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Low-carbon agricultural development in China is a prerequisite for rural

revitalization and a key to achieving socio-economic green transformation.

This paper used agricultural data from 30Chinese provinces from 2001 to 2020,

considering both carbon emissions from farming and livestock, agricultural

low-carbon total factor productivity (ALTFP) was measured using the RSBM-

GML index. Based on this, the network characteristics and driving mechanisms

of low-carbon synergistic development in agriculture were explored with the

help of an improved gravity model and social network analysis, and the

dominant provinces in low-carbon synergistic development in agriculture

are identified. The study revealed that the spatially linked network of ALTFP

in China exhibits multi-threaded characteristics of spillover to non-adjacent

provinces, and the whole network has a sparse structure and hierarchy. The

eastern regions such as Beijing, Tianjin, Shanghai, Jiangsu, and Zhejiang are at

the core of the network, with closer ties to other regions and a stronger role in

allocating resources. While the western regions such as Xinjiang, Qinghai, and

Gansu are located at the periphery of the network, with weaker access to the

resources. Meanwhile, the spatial proximity of provinces, the widening of

differences in urbanization levels and differences in financial support for

agriculture, and the narrowing of differences in the educational attainment

of rural labor have significantly contributed to the formation of provincial spatial

linkages. This study reveals that China’s government needs to give full play to

the role of core regions as “leaders”, and promote the balanced and coordinated

regional development of low-carbon agriculture in China. In addition, policy

makers should further optimize the spatial allocation of agricultural resource

elements between provinces. The findings of the study provide reference

suggestions for the development of regionally differentiated agricultural

low-carbon development plans.
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1 Introduction

In recent years, the problem of excessive carbon emissions

has attracted the attention of the global public, governments, and

academia. To reduce carbon emissions, countries are actively

taking measures (Yu and Wu, 2018; Zhao et al., 2018). China is

currently the largest carbon-emitting country in the world, and

the Chinese government has committed to reaching peak carbon

emissions around 2030, enacting a series of laws and regulations

to break down energy conservation and emission reduction in

various regions and industries (Zhou et al., 2020; Yang et al.,

2022a).

Agriculture is one of the core sectors in a country to ensure

the security of food supply and maintain socioeconomic stability,

and its sustainable development is closely related to people’s

welfare. China’s total agricultural output value of 139.7 billion

RMB increasing to 147013.40 billion RMB in 2021. However, the

tremendous achievement has been accompanied by a transition

in resource consumption and a surge in agricultural carbon

emissions (Xu and Lin, 2017; Zhang L. et al., 2019).

Agricultural carbon emissions account for about one-fifth of

China’s total carbon emissions (Guan et al., 2008; Liu et al.,

2021), as the second largest source of carbon emissions in China,

agricultural production activities generate 50% of CH4, 70% of

N2O and 28.5% of CO2 (Zhang X. et al., 2019; Yue et al., 2021).

Hence, low carbon agricultural development for China and

emerging economies like China means adopting a low carbon

emission development model while maintaining total economic

output and low carbon emissions (Ang and Su, 2016; Wu J. et al.,

2020; Hamid and Wang, 2022).

The impact of China’s agroecology deserves high priority (Li

and Wu, 2022; Wu et al., 2022). The relevant documents guiding

the work of “agriculture, the countryside and farmers” further

emphasize the promotion of green transformation of agriculture

in 2022. With the development of agricultural mechanization

and agricultural intensification, China’s agricultural production

activities have become increasingly dependent on the use of

chemical materials such as fertilizers, pesticides, and plastic

films (Zhen et al., 2017), which are important sources of

excessive CO2 emissions (Wang L. et al., 2022). In addition,

advances in farming technology and increased demand for meat

have led to a significant increase in CH4 and N2O emissions from

livestock (Qian et al., 2018). In previous studies, the

environmental and social impacts of livestock production

patterns have been largely ignored (Escribano et al., 2022).

