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In this study, a deep learning method named U-net neural network is utilized to

calibrate the gridded forecast of surface air temperature from the Global

Ensemble Forecasting System (GEFS), with forecast lead times of 1–7 days in

Xinjiang. The calibration performance of U-net is compared with three

conventional postprocessing methods: unary linear regression (ULR), the

decaying averaging method (DAM) and Quantile Mapping (QM). Results

show that biases of the raw GEFS forecasts are mainly distributed in the Altai

Mountains, the Junggar Basin, the Tarim Basin and the Kunlun Mountains. The

four postprocessing methods effectively improve the forecast skills for all lead

times, whereas U-net shows the best correction performance with the lowest

mean absolute error (MAE) and the highest hit rate of 2°C (HR2) and pattern

correlation coefficient (PCC). The U-net model considerably reduces the warm

biases of the raw forecasts. The skill improvement magnitudes are greater in

southern than northern Xinjiang, showing a higher mean absolute error skill

score (MAESS). Furthermore, in order to distinguish the error sources of each

forecasting scheme and to reveal their capabilities of calibrating errors of

different sources, the error decomposition analysis is carried out based on

themean square errors. It shows that the bias term is the leading source of error

in the raw forecasts, and barely changes as the lead time increases, which is

mainly distributed in Tarim Basin and Kunlun Mountains. All four forecast

calibrations effectively reduce the bias and distribution error of the raw

forecasts, but only the U-net significantly reduces the sequence error.
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1 Introduction

The global concentrations of greenhouse gases in the earth’s

atmosphere are continuing to increase, leading to the worldwide

intensified warming. In most cases, global warming is closely

associated with increases of temperature extremes, severely

impacting the living environment of human beings, such as the

2008 icy and snow weather disasters in China, the 2014 cold snap

in north American and the 2019 heat wave in Europe (Screen et al.,

2015; Zhang et al., 2015; Sulikowska andWypych, 2020; Zhu et al.,

2020). Precise forecasts of temperature are becoming an important

part of disaster prevention and mitigation strategies. Short-term

and medium range weather forecasts with lead times of 1–7 days

are an indispensable part of seamless operational meteorological

forecasts (Livingston and Schaefer, 1990) and play important roles

in issuing early warnings and assisting governmental decision-

making. It is therefore necessary to improve forecasting skills of

temperature for lead times of 1–7 days.

Numerical weather prediction (NWP) is the current mainstay

of operational forecasting, with significant breakthroughs over the

past several decades (Bauer et al., 2015; Rasp and Lerch, 2018).

However, there are systematic and random errors in all NWP

models as a result of the chaotic characteristics of atmospheric

dynamics, limitation of parameterization schemes and

uncertainties in the initial conditions (Lorenz, 1963, 1969, 1982;

Vashani et al., 2010; Slingo and Palmer, 2011; Peng et al., 2013; Xue

et al., 2015; Vannitsem et al., 2020). Several pathways have been

implemented to reduce the errors in NWP models, including

improving the description of physical processes and

parameterization schemes, developing ensemble prediction

systems based on various disturbance schemes and using

statistical postprocessing methods based on model outputs etc.

(Yuan et al. al., 2006; Krishnamurthy, 2019). Statistical

postprocessing methods are widely used in scientific researches

and operational forecast due to their low cost and high efficiency

(Vannitsem et al., 2020). From the perspective of multimodel

ensemble forecasts, several methods have been proposed to reduce

collective biases of multiple models, including the ensemble mean,

bias-removed ensemble mean and superensemble etc.

(Krishnamurti et al., 1999; Zhi et al., 2012; Ji et al., 2020). On

the other hand, plenty of efforts have also been made on

calibrations of single-model forecasts, such as the model output

statistics and the anomaly correction as well as the neighborhood

pattern projection method (Glahn and Lowry, 1972; Peng et al.,

2013; Lyu et al., 2021; Pan et al., 2022).

Among the conventional statistical postprocessing methods,

unary linear regression (ULR), the decaying averaging method

(DAM) and quantile mapping (QM) are commonly used. ULR,

used for the correction of deviation inmodel forecasting, has fewer

data requirements, smaller correction errors and simpler

calculations (Li and Zhi, 2012). The DAM has the advantages

of simple calculations and self-adaptation, and has been used

operationally by the National Centers for Environmental

Prediction (NCEP) in the United States (Cui et al., 2012).

Quantile mapping is a calibration method based on frequency

distribution, which makes the quantiles of predictions and

observations consistent, and preserves the temporal and spatial

structures (Hopson and Webster, 2010). Although these

postprocessing methods can improve forecast skills to a certain

extent, limitations are still found due to their linear characteristics.

More recently, machine learning has been applied to various

fields, including meteorology, in recent years (Boukabara, 2019;

Mecikalski et al., 2015; Foresti et al., 2019). As indicated by

Boukabara et al. (2019), machine learning as a nonlinear

statistical postprocessing method has several advantages in

NWP, such as a high computational efficiency, high accuracy,

and high transferability. It has been shown that machine learning

methods (e.g., neural networks and random forest algorithms)

perform better in the model postprocessing field than

conventional statistical methods (e.g., ensemble model output

statistics) in short-term, medium range, and extended range

deterministic and probability forecasts (Rasp and Lerch, 2018;

Li et al., 2019; Peng et al., 2020).

