 15 (Table 3 and Table 4). Among them, the

larger the values of other parameters except for the MAE value,

the higher the model’s prediction ability is. In the case of the grid

unit, the training set showed the maximum value of the

specificity, ACC, precision, kappa, and MCC of the RS-ROF

model, followed by the RS-FPA and RS-RF model. In the RS-RF

model, the value of sensitivity and F-score were the largest, while

its MAE was the smallest. The validation set showed that the

comparison results differed from the training set. The RS-RF

model obtained the highest value insensitivity, ACC, F-score,

Kappa, and MCC, respectively, while the MAE value remained at

the minimum, followed by the RS-FPA and RS-ROFmodel. Only

specificity and specificity showed that the RS-ROF model was

superior to the other two models. The difference of the results

may be caused by the size of the samples and the different testing

principles of each parameter.

When the slope unit was used, the training set showed that

the RS-RF model’s sensitivity, ACC, F-score, Kappa, and MCC

reached the maximum value, and MAE was the minimum,

followed by the RS-ROF model and RS-FPA model. The RS-

ROF model has the maximum value in specificity and specificity

indicators. The validation set showed that the RS-FPA model

achieved the maximum value insensitivity, ACC, precision,

F-score, Kappa, and MCC, followed by the RS-RF and RS-

ROF models. Each exhibited the same specificity, but the

MAE of the RS-RF model remained at the minimum. It

showed that the results obtained by different test indexes are

not the same, and it is difficult to measure according to one

standard.

The receiver operating characteristic curve (ROC)

originated in the 1990s and has been widely used in data

FIGURE 5
ASI of each model under different iteration times.

FIGURE 6
Generation of landslide susceptibility.
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mining and machine learning classification model evaluation

(Chen et al., 2017d). ROC curves were generated by counting

the sensitivity (landslide samples predicted as landslides) and

1-specificity (non-landslide samples predicted as landslides)

of each model (Figure 8). Using the area under the curve

(AUC), which is the main statistical indicator of the ROC

curve (Pham et al., 2021). In both the training and validation

sets, the AUC value of the RS-RF model was the highest

among the three models and its SE was also the smallest

(Table 5 and Table 6). The AUC value of the training set of RS-

FPA in the two types of units is higher than that of the RS-ROF

model, while the AUC value of the RS-ROF model of the grid

unit is higher than that of the RS-FPA model in the validation

set and the comparison results of the slope unit were

consistent with that of the training set. The RS-RF model

shows the highest generalization ability among the three

models, followed by the RS-FPA and the RS-ROF model.

Compared with the AUC results of the grid and slope

units, the three models all evidence that the prediction

accuracy of slope units is higher than that of grid units,

which highlights that it is more appropriate to divide slope

units to evaluate landslide susceptibility in Yaozhou District.

FIGURE 7
Landslide susceptibility maps using three models of different units: (A) LSI of RS-ROF model under grid units; (B) LSI of RS-ROF model under
slope units; (C) LSI of RS-FPAmodel under grid units; (D) LSI of RS-FPAmodel under slope units; (E) LSI of RS-RFmodel under grid units; (F) LSI of RS-
RF model under slope units.
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FIGURE 8
ROC curves of the models using: (A) training set of grid units; (B) validation set of grid units; (C) training set of slope units; (D) validation set of
slope units.

TABLE 3 The performance of the training set and the validation set of models using grid unit.

Parameters Train Validation

RS-ROF RS-FPA RS-RF RS-ROF RS-FPA RS-RF

TP 48 50 51 24 26 26

FP 11 15 15 2 3 3

FN 32 30 29 11 9 9

TN 69 65 65 33 32 32

Sensitivity (%) 60.0 62.5 63.8 68.6 74.3 74.3

Specificity (%) 86.3 81.3 81.3 94.3 91.4 91.4

ACC (%) 73.1 71.9 72.5 81.4 82.9 82.9

MAE 0.391 0.385 0.352 0.370 0.349 0.301

Precision (%) 81.4 76.9 77.3 92.3 89.7 89.7

F-score 0.691 0.690 0.699 0.787 0.813 0.813

Kappa 0.463 0.438 0.450 0.629 0.657 0.657

MCC 0.479 0.445 0.457 0.650 0.667 0.667
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The frequency ratio (FR) was used to measure the

consistency of the predicted results with the actual results

(Formula 17). A higher FR means a relatively higher number

of landslides in a smaller range. Thus, FR should increase with

the increase of susceptibility, and the model with a higher FR is

closer to reality at a very high susceptibility. In Figure 9, the FR

of the three models increased with increased sensitivity, and

slope units’ FR was higher than grid units in very high

sensitivity grade. Among them, the RS-RF model had the

highest FR value, followed by the RS-FPA and the RS-ROF

model.