Therefore, integrated consideration of carbon emissions from

farming and livestock is important for China to achieve

sustainable agricultural development (Paul et al., 2019). This

paper examines agricultural carbon emissions based on the broad

scope of agriculture. It refers to the greenhouse gas emissions

directly or indirectly caused by the agricultural production

process, including carbon emissions caused by agricultural

land use activities such as fertilizers, pesticides, and CH4 and

N2O from enteric fermentation and manure management in

livestock.

Uneven regional development is a challenge for many

developing countries, and the gap between backward and

developed regions is not only an economic issue but also a

source of social conflicts. The practice of poverty reduction in

China proves that it is particularly important to focus on

coordinated regional development. With the improvement of

the national market mechanism and the free flow of factors

across regions, the spatial connection between regions is getting

closer and closer, the process of regional economic integration is

advancing (Hao et al., 2021), and the exchange and cooperation

of agricultural development between regions are no longer

limited to neighboring areas, but presents the characteristics

of a complex network, and there is a spatial interaction effect

of agricultural carbon emissions between regions (Cui et al., 2021;

Liu and Yang, 2021; Wu et al., 2021). In reality, there is extensive

communication among farmers, and contacts between farmers or

rural neighbors are the main channel to obtain agricultural

technology information (Tze Ling et al., 2011; Genius et al.,

2014). Social networks promote green technology diffusion by

enhancing communication among farmers and are an effective

way for agricultural technology to spread (Li et al., 2017; Cai

et al., 2022). Agriculture has strong positive inter-regional

spillover effects, so expanding inter-regional cooperation in

agricultural research can increase efficiency, and in particular,

training researchers in less productive areas can increase TFP

(Zhan et al., 2017).

The contributions of this study are threefold. First, we

incorporate both carbon emissions from farming and livestock

into the research framework of green agricultural development

and use them as non-expected outputs to accurately examine the

spatial network characteristics of low-carbon agricultural

development in China and its evolutionary trends. Second, we

adopt an alternative research idea different from linear causality

analysis-social network analysis, focusing on the two-way

interaction between research objects, breaking the gap

between micro and macro, and eliminating all kinds of

dichotomous problems. The roles and functions of each

region in the spatial network structure of agricultural low-

carbon development were further screened. It provides a

reference basis for promoting the balance and coordination of

regional low-carbon development. Third, we further explore the

influence of the spatially linked network characteristics of regions

on their green development and analyzed the drivers of network

formation, we find space for the development of green agriculture

in China. As a result, this study examines the inter-regional

interactions, aiming to further promote inter-regional spatial

linkages and achieve inter-regional complementarities and

coordinated development. It not only provides referenceable

suggestions to promote the formation of China’s agricultural

carbon reduction policy and the construction of a cross-regional

green synergistic governance mechanism but also provides
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experience value to the economic transformation and stable

development of other emerging real economies like China.

The rest of the paper is described as follows: Section 2

composes the relevant literature on research progress, and

Section 3 includes the methodology and data sources used. In

Section 4, we present the main findings and some brief

discussions, and Section 5 provides an empirical analysis of

the relevant network drivers. In Section 6, we provide the

conclusions and policy implications of the study.

2 Literature review

Accurate analysis of ALTFP growth is crucial for designing

policies to obtain their effectiveness (Shen et al., 2019), especially

for one of the world’s largest food producers and food consumers like

China, where production efficiency that takes into account

environmental factors is important for achieving sustainable

agricultural development (Dakpo et al., 2016; Wang et al., 2018;

Liu et al., 2022). In terms of calculationmethods for agricultural TFP,

most scholars use data envelopment analysis (DEA) (Gong, 2020)

and stochastic Frontier analysis (SFA) approaches (Zhang L. et al.,

2019). Environmental factors were not considered in earlier studies

(Suhariyanto and Thirtle, 2001; Bai et al., 2012). With the increasing

environmental constraints in agricultural production, scholars have

started to work on agricultural green TFP that takes environmental

factors into account (Zhong et al., 2021). In subsequent empirical

studies, scholars have identified some limitations of the traditional

ML index (Battese et al., 2004); A global measurement technique

index that uses all measurement periods as a benchmark for the

efficiency Frontier surface was proposed (Pastor and Lovell, 2005;