Nowadays, as a new direction in the field of machine learning,

deep learning with three or more layers in the neural networks can

extract key forecast information from a large number of model

output data to more quickly and effectively establish the mapping

relationship between many forecast factors and the forecast

variables. It fits the nonlinear relationship better and shows

great potential in the earth sciences (Reichstein et al., 2019). As

a representative algorithm of deep learning, convolutional neural

network (CNN) adds operations such as convolution and pooling

to traditional feedforward neural networks to filter and reduce the

dimensions of the raw data. The cooperative influences between

grids covered by the convolution kernels are considered through

convolution operations. CNN also has the advantages of weight-

sharing, fewer trainable parameters and strong robustness (Hinton

and Salakhutdinov, 2006; LeCun et al., 2015; Krizhevsky et al.,

2017) and has been applied in many areas (e.g., the prediction of

strong convection, frontal recognition and the correction of

satellite precipitation forecast products; Han et al., 2020;

Lagerquist et al., 2019; Tao et al., 2016). Subsequently, a CNN

based deep learning network has been proposed, which is referred

to as U-net because of its unique U-shaped network structure and

was first used in the image segmentation field (Ronneberger et al.,

2015). It retains the convolution and pooling layers from CNN to

extract the main features of the raw data, and adds skip

connections, which can identify and retain features at different

spatial scales. So far, U-net has been widely applied to the

convection prediction, statistical downscaling and the model

forecast postprocessing (Sha et al., 2020a, 2020b; Dupuy et al.,

2021; Han et al., 2021; Lagerquist et al., 2021).

After establishing appropriate statistical postprocessing

models, the error analysis is an important factor in measuring

the quality of models. Previous studies mostly aggregate the

results of error evaluation to form composite scores, such as the
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mean absolute error (MAE) and the mean squared error (MSE).

Although easy to calculate, these scores are lack of interpretability

and give little insight into what aspects of models are good or bad.

Error decomposition is important in the interpretation and

composition of error metrics, playing a prominent role in the

earth sciences (Murphy, 1988; Gupta et al., 2009). In this study,

based on the decomposition method proposed by Hodson et al.

(2021), MSE is decomposed into three interpretable components

to comprehensively evaluate the models, diagnose the sources of

errors in the models and reveal the correction effects on errors

from different sources to determine which aspects of the models

require further revision.

This paper uses the U-net framework to correct the biases in

forecasts of the surface air temperature (surface air temperature)

from the Global Ensemble Forecasting System (GEFS) of the NCEP/

NOAA. The forecast results are compared with the raw model

forecasts and the forecasts of ULR, DAM and QM to identify the

calibration skills. Afterwards, based on the error decomposition, the

error sources in each prediction scheme are diagnosed, and the

calibration effects using different schemes on different error sources

are revealed to indicate the direction for future optimization.

2 Data and methods

2.1 Study domain and data description

Xinjiang, located in the arid region of northwest China, is far

away from any seas. The terrain and underlying surface are

complex and mostly consist of basins and mountains (Figure 1).

The daily variation of the solar height is large, leading to a large

daily temperature range (Jia et al., 2018). It is always difficult to

accurately forecast the surface air temperature over there.

To calibrate the surface air temperature forecasts over

Xinjiang, the training area for the U-net forecasts includes

Xinjiang and the surrounding areas (73–96.5° E, 34–49.5°

N). The corresponding topography is displayed in Figure 1.

The GEFS reforecast datasets of surface air temperature

with lead times of 1–7 days are provided by the NCEP/

NOAA. The time range of the data, issued at 0:00 UTC, is

from 1 January 2000 to 31 December 2019, and the

horizontal resolution is 0.5 ° × 0.5 °. In addition, the

ground truth used for verification is the ERA-5 dataset,

which is often used as the observational data in studies of

numerical model forecast calibrations (He et al., 2019;

Hersbach et al., 2020). The detailed descriptions of

forecast and observation datasets are given in Table 1.

2.2 Forecast calibration methods

2.2.1 Unary linear regression
The observation and forecast data are divided into training

period and forecast period. Correction equations are established

according to the forecast and observations in the training period,

and then the raw forecast in the forecast period is input into the

correction equations to obtain the final calibration results. In

ULR, the following equation is established on each grid point

FIGURE 1
Study domain. The color bar represents the altitude of the terrain (m).
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during the training period for the surface air temperature forecast

with a specific forecast lead time:

yt � a + bxt (1)

where yt is the observed value at time t, xt is the forecast value at

time t, and a and b are constant terms and regression coefficients,

respectively. According to the predictions and observations

during the training period, b and a can be written as:

b � ∑n
t�1xtyt − n�x�y

∑n
t�1x

2
t − n�x2 (2)

a � �y − b�x (3)
where n is the length of the training period, and �x and �y are

averages of the observations and forecasts, respectively, during

the training period.

2.2.2 Decaying averaging method
The DAM is a correction method similar to a Kalman filter. It

has the advantages of a small number of calculations and strong

adaptability. It can effectively reduce the error through the lag

average and is used operationally by the NCEP (Cui et al., 2012).

The detailed calculation process is as follows:

On each grid point, the decreasing average error is obtained

according to the predictions and observations during the training

period:

B(t) � (1 − w) × B(t − 1) + w × (F − a) (4)

where B(t) is the decreasing average error on the given grid at

time t , and B(t − 1) is the decreasing average error on the

previous day. B(1) is the average bias during training period, that
is, B(1) � 1

n∑ (F − a), where n is the length of training period. F

and a represent the forecast and observation, respectively, of the

grid point on the current day and w is the weight factor, where

w � 1/n. After the decreasing average error is obtained, the

corrected forecast is then calculated by subtracting the

decreasing average error from the forecast for the day:

F′ � Ft − B(t) (5)

2.2.3 Quantile mapping

Quantile mapping is a calibration method based on

frequency distribution, which assumes that the predictions

and observations are consistent in frequency distribution.