FR � υ

γ
(17)

Where υ is the proportion of landslide number, and γ is the

proportion of the sensitive area.

5 Discussion

The evaluation of landslide susceptibility involves sampling

strategy, determination of evaluation unit, selection of influence

index, evaluation model, and model verification. Due to the

complex mechanism of landslide occurrence and the

uncertainty of the evaluation process, the evaluation of

landslide susceptibility has not reached a unified standard

despite much research spanning decades (Nhu et al., 2020). In

this study, slope units and grid units were selected for

comparison. A curvature watersheds-based slope unit was

used to evaluate the landslide susceptibility of Baxie River

Basin, and the study showed that the slope division based on

curvature was superior to the traditional hydrological analysis

method (Chen et al., 2020a). The classification of hydrological

analysis methods over wide areas has been deemed inappropriate

and requires extensive manual correction, which subsequently

increases objectivity and uncertainty (Yan G 2016). The 70 m

resolution grid units have been proved to be the best size in Baxie

River Basin, but this phenomenon is not fixed, causing problems

in evaluating different areas and different types of landslides

(Chen et al., 2020b). According to the empirical formula, 30 m

resolution was selected as the grid unit compared to the slope

unit in this study. The results showed that the model prediction

TABLE 4 The performance of the training set and the validation set of models using slope unit.

Parameters Train Validation

RS-ROF RS-FPA RS-RF RS-ROF RS-FPA RS-RF

TP 53 54 58 19 23 22

FP 7 10 10 2 2 2

FN 27 26 22 16 12 13

TN 73 70 70 33 33 33

Sensitivity (%) 66.3 67.5 72.5 54.3 65.7 62.9

Specificity (%) 91.3 87.5 87.5 94.3 94.3 94.3

ACC (%) 78.8 77.5 80.0 74.3 80.0 78.6

MAE 0.345 0.344 0.307 0.340 0.326 0.293

Precision (%) 88.3 84.4 85.3 90.5 92.0 91.7

F-score 0.757 0.750 0.784 0.679 0.767 0.746

Kappa 0.575 0.550 0.600 0.486 0.600 0.571

MCC 0.594 0.561 0.607 0.530 0.626 0.602

TABLE 5 Parameters of ROC curves using the training dataset.

Evaluation unit Models AUC SE 95%CI

Grid unit RS-ROF 0.816 0.033 0.750–0.881

RS-FPA 0.819 0.033 0.755–0.883

RS-RF 0.841 0.031 0.781–0.902

Slope unit RS-ROF 0.875 0.027 0.823–0.927

RS-FPA 0.876 0.026 0.825–0.928

RS-RF 0.890 0.025 0.842–0.938

TABLE 6 Parameters of ROC curves using the validation dataset.

Evaluation unit Models AUC SE 95%CI

Grid unit RS-ROF 0.940 0.029 0.884–0.996

RS-FPA 0.927 0.029 0.870–0.983

RS-RF 0.955 0.021 0.914–0.997

Slope unit RS-ROF 0.936 0.028 0.881–0.991

RS-FPA 0.955 0.022 0.912–0.998

RS-RF 0.956 0.022 0.913–0.998
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results of the slope unit were better than that of the grid unit,

highlighting the importance of the slope as the boundary for

evaluating landslide susceptibility (Table 5 and Table 6) (Ba et al.,

2018). The slope unit division method based on essential

curvature in this study can effectively overcome the

shortcomings of fuzzy boundaries and complicated operations

(Chen et al., 2020a). The geomorphology of the study area is

mainly Loess tableland. The results showed that the division of

slope unit has a suitable application in relatively flat areas, while

its adaptability in hilly and mountainous areas needs further

analysis and verification.