Fukuyama and Weber, 2009). The global measurement technique

and theMLmeasurement technique were combined based on Pastor

and Lovell to form the Global Malmquist-Luenberger (GML) index

(Oh, 2010), it is gradually used by Frontier researchers in this field

(Ren et al., 2022). Compared with the traditionalML index, the GML

index can effectively solve the problem of linear programming

without feasible solutions. The research process considers group

heterogeneity, divides the sample into several groups, and introduces

the concept of common Frontier and group Frontier, which is more

suitable for regional variance analysis (O’Donnell et al., 2008). In this

paper, the Super-efficiency ray slacks-based measure (Super-RSBM)

model and the GML index were chosen for further calculations.

At present, research on the assessment of the low carbon

development level of Chinese agriculture and its influencing

factors has yielded fruitful results. Cheng et al. (2016) and Qin

et al. (2022) studied from the perspective of single-factor productivity,

and examined the agricultural carbon productivity of 31 provinces

and regions in mainland China during the period 1997–2012. Ji and

Xia (2020), Guo and Liu (2021) analyzed the spatial and temporal

convergence of agricultural green TFP in China from a dynamic

perspective. Yang et al. (2019) explored the degree of spatial

divergence of agricultural green TFP. The main influencing

factors of low carbon development in agriculture are crop

insurance (Carter et al., 2016; Fang et al., 2021), digital inclusive

finance (Gao et al., 2022), agricultural financial subsidies (Li et al.,

2021), industrial agglomeration (Wu J. et al., 2020), farmers’

characteristics, economic development level, farmers’ income level,

financial support to agriculture (Adnan et al., 2018), agricultural

structure, resource utilization, and environmental pollution control

level (Liu et al., 2021), the foreign trade of agricultural products, and

foreign direct investment in agriculture and agricultural technology

input (Chen Y. et al., 2022), all of which showed that the agricultural

green development in China showed a good trend, but the inter-

provincial differences widened, and the spatial distribution gradually

became uneven, with significant spatial dependence. Hence, it is

necessary to pay attention to the spatial interaction effect between

regions and gradually reduce the regional disparity in agricultural

development (Li et al., 2019).

In the study of spatial linkage in carbon emissions, a portion

of scholars has used spatial measures. Spatial measurement only

considers the influence of “quantity”, but not the influence of

“relationship”. The social network approach can overcome the

shortcomings of the spatial measurement approach and is

increasingly used in the spatial relationship of carbon

emissions. For example, He et al. (2020) constructed a

spatially correlated network of carbon emissions from the

power sector in each province of China, Bai et al. (2020)

examined the structure of the spatially correlated network of

carbon emissions from transportation in China and its drivers,

Liu and Xiao (2021) studied the spatial correlation of carbon

emissions from industry in China, Huo et al. (2022) andWang Z.

et al. (2022) examined the spatially correlated network structure

of carbon emissions from buildings in China network structure

and its drivers, and Song et al. (2019) explored the spatial

structure pattern and correlation effects of carbon emissions

in the Chengdu-Chongqing urban agglomeration. However, few

studies have applied social network analysis methods to carbon

emission relationships in agriculture.