Therefore, the transfer function between the predictions and

observations can be established through quantiles to correct the

model forecasts. Quantile mapping has been applied to the

calibrations of several meteorological elements including

precipitation and temperature (Maraun, 2013; Cannon et al.,

2015). The detailed calculation process of quantile mapping in

this paper is as follows:

On each grid point, first, the quantiles of the observations and

predictions in the training period are calculated respectively.

Then, a quantile-to-quantile segmented function is established to

ensure that the predictions calibrated by the function have the

same quantiles as the observations. Finally, the predictions in the

prediction period is substituted into the segmented function to

obtain the corrected forecast. The specific formula is as follows:

F′ �

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Om − Om−1
fm − fm−1

(Ft − fm−1) + Om−1 , fm−1 ≤Ft ≤fm

O1 , Ft <f1

OM , Ft >fM

(6)

where Om and fm are quantiles of the observations and

predictions in the training period respectively (m = 1,2,. . .,M).

M is the number of quantiles. During calculation in this study, it

is found that when the number of quantiles increases from 10 to

100, the correction errors after QM gradually decrease and finally

tend to be constant. Therefore, M is taken as 100 in this paper. Ft

represents the forecast of the grid point on the current day and F′
is the corrected forecast.

In this study, running training period is applied to the ULR,

DAM and QM, obtaining the prediction of the day after the

training period each time. The length of training period is tested

over 10–60 days under different forecast lead times and the

length of time corresponding to the minimum of average error is

taken as the optimal length of training period to ensure the

optimal correction results of the ULR, DAM and QM.

2.2.4 U-net neural network
U-net, a CNN-based network, was first proposed in the

image segmentation field. All the forecast and observational

products used in this study are gridded data, which are

similar to pixel-based images. Figure 2 shows the U-net

network structure, which mainly consists of four types of

components: convolution layers; pooling layers; upsampling

layers; and skip connections. The whole network structure is

shaped like the letter “U”. The left-hand is the downsampling

TABLE 1 Descriptions of forecast and observation datasets.

Dataset Attribute Period Range Resolution Issued time Lead times

GEFS Reforecast 2000.01.01–2019.12.31 73–96.5° E, 34–49.5° N 0.5 ° × 0.5 ° 0:00 UTC 1–7 days

ERA-5 Reanalysis 2000.01.01–2020.01.07 73–96.5° E, 34–49.5° N 0.5 ° × 0.5 ° 0:00 UTC —
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side, that is, the encoding process, and the right-hand is the

upsampling side, that is, the decoding process. The network has

four depth layers. It should be noted that the depth of the U-net

network can be adjusted manually. Different depths reflect

different complexity of the model, and different correction

results will be produced. In this paper, a series of parameters

such as network depths, number of convolution kernels, the

batch size and learning rate are continuously adjusted by

minimizing the MSEs (the loss function) obtained from the

training data in 2000–2017 and validation data in 2018. The

structure of U-net shown in this paper is the final adjusted model.

During the downsampling process, raw GEFS forecast data

with a size of 32 × 48×1 are input into the first layer as the raw

predictor. After the first convolution process, the transformed

versions of the raw predictor, called feature maps, are output with

a size of 32 × 48×32. The convolution process does not change

the area of the feature maps and the third dimension of the

output represents the number of feature maps, which is

consistent with the number of convolution kernels, that is, the

number of channels, which increases with depth. The

convolution kernels iterate through all the grid points in the

inputs to extract data features. Weight-sharing within the

convolution kernels can greatly reduce the number of

parameters, increasing computational efficiency.

Each two convolution processes are followed by a pooling

layer, which does not change the number of feature maps, but the

area will be reduced to 1/n, where n is the size of the pooling

kernels, equals to 2 in this study. This means that the area of the

feature maps is halved after each pooling layer, leading to a

decrease in the spatial resolution with depth. The convolution

layers with different depths detect data features at different

spatial resolutions, which is crucial in weather prediction

because of the multiscale nature of weather phenomena and is

the advantage of U-net over other machine learning methods.

Convolution and pooling operations filter and reduce the

dimensions of the inputs, retaining the main features of the

raw data.

After three pooling processes, the raw data are compressed to

the minimum before the upsampling process. Each green arrow

represents one upsampling layer, where feature maps are

upsampled to a higher spatial resolution via interpolation

followed by convolution, after which the area of feature maps

is doubled. Each upsampling layer is followed by a skip

connection, represented by a gray arrow. Over the skip

connection processes, high-resolution information from the

downsampling side is preserved and carried to the upsampling

side, which avoids the loss of fine-scale information. The features

in the encoding process are reused in the decoding process

through skip connections, which is another unique advantage

of U-net that is not available in other machine learning methods.

Feature maps from the upsampling layer contain higher-level

abstractions and wider spatial context due to that they have

passed through more hidden layers and have been upsampled

from lower resolution. The upsampling process transforms high-

FIGURE 2
Architecture of U-net. The left side of the U-shape is the downsampling side and the right side is the upsampling side.
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resolution feature maps layer by layer and outputs the corrected

model results.

The 2000–2017 data are input into U-net as the training

dataset, and the 2018 and 2019 data are input as the validation

and test datasets, respectively.

The details of the model are as follows. The rectified linear

unit (ReLU) is used as the activation function in U-net:

ReLU(x) � max(0, x) (7)

The convolution kernel size is set to 3 × 3, which is

commonly used. Adam is selected as the optimizer. The

learning rate is set to 10−4 before training, which controls the

speed of weight adjustment of the model according to the loss

function gradient in the process of training. The MSE is selected

as the loss function to reflect the error in the training process:

Loss � 1
N

∑N
i�1
(fi − oi)2 (8)

where oi is the ground truth, fi is the corrected forecast and N is

the number of grid points in one batch. The batch size is set to 32,

which means 32 data samples are fed into the model for training

each time; the size of N is therefore 32 × 32×48.