There was no fixed standard for the selection range of factors

in the previous literature, so there is still a certain subjectivity

(Pham et al., 2017b). In this paper, 12 factors were evaluated

based on detailed investigation reports of geological hazards in

the study area, and their importance to the landslide in the study

area was analyzed through the CAE method. The results showed

(Table 2) that elevation is the factor most closely related to the

occurrence of landslides in the area (AM = 0.506) among the

12 types of factors, which is consistent with the relevant research

results (Tien Bui et al., 2016b; Chen et al., 2017d). The second is

the lithology of the area (AM = 0.425), which determines the

deformation and failure mode of the slope, as well as the location

of a weak structural plane. It, therefore, has a noticeable control

effect on the location of the sliding plane. Slope angle (AM =

0.275) and roughness (AM = 0.267) are also important

influencing factors in this study, significantly changing the

stress distribution state and making the slope more unstable,

thereby inducing a landslide. NDVI (AM = 0.228) plays a role in

slope protection and soil erosion prevention (Shou and Lin

2016). According to Figure 2I, it can be seen that vegetation is

lush and landslides are relatively less developed in the northwest

of the region. In contrast, vegetation coverage is more

diminutive, and landslides are more densely developed in the

southeast. The distance to roads (AM = 0.236) is also an

important landslide-inducing factor related to the rapid

development of highway construction in the study area

resulting in many slopes excavated to form the blank surface

(Xu et al., 2012). The remaining factors are relatively less

important but cannot be ignored because AM values showed

that they are still associated with landslides.

The random subspace algorithm was used to optimize the

support vector machine model to evaluate the landslide

susceptibility in the Wuning area, China (Hong et al., 2017b).

Results showed that the hybrid model constructed by the

random subspace algorithm improved the prediction ability of

the basic classifier. The former study applied the ROF, FPA, and

RFmodels to predict landslide susceptibility. In this study, they were

compared with the hybrid model constructed by the random

subspace to verify their applicability in predicting landslide

susceptibility. A variety of performance measurement methods

were adopted to evaluate the three models of two types of units.

Due to the different interpretation emphases of other measurement

methods, the evaluation results were also different. Precision is used

to measure the proportion of the actual number of landslides in the

predicted unit, for example, while sensitivity is used to measure the

FIGURE 9
Comparison of the frequency ratios of three models.
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exact number of landslides in the predicted unit. As a result,

two indexes often have opposite rules (Table 3 and Table 4).

Although there are slight differences, the RS-RF model had the

highest AUC value after the overall comparison by the ROC

curve, followed by the RS-FPA and the RS-ROF model. It was

proved that the RF model has a stronger generalization ability

and prediction performance than other single models. In

extremely vulnerable areas, the RS-RF model predicted the

highest landslide frequency ratio under the slope unit, which

was consistent with the AUC value and proved that the results

are relatively reliable. It should be pointed out that in this

study, the model training process only adopts the grid search

method to determine the iterative parameters. However, there

are many hyperparameters in machine learning hybrid model.

We recommend, for future studies, the optimization methods

of different parameters are worthy of further analysis and

research to improve the stability and accuracy of the model.

Besides that, in addition to RS algorithm, improved complete

ensemble empirical mode decomposition with adaptive noise

(ICEEMDAN) was used for the construction of machine

learning hybrid model. It has been proved that the

prediction ability of machine learning models has been

improved in energy fields such as global solar radiation and

wind direction, which is also inspiring for the construction of

landslide susceptibility models (Li et al., 2021; Ghimire et al.,

2022). The advantages of hybrid models can be further

compared and explored.

6 Conclusion

Landslide susceptibility prediction is a necessary and

often an uncertain work due to the harmfulness and

complexity of landslide procesess. The main purpose of

this study was to compare the applicability of different

hybrid machine learning models, including RS-ROF, RS-

FPA, and RS-RF, for landslide susceptibility assessment in

the Yaozhou District, Tongchuan City, China. The results

were compared based on the grid unit and slope unit,

respectively. Combined with the geological environment

characteristics of the study area, a total of 12 categories of

influencing factors, including elevation, slope angle, slope

aspect, roughness, rainfall, lithology, distance to rivers,

distance to roads, NDVI, TWI, plan curvature, and profile

curvature were used for evaluation and models were verified

by ROC curve, Kappa coefficient, F-score, MCC, and other

performance metrics. The results showed that the 12 factors

selected were all suitable for this study, among which

elevation, lithology, slope, roughness, and NDVI were the

main inducing factors of landslide. The prediction results of

the three models based on slope unit were all the better than

those of the grid unit, which verified the efficiency and

accuracy of the curvature-based slope unit division

method. In typical Loess tableland regions, the method of

slope unit division based on curvature is worthy of

application. Curvature analysis improves the partition

efficiency of slope unit, which is observed in the landslide

susceptibility assessment of different machine learning hybrid

models. Through the comprehensive comparison of different

performance measures, excellent landslide susceptibility

prediction ability was demonstrated by RS-RF model. At

the same time, the hyperparameter optimization of the

model can be further studied and explored. Landslide

susceptibility is an important branch in the field of

environmental geology. This model can be used to evaluate

and apply a wide range of environmental problems. The

research results based on machine learning hybrid model

will play an important role and influence on the

development and utilization of urban/agricultural areas

aiming for an harmonious development of human and

environment.
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