The current research on low-carbon development in

agriculture has achieved richer results, but there is still room

for further improvement and supplementation. First, in the

measurement of ALTFP, most studies have taken farming as

the main object and selected six aspects of agricultural

production: fertilizer, pesticide, agricultural film, tillage,

machinery use, and irrigation as carbon sources to measure

agricultural carbon emissions. However, the fact that farming

and livestock have long each accounted for half of China’s total

agricultural carbon emissions, so carbon emissions from

livestock should also be taken seriously. Second, the spatial

linkage of ALTFP is mostly based on “attribute data”, which

results in local relationships, and the variables need to satisfy the

assumption of independent interconnectedness. Third, many

research results empirically proved the existence of spatial

linkages in low-carbon agricultural development in China but

did not further clarify the reasons for the formation of spatial
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linkages. Therefore, the study firstly measured China’s ALTFP

from 2001 to 2020 with the Super-RSB model from the

perspective of farming and livestock. Secondly, drawing on the

modified gravity model, the spatially linked network structure of

green agricultural development in different provinces was

analyzed using social network analysis. Finally, using the

Quadratic Assignment Procedure (QAP) to explore the

driving factors of low-carbon development in agriculture, and

analyze the reasons that led to the unbalanced development of

regional low-carbon agriculture.

3 Methodology and data allocation

3.1 Calculation of ALTFP

Green/low carbon total factor productivity has become an

important basis for judging the sustainability of the economy1(Liu

et al., 2021; Hao et al., 2022). While earlier DEA models could

measure environmental efficiency with undesired outputs, the weak

disposable relationship that exists between undesired and desired

outputs was ignored. The introduction of a DEA model with a

directional distance function partially corrects this deficiency.

However, the designation of direction vectors is subjective, the

improvement of each decision-making unit (DMU) may not be

unique, and these models do not take into account the weak

disposable relationship between desired and undesired outputs, to

solve this problem, Song et al. (2018) introduced polarity theory into

the SBMmodel and proposed the RSBMmodel. In this paper, RGML

index is used tomeasure ALTFP, whichwasmeasured by referring to

Song et al. (2018). The constructed Super-RSBM model is:

δpo � min δo �
1 + 1

m
∑m

i�1
s−i
xio

1 − 1
s + 1

(∑s

r�1
s+r
yro

+ s−‖z‖
zo

)
s.t. ∑n

j�1,j ≠ 0

λjxij + s−i ≤ xio, i � 1, 2, . . . ,m

∑n
j�1,j ≠ 0

λjyij − s+r ≥ yro, r � 1, 2, . . . , s

∑n
j�1,j ≠ 0

λj‖zj
���������� − s−‖z‖ ≤ zo

1 − 1
s + 1

⎛⎝∑s
r�1

s+r
yro

+ s−‖z‖
zo

⎞⎠> 0

λj, s
−
i , s

�
r , s

−
‖z‖ ≥ 0, j � 1, 2, . . . , n

(1)

Where s−i , s+r , s−‖z‖ represent the slack in inputs, desired, and

undesired outputs. In slack variables, the objective function is

monotonically decreasing. For the effective DMUO to be

evaluated, the DEA unit is effective only when δ*o ≥ 1, while

the higher the value δ*o the higher the efficiency.

The above equation can calculate the efficiency value of the

evaluated unit under certain technical conditions, but technical

efficiency at this point is a static analysis that cannot reflect the

direct impact of productivity changes on agricultural production

and development. For this reason, the GML index is introduced.

Compared with the ML index, the GML index can effectively

solve the problem of linear programming without feasible

solutions. Referring to (Oh, 2010), the RGML index is defined

as follows:

RGMLt,t+1(xt+1, yt+1, bt+1;xt, yt, bt) � 1 +DT
G(xt, yt, bt)

1 +DT
G(xt+1, yt+1, bt+1)

(2)
If RGMLt,t+1<1, then desired output decreases and non-

desired output increases, and ALTFP is lower than the

previous period level, conversely, the ALTFP is higher than

the previous period level. When Rgmlt,t+1 taking the non-

negative value and its value is greater than 1, it indicates that

ALTFP increases. Considering that Malmquist is a chain

index, which is a dynamic growth rate, this paper

transforms ALTFP into a fixed base index to reflect the

cumulative trend of ALTFP.