2.3 Evaluation metrics

Four prediction test methods are adopted to make a

quantitative evaluation of the temperature correction effect

after statistical postprocessing, namely, the MAE, the mean

absolute error skill score (MAESS), the hit rate (HR) and the

pattern correlation coefficient (PCC). The corresponding

calculation formulas are as follows:

MAE � 1
n
∑n
i�1

∣∣∣∣fi − oi
∣∣∣∣ (9)

MAESS � MAEev −MAEref

0 −MAEref
� 1 − MAEeva

MAEref
(10)

HRe � Nbias< e

N
× 100% (11)

PCC � ∑m

i�1(fi − �f)(oi − �o)






















∑m

i�1(fi − �f)2∑m

i�1(oi − �o)2
√ (12)

where n is the number of days,m is the number of grid points; fi

and oi are the forecast and observation of sample i, respectively,

MAEeva represents the MAE of the evaluation model, MAEref

represents the MAE of the reference model, Nbias< e is the

number of samples with a prediction error less than e°C,

where e = 2 in this study, N is the total number of samples,

and �f and �o are the regional average of forecast and observation,

respectively. MAE reflects the general differences between

forecasts and observations. MAESS reflects the improvement

in the MAE of the evaluation model compared with the reference

model. MAESS >0 indicates a positive improvement, whereas

MAESS <0 indicates a negative improvement. HR2 reflects the

percentage of samples with a prediction error <2°C in the total

samples. It is also an important metric for evaluating the

temperature forecast in the operational forecast and scientific

researches (Lyu et al., 2021; Zhu et al., 2021). The PCC reflects the

spatial correlation between the forecast and observational fields.

A lower MAE, higher MAESS, higher HR2 and higher PCC

demonstrate more skillful forecasts. The relationship between

each evaluation metric and forecast skill is shown in Table 2.

2.4 Error decomposition

All these error metrics aggregate the error evaluation results

into composite scores, which lack interpretability. To solve this

problem, based on the error decomposition method proposed by

Hodson et al. (2021), the mean square error is decomposed into

three interpretable error components in this study, namely, a bias

term, a distribution term and a sequence term. Error diagnosis of

each model is then carried out to indicate the direction required

for further optimization. The specific algorithm is as follows.

For each grid point, the MSE is:

MSE � 1
n
∑n
i�1
(fi − oi)2 (13)

where fi and oi are the forecast and observation, respectively, on

day i. According to the decomposition method proposed by

Geman et al. (1992), theMSE can be decomposed into a bias term

and a variance term:

MSE(e) � (E(e2) − E(e)2) + E(e)2
� Var(e) + E(e)2 (14)

� Var(e) + Bias(e)2

where e is the forecast error of the model, E(e) is the mean of e

and Var(e) is the variance of e. The variance and bias

components quantify how well the model reproduces the

variability and mean characteristics, respectively, of the

observations. To gain a deeper understanding of the sources

of error, the variance term can be decomposed further into a

sequence term and a distribution term based on the

TABLE 2 The relationship between each evaluation metric and
forecast skill.

Evaluation metric Full name Forecast skill

MAE mean absolute error inverse proportion

MAESS mean absolute error skill score direct proportion

HR2 hit rate of 2°C direct proportion

PCC pattern correlation coefficient direct proportion
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decomposition method proposed by Hodson et al. (2021). The

derivation begins by monotonically sorting the model forecasts

and observations, then the new error is calculated:

w � sort(f) − sort(o) (15)
MSE(w) � Bias(w)2 + Var(w) (16)

where sort(f) and sort(o) represent the sorted forecasts and

observations, respectively and w represents the error after

sorting. Bias is invariant to sorting, so the bias term after

sorting equals the unsorted ones: Bias(w)2 = Bias(e)2. The
sorted observations and forecasts share the same time series.

The variance obtained after sorting,Var(w), represents the error
caused by data distribution, namely, the distribution term

Distribution(e). The following equation can therefore be

obtained:

Var(w) � Distribution(e) (17)
MSE(w) � Bias(e)2 +Distribution(e) (18)

The difference betweenMSE(e) andMSE(w) is only caused
by the change in time series, so the difference between them

represents the error caused by the time series, namely, the

sequence term Sequence(e). The following equation can

therefore be obtained:

MSE(e) −MSE(w) � Var(e) − Var(w)
� Sequence(e) (19)

In summary, the full error decomposition is:

MSE(e) � Bias(e)2 + Var(e)
� Bias(e)2 + (Var(e) − Var(w)) + Var(w) (20)
� Bias(e)2 + Sequence(e) +Distribution(e)

where Bias(e)2 is the bias term quantifying how well the model

reproduces the mean of the observations, Sequence(e) is the

sequence term, which represents the error caused by the forecasts

leading before or lagging behind the observations,

Distribution(e) is the distribution term, which represents the

error caused by differences in the distribution between the

forecasts and observations. Error decomposition helps us to

diagnose and analyze model errors, and indicates the direction

required for further optimization.

3 Results

3.1 Evaluation of multiple calibrations

Figure 3 shows the MAE, HR2 and PCC variations of the

predicted surface air temperature averaged in Xinjiang by GEFS

and the postprocessing procedures of ULR, the DAM, QM and

U-net for lead times of 1–7 days. The multiple forecasts are

generally characterized by consistent trends of increasing MAE

values, while the HR2 and PCC values decrease. The four

calibration methods all reduce the MAE and improve the

HR2 and PCC relative to the raw GEFS forecasts for all lead

times, but the skill improvement magnitudes of these four

calibration methods are different.

Among three conventional linear statistical postprocessing

methods, QM has the least improvements while ULR and the

DAM generally have similar calibration results for surface air

temperature forecasts. The QM prediction results are

significantly improved compared with the raw forecasts.

Taking the forecast of the 1-day lead time as an example, the

MAE, HR2 and PCC of GEFS are improved by QM from 3.37°C

to 2.04°C, 35.88%–59.84% and 0.93 to 0.95, respectively. The

ULR and DAM are superior to QM and advantages of DAM over

ULR become more obvious with increasing lead times. U-net is

characterized by the most manifest and consistent ameliorations

among the four postprocessing methods. Taking the forecast of

the 1-day lead time as an example, theMAE, HR2 and PCC of the

DAM are 1.85°C, 63.40% and 0.96, respectively, whereas the same

metrics of U-net are improved by 0.3°C, 9.08% and

0.01 respectively, indicating that it has some advantages over

conventional linear methods in correcting the surface air

temperature forecast.

Aiming at investigations on spatial characteristics of forecast

performances, the MAE distributions derived from GEFS, ULR,

DAM, QM and U-net are described in Figure 4 for surface air

temperature forecasts, respectively, with lead times of 1, 4, and

7 days being taken as examples, as well as the corresponding

MAESS distributions of the calibration methods in Figure 5. In

terms of the raw GEFS forecasts, the largest MAEs mainly occur

over the Altai Mountains, the Junggar Basin, the northern

Tianshan Mountain, the Tarim Basin and the Kunlun

Mountains, reaching up to 4.2°C even at the lead time of

1 day. This could be attributed to the insufficient descriptions

of the altitude and complex terrain in the model, as well as a lack

of observations in these regions.

The four calibration methods are characterized by different

magnitudes of ameliorations. The ULR improves the

performance of raw GEFS forecasts over almost the whole of

Xinjiang. About 30% of the area have an MAE <1.8°C at the lead

time of 1 day. The most notable advances are located over the

areas with the largest errors from raw forecasts. The spatial

distributions of the MAESS show that the Tarim Basin has the

maximum MAESS, that is, the main area of forecast

improvement, where the MAESS reaches 0.4 at lead times of

1, 4 and 7 days. After calibration of the ULR, the largest MAEs

mainly occur over the Altai Mountains, the Tianshan Mountains

and the Kunlun Mountains, where the MAE is still ≥4.2°C in

some districts. The skill improvement magnitudes of the ULR

decreases with increasing lead times, expressed by an increasing

MAE and decreasing MAESS. The regions with a negative

MAESS increase significantly at the lead time of 7 days,

mainly in northern Xinjiang, indicating that ULR no longer
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improves the forecasting skills of GEFS there. The calibration of

the DAM is superior to ULR while QM is inferior to ULR,

reflected by areas with MAE ≤1.8°C at the lead time of 1 day and

regions with maximum MAESS at lead times of 1, 4, and 7 days

compared with ULR. The MAESS after DAM reaches 0.6 in some

areas of the Tarim Basin at the lead time of 7 days. The

distribution of the maximum MAE corrected by three

conventional methods are similar and the MAE maximum is

still ≥4.2°C. There are fewer regions with a negative MAESS after

calibration by the DAM than after ULR or QM.

The calibration with U-net is significantly improved

compared with the DAM, which greatly reduces the MAE

over almost the whole area of Xinjiang. About two-thirds of

the area has anMAE ≤1.5°C at the lead time of 1 day, especially at

the eastern and western boundaries of Xinjiang, where the MAE

is reduced to ≤1.2°C. The MAESS is further improved compared

with that after the DAM, with a maximum of ≥0.7 in the Tarim

Basin at lead times of 1 and 4 days. In general, U-net shows most

obvious ameliorations and all four calibration methods have

better improvement in southern Xinjiang than in the north as a

result of a larger MAESS in the south.

Figure 6 shows the spatial distributions of HR2 in forecasts of

the GEFS, ULR, DAM QM and U-net for surface air temperature.

As for the raw GEFS forecasts, the distributions show apparent

differences between the southern and northern regions. The

HR2 in most southern regions is ≤ 30% at each lead time,

especially in the Tarim Basin and Kunlun Mountains, where

GEFS shows limited forecast skills. By contrast, the

HR2 reaches 40% in most regions of north Xinjiang and 60%

in some districts at the lead time of 1 day, and 35% in more than

half of north Xinjiang at the lead time of 7 days. The forecast skills

of GEFS are generally poor and HR2 reaches 50% at each lead time

in <20% of the regions.

ULR andQMboth significantly improves the HR2 throughout

Xinjiang and have similar amelioration. About three-fourths of the

area shows HR2 ≥55% at the lead time of 1 day and the maximum

HR2 is distributed linearly from northeast to southwest, where it

reaches 80% in some districts. In the Tarim Basin and Kunlun

Mountains, where the raw GEFS forecast performance is poor,

HR2 increases from ≤30 to 60 and 40%, respectively. With the

increase in lead times, themagnitude of improvements of ULR and

QM decreases, but the linear distribution of the HR2 maximum

can still be identified, andHR2 in the Tarim Basin still reaches 50%

at the lead time of 7 days.