ALTFP2001 � ALTFP2000 × Mal2001, The ALTFP in 2000 is

1 and Mal2001 is the Malmquist index in 2001. By analogy

with this formula, we can obtain the TFP values for all years,

with 2000 as the base period and excluded in the empirical test

summary.

3.2 Determination of spatial correlation of
ALTFP

Determining the spatial linkages of ALTFP is the key to

effective analysis, and this paper draws on an improved trade

gravity model to determine. Provinces are the points in the

association network, and inter-regional linkage relationships

are the lines in the network, thus constituting the spatial

network of regional development. According to the existing

literature, most scholars generally use vector autoregressive

(VAR) models, gravity models, and Moran’s I index to

determine spatial relationships. However, the VAR model is

deficient in providing reasonable economic theoretical

explanations, it cannot reflect the simultaneous relationships

between variables or portray the evolutionary trends of spatial

structures, and it is too sensitive to the choice of lag order, which

can seriously degrade the network structure characteristics (Lui

et al., 2007). Gravity models can integrate relevant economic

geographic factors and reveal the evolutionary characteristics of

1 In this paper, we mainly measure agricultural green/low carbon total
factor productivity with agricultural carbon emissions as non-expected
output, which is also the currently adopted method, and all will appear
in the paper as agricultural low carbon TFP for conceptual clarity.
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spatially linked relationships in time series and cross-sections. In

our study, the gravity model was introduced into the field of

agricultural green development concerning (Chen Z. et al., 2022).

To improve the applicability of the model, the model was

modified as in Eq. 3:

Gij � kij
ALTFAPLTFPj[Dij/(gi − gj)]2, kij �

ALTFPi

ALTFPi + ALTFPj
(3)

Where Gij denotes the association strength of ALTFP in

provinces i and j. ALTFPi is the ALTFP for province i, Dij is

the geographical distance expressed as the spherical distance

between the capital cities of province i and province j. (gi − gj) is
the economic distance expressed in terms of the GDP per capita

of the two provinces. kij is the gravitational constant, usually take

1. However, considering the inter-provincial differences in

resource endowments and development approaches. There is a

two-way and non-reciprocal spatial correlation in ALTFP, so we

use the proportion of ALTFP to correct kij.

The spatial correlation matrix of inter-provincial ALTFP is

obtained from the modified gravity model, and the average value

of each row of the gravity matrix is taken as the threshold value.

When greater than the threshold than 1, it indicates a correlation

between the provinces in each row and the provinces in this

column for ALTFP; otherwise, it takes 0, which means there is no

correlation between this row and the provinces in this column.

3.3 Social network analysis

With the gradual deepening of regional coordination strategy

and the enhancement of the mobility of market factors, the

spatial correlation effect of the regional economy is becoming

more andmore significant, and there are complex economic links

between regions. The same is true of the agricultural economy.

Spatially linked networks of low-carbon economies in agriculture

are an important part of the economic network, its inner

mechanism of formation is a network organization system

combining points, lines, and surfaces of capital, resources,

labor, low-carbon technologies, and management methods

under the guidance of the concept of low-carbon development

and the role of several mechanisms, such as factor gathering and

dispersal, market regulation, government control, and circular

feedback.

Specifically, due to the spatial heterogeneity of geographical

location, factor endowments, agricultural development patterns,

and agricultural low-carbon technologies in each region, the

agricultural economy does not develop in a balanced manner,

which leads to a certain “potential energy difference” in the

development of agricultural low-carbon economy in each region,

providing a “source of power” for the flow of various factors

between regions. In this process, the market regulation

mechanism guides the flow of agricultural low-carbon

development factors to regions with high marginal benefits

through supply and demand and prices, forming the core and

peripheral areas of a low-carbon economy. The government’s

macro-control mechanism is mainly through financial transfer

payments, a performance appraisal system, and a regional

coordinated development strategy to guide the “reverse

gradient” flow of factors, promote regional advantages to

complement each other, and achieve balanced and

coordinated regional development (Yang et al., 2022b).