For the DAM, the overall distribution of HR2 is similar to

that of ULR and QM and the amelioration of DAM is slightly

better. The area with HR2 ≥70% increases by 8% and 17%

compared with that of ULR and QM respectively at the lead

time of 1 day and the area with HR2 ≥55% increases by 13% and

12% compared with that of ULR and QM respectively at the

lead time of 7 days.

The skill improvement magnitude of HR2 is much larger for

U-net than the DAM. At the lead time of 1 day, HR2 reaches 70%

in most areas of Xinjiang and 20% of the area has HR2 ≥80%,

increasing by 18% compared with the DAM. At the lead time of

4 days, the area with HR2 ≥65% accounts for about 64%,

increased by 40% compared with the DAM. At the lead time

of 7 days, the HR2 in the Tarim Basin reaches 60% after

calibration with U-net. The HR2 minimum is mainly located

in the Junggar Basin and Kunlun Mountains, where the

calibration methods show limited forecasting skills. Generally,

the surface air temperature forecasting improvement of U-net in

Xinjiang is much better than that of ULR, the DAM and QM.

In order to evaluate the cold and warm deviation of GEFS

forecasts and optimal model calibrations, Figure 7 shows the error

dispersion of the raw GEFS and U-net post-processed forecasts for

the lead time of 1 day, including one histogram of the proportions

of absolute errors in different ranges and two forecast-observation

scatter diagrams. In forecast-observation scatter diagrams, the

distance to the diagonal refers to the deviation of forecast to

FIGURE 3
Variations in (A)MAE (°C), (B) HR2 (%); and (C) PCC of surface air temperature at lead times of 1–7 days derived from the GEFS, ULR, DAM, QM
and U-net averaged in Xinjiang.
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observation. The points above the diagonal represent warm biases,

whereas the points below the diagonal represent cold biases. The

histogram shows that GEFS absolute errors >5°C account for 24%,

whereas GEFS absolute errors of ≤1°C account for less than <20%.
From the scatter diagrams, the error dispersion of GEFS for surface

air temperature is asymmetrical and there are more warm biases

than cold biases, especially when the observations range

between −40°C and −10°C.

The surface air temperature forecast skills are significantly

improved after U-net calibration. The proportion of absolute

errors ≤1°C greatly increases to 43%, an increase of 25%

compared with GEFS, whereas the proportion of absolute

errors >4°C greatly decreases to 6%, a decrease of 28%

compared with GEFS. The warm biases are effectively

eliminated after calibration and the error dispersion is more

symmetrical.

FIGURE 4
Spatial distributions of the MAE (°C) for surface air temperature forecasts with lead times of 1, 4, and 7 days derived fromGEFS (A–C), ULR (D–F),
DAM (G–I), QM (J–L) and U-net (M–O).
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3.2 Evaluations of error decomposition

All the evaluations discussed in Section 3.1 aggregate the

calibrations into composite metrics, without understanding

which aspects of the model performance are “good” or “bad”.

In this section, based on the error decomposition method

proposed by Hodson et al. (2021), the MSE is decomposed

into three components, each representing a distinct concept.

The bias term quantifies how well the model reproduces the

mean of the observation. The sequence term represents the

error caused by the forecasts leading or lagging the

observations. The distribution term represents the error

caused by differences in distribution between the forecasts

and observations. Error decomposition helps researchers to

diagnose the source of error from each forecasting scheme

and to analyze the correcting effects of different schemes on

the errors from different sources.

Figure 8 shows the MSE, the bias term (Bias2), the distribution

term (Distribution) and the sequence term (Sequence) variations of

the predicted surface air temperature averaged in Xinjiang by GEFS

and the postprocessing procedures of ULR, DAM, QM and U-net

for lead times of 1–7 days. The MSE of each scheme generally

increases significantly with the lead time and the growth rate

accelerates during lead times of 4–7 days. At the same lead time,

GEFS always corresponds to the highest MSE. All four calibration

methods significantly improve the forecast skills, among which QM

has the highest MSE; ULR and the DAM almost have the same

performance and U-net always corresponds to the lowest MSE.

After MSE decomposition, the variations in different terms

show apparent differences. The Bias2 of GEFS is maintained at

11℃2 and barely changes with the lead time, accounting for the

largest proportion of the MSE. After four calibration methods,

the bias terms are significantly eliminated to 0 at all lead times

and the differences between the four schemes are <0.3℃2,

FIGURE 5
Spatial distributions of the MAESS of ULR (A–C), the DAM (D–F), QM (G–I) and U-net (J–L) to the raw GEFS forecast with lead times of 1, 4, and
7 days.
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indicating that all the forecasting schemes effectively correct the

mean cold or warm deviation of the raw forecasts. All the

calibrations reduced the distribution term (distribution),

which does not account for much of the MSE in all schemes.

The DAM gives the best improvement and its Distribution

increases slowly with the lead time. QM and U-net are

inferior to the DAM, whereas ULR shows the worst

performance and its Distribution increases the fastest with the

lead time. The sequence term is the largest among three

decomposition terms in the four calibration methods and

increases evidently with the lead time, accelerating during

lead times of 4–7 days. Among the four calibrations, the

sequence terms of ULR and the DAM are almost the same

as those of the raw GEFS forecast, and even larger after a 4-days

lead time, suggesting that ULR and the DAM does not improve

the Sequence. QM shows obvious negative improvements of the

sequence term compared with the raw GEFS forecast at all lead

times. Only U-net significantly improves the Sequence,

reducing it by > 2℃2 compared with the raw GEFS forecast

at all lead times, showing excellent forecasting skills.

FIGURE 6
Spatial distributions of HR2s (%) for surface air temperature forecasts with lead times of 1, 4, and 7 days derived fromGEFS (A–C), ULR (D–F), the
DAM (G–I), QM (J–L) and U-net (M–O).
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Figure 9 shows the spatial distribution of the proportion of

each error component in the MSE of GEFS, ULR, the DAM, QM

and U-net to describe the main error sources in different regions

under different forecasting schemes. There are clear differences

in the sources of error between the north and south regions for

the raw GEFS forecast. The bias term is the main source of error

in the local surface air temperature forecast in most of the

southern regions, accounting for >50% of MSE, whereas the

sequence term is the main source of error in most of the northern

regions, accounting for >50% of the MSE. The distribution term

accounts for <30% of the MSE over almost the whole area of

Xinjiang. The spatial distribution of the proportion of the sources

of error changes significantly after all four postprocessing

methods. Under each calibration scheme, the sequence error

becomes the main source of error throughout Xinjiang,

accounting for >50% of the MSE. There are slight differences

in the distribution of proportions between different calibration

methods. Throughout Xinjiang, the sequence terms of ULR, the

DAM and QM account for >80% of the MSE and >90% in more

than three-fourths of the regions. However, for U-net, although

the sequence term still accounts for >80% in most regions, the

area where the sequence term reaches 90% is smaller because the

areas where Bias2 or Distribution account for 10% are larger than

for ULR, the DAM and QM.

Figure 10 shows the spatial distributions of Bias2 with lead

times of 1, 4 and 7 days derived from GEFS, ULR, the DAM, QM

and U-net to illustrate the improvements of each forecasting

scheme on each MSE decomposition term. For the raw GEFS

forecast, the Bias2 maximum, which reaches 12℃2, is mainly

located in the Altai Mountains, the Tarim Basin and the Kunlun

Mountains, about half the area of Xinjiang. The bias term barely

changes with increasing lead times throughout Xinjiang. After

FIGURE 7
Error dispersion of the raw GEFS and U-net forecasts for surface air temperature at the 1-day lead time for the time period 1 January 2019-
31 December 2019; the shading represents the scale of the errors.

FIGURE 8
Variations in (A)MSE, (B) Bias2, (C) Distribution and (D) Sequence of surface air temperature at lead times of 1–7 days derived from GEFS, ULR,
the DAM, QM and U-net averaged in Xinjiang (units: ℃2).
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four calibrations, Bias2 is significantly eliminated, among which

the DAM has most manifest improvements, reducing Bias2 to

< 0.1℃2 over the whole region. ULR and QM show less

improvements compared with DAM; The areas with

Bias2 >0.1℃2 after ULR are mainly in the north while those

after QM show scattered distribution throughout Xinjiang at the

lead time of 7 days. U-net is inferior to ULR and QM, with its

Bias2 maximum of >0.8℃2 mainly located in the Altai

Mountains, the Tianshan Mountains, the Tarim Basin and the

Kunlun Mountains. All the calibration methods generally show

similar performances because the difference in the Bias2 of all

four methods does not exceed 0.3℃2 at each lead time, as shown

in Figure 8.

Figure 11 shows the spatial distribution of the distribution

term with lead times of 1, 4, and 7 days derived from GEFS, ULR,

the DAM, QM and U-net. For the raw GEFS forecast, the spatial

distribution of the distribution termbarely changes with increasing

lead times, with the maximum of >2.1℃2 mainly located in the

Junggar Basin, the Turpan Basin, the Tarim Basin and the Kunlun

Mountains. After ULR, the distribution term is effectively

FIGURE 9
Spatial distribution of the proportion (%) of each decomposition component in the MSE at the lead time of 1 day derived from GEFS (A–C), ULR
(D–F), the DAM (G–I), QM (J–L) and U-net (M–O).
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eliminated throughout Xinjiang, reduced to < 0.6℃2 in nearly

80% of Xinjiang at the lead time of 1 day. The improvement is

relatively obvious in the Tarim Basin and the Kunlun Mountains,

where the Distribution of the rawGEFS forecasts is large. However,

the ULR didn’t improve the forecast skills in the Junggar Basin at

the lead time of 7 days, which could be attributed to the less

available latest information at longer lead times and the lack of

observations in this area.

The skill improvement magnitude of Distribution in the

DAM is superior to ULR. After the DAM, the areas with

Distribution < 0.3℃2 account for 54% of Xinjiang, increased

by 25% compared with ULR at the lead time of 1 day. DAM

also shows more significant skill improvement than ULR in

the Tarim Basin. Taking the 7-days lead time as an example,

the distribution term of ULR is > 0.9℃2 in most areas of the

Tarim Basin, whereas the distribution term of the DAM is <
0.6℃2.

The calibration performances of QM and U-net for

Distribution are both between those of ULR and the DAM in

general. In the Tarim Basin, the skill improvement magnitude of

FIGURE 10
Spatial distributions of Bias2 (℃2) with lead times of 1, 4, and 7 days derived from the MSE decomposition of GEFS (A–C), ULR (D–F), the DAM
(G–I), QM (J–L) and U-net (M–O).
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the distribution term after QM and U-net calibration is

equivalent to that after the DAM and better than ULR.

However, in the western Kunlun Mountains and Junggar

Basin at the lead time of 7 days, the calibration of QM is

inferior to DAM represented by the Distribution maximum

of >2.1℃2. After U-net, there are two areas with a

Distribution maximum: one in the western Kunlun Mountains

at all lead times and another in eastern Xinjiang at the lead time

of 7 days. The distribution term of U-net in these two areas

reaches 2.1℃2 and 1.5℃2, respectively, representing a poorer

performance than that of ULR and the DAM in those areas.