Therefore, the factors of agricultural low-carbon development

are constantly flowing and reconfiguring in space with human,

logistics, and information technology flows as carriers,

conducting and radiating to neighboring and other regions, it

forms a complex spatially linked network of inter-regional

agricultural low-carbon economic development. At the same

time, under the role of the circular feedback mechanism, the

low-carbon economy linkage network will also have an impact on

the efficiency of agricultural green development in each region

and the “potential energy difference” of inter-regional factor

flow, which will eventually promote the accumulation of low-

carbon agricultural economy cycle and gradual evolution.

The social network approach is unique in that the unit of

analysis is not primarily the actors (e.g., individuals, groups,

organizations, etc.), but rather the relationships between the

actors. From the “relational” point of view, the object of study

can be behavioral, political, social, and economic structures, so

this approach is widely used in different fields. The RGML

spatially relevant metrics in this paper are relational data,

since relational data do not satisfy the “assumption of

independence of variables” in the conventional statistical

sense, multivariate statistical methods in the general sense do

not apply to the analysis of relational data. Social network

analysis was used to analyze overall network characteristics,

regional network characteristics, and individual network

characteristics, and the influence of network structure was

tested empirically.

3.3.1 Whole network characteristics
Assessing the whole network characteristics of the spatial

association network of ALTFP in Chinese agriculture using

network density (D), network connectedness (C), network

efficiency (E), and network hierarchy (H). Among them, D

reflects the closeness of the connections between individuals

in the network. The greater the network density, the greater

the network’s influence on the individuals. C reflects the

robustness of the network, mainly measuring the reachability

of each node, and if C is equal to 1, the network is robust. E

reflects the number of redundant lines in the spatial network, the

lower the network efficiency, the more stable the network. H

reflects the position of each region in the spatial network, and the

higher it is, the higher the position of a region in the ALTFP

spatial association network. The calculation of network density
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(D), network connectedness (C), network efficiency (E), and

network hierarchy (H) is as presented in Eq. 4:

D � M

[N × (N − 1)]

C � 1 − [ V
N(N − 1)/2]

E � 1 − L
max(L)

H � 1 − K
max(K)

(4)

M is the number of relations existing in the network, N is the

total number of network nodes, V is the number of unreachable

point pairs in the network, L is the number of redundant lines in

the network, and K is the logarithm of symmetric reachable

points.

3.3.2 Regional network characteristics
The E-I distribution index is used to analysis of regional

development differences of ALTFP spatial association network in

Chinese agriculture, it is equal to the ratio of subgroup density to

overall density, so the index takes a threshold value in the interval

[−1, +1]. The closer the index is to 1, the closer the district

subgroups are to each other (external relations) and the less

factional forestry. The closer the index is to -1, the less inter-

subgroup (external relationships) and the more relationships

tend to occur between subgroups, implying a greater degree of

factionalism. The closer the index is to 0, the more the number of

relationships inside and outside the subgroups is similar, and the

relationships tend to be randomly distributed, making it

impossible to distinguish between subgroups. The formula for

measuring the E-I distribution index is as follows:

E − I � EL − IL
EL + IL

(5)

EL represents the number of relationships between

subgroups and IL represents the number of relationships

between subgroups within。

3.3.3 Individual network characteristics
The degree-centrality (Dc), betweenness-centrality (Bc), and

closeness-centrality (Cc) are used to analyze the individual

network characteristics. Whereas, the degree-centrality reflects

the local centrality index of the research subject, and measures

the ability of individuals in the network to connect themselves to

other individuals, without considering whether they can control

others. In a directed network, the degree of each point can be

divided into out-degree centrality (Oc) and in-degree centrality

(Ic). The in-degree centrality indicates the extent to which the

province is influenced by others, the out-degree centrality

indicates the ability of the province to influence other

provinces, and if the in-degree is greater than the out-degree,

it shows a net benefit effect, and vice versa. Is a net spillover effect.

Bc measures the