Figure 12 shows the spatial distributions of the sequence

term with lead times of 1, 4, and 7 days derived from GEFS,

ULR, the DAM, QM and U-net. The maximum Sequence of

the raw GEFS forecast is mainly located in the Altai

Mountains, the Junggar Basin, and the Kunlun Mountains.

With increasing lead times, the Sequence throughout Xinjiang

increases and the area of maximum value expands. At the lead

FIGURE 11
Spatial distributions of Distribution (℃2) with lead times of 1, 4, and 7 days derived from the MSE decomposition of GEFS (A–C), ULR (D–F), the
DAM (G–I), QM (J–L) and U-net (M–O).
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time of 7 days, the Sequence reaches 12℃2 in most northern

regions and south of the border.

After ULR and the DAM, the Sequences in some areas of

the Junggar and Tarim Basins are reduced at the lead time of

1 and 4 days, but the improvement in the Kunlun Mountains,

where there are some negative improvements, is insufficient.

At the lead time of 7 days, the areas of negative improvement

after ULR and the DAM have significantly expanded in

eastern Xinjiang and there are also many areas of negative

improvement after ULR in the Tarim Basin. After QM, the

areas of negative improvements are nearly throughout

Xinjiang at all lead times, showing the least forecast skills.

The performances of the three conventional calibration

methods are generally not ideal in ameliorating the

sequence term.

U-net can effectively reduce the sequence term over

almost the whole area of Xinjiang, showing the most

noticeable improvement. At the lead time of 1 day, the

areas with Sequence < 3℃2 after U-net accounts for 59% of

Xinjiang, whereas those of GEFS, ULR, the DAM and QM only

FIGURE 12
Spatial distributions of Sequence (℃2) with lead times of 1, 4, and 7 days derived from the MSE decomposition of GEFS (A–C), ULR (D–F), the
DAM (G–I), QM (J–L) and U-net (M–O).
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accounts for 8%, 10%, 10% and 3%, respectively. U-net

significantly reduces the sequence term in the Kunlun

Mountains, where the skill improvement magnitudes of

three conventional calibration methods are not ideal. At

the lead time of 4 days, the areas with Sequence < 4℃2

after U-net accounts for 58%, whereas those of the other

schemes are <14%. At the lead time of 7 days, ULR, the

DAM and QM are unable to reduce the sequence term in

the Tarim Basin and eastern Xinjiang, whereas U-net shows a

clear improvement in these areas, greatly improving the

forecast skills.

4 Conclusions and discussion

In this study, the forecast performance of the 2-m

temperature from GEFS with lead times of 1–7 days in

Xinjiang is evaluated. The deep learning neural network U-net

is used to calibrate the raw GEFS forecasts. The applicability and

capability of U-net to improve the surface air temperature

forecasts are thoroughly examined and compared with the

conventional postprocessing benchmarks of the ULR, the

DAM and QM. Based on the MSE decomposition method,

the sources of error and correcting effects of different schemes

on the errors in different sources are analyzed. Associated results

are obtained as follows.

The maximumMAE of the raw GEFS forecast is mainly located

in the Altai Mountains, the Junggar Basin, the Tarim Basin, and the

Kunlun Mountains and reaches > 4.2°C. The error dispersion of

GEFS for surface air temperature is asymmetrical, and there are

more warm biases than cold biases.

In general, all four calibration methods significantly improve

the forecasting skills of the surface air temperature, with a lower

MAE and higher HR2 and PCC. Among these methods, QM has

the least improvements; ULR and DAM give quite similar results,

whereas U-net shows the best improvement and can effectively

eliminate the warm biases of the raw GEFS forecast. The

magnitudes of improvement of the four calibrations are greater

in southern Xinjiang than in the north.

For raw GEFS forecast, the bias term (Bias2) from the

MSE decomposition is the main source of error and changes

little with increasing lead times. The maximum Bias2 is

mainly located in the Altai Mountains, the Tarim Basin

and the Kunlun Mountains. This could be attributed to the

insufficient descriptions of the altitude and complex terrain

in the model, as well as a lack of observations in these regions.

After the four postprocessing methods, the sequence term

(Sequence) becomes the main source of error and shows an

apparent increasing trend with increasing lead times. The

maximum Sequence is mainly located in the Altai Mountains,

the Junggar Basin and the Kunlun Mountains. All four

postprocessing methods effectively reduces the bias and

distribution terms of raw forecast, among which the DAM

shows the best performance, but the differences among the

four calibrations are small. Only U-net significantly reduces

the sequence term; ULR and DAM barely give any

improvement, whereas QM has obvious negative

improvements, indicating an advantage of U-net over

other three calibrations.

Dueben and Bauer (2018) showed that different neural

networks may be applicable in different regions due to

differences in geographical location and the terrain between

each grid point. Zhi et al. (2021) indicated that the neural

network considering the geographic information of each grid

point performs better than the neural network without taking

the geographic information into account for the probabilistic

precipitation forecast. The errors of the surface air temperature

forecast in the complex terrain of Xinjiang are mainly

distributed in the mountains and basins. Geographical

information (e.g., latitude, longitude and altitude) can also

be fed into the neural network as training data in follow-up

research to determine whether the forecasting skills can be

further improved. In addition, the lead times in this study are

1–7 days, referred to as short and medium term; extended-

range forecasts at longer timescales are always difficult in both

theoretical research and practical operations (Zhu et al., 2021).

It is therefore worth attempting to use U-net in an extended-

range surface air temperature forecast for Xinjiang to

determine whether it can still improve the forecasting skills.

Other meteorological elements, especially discontinuous

elements such as precipitation, can also be taken as forecast

variables to test the applicability and capability of U-net in

future studies.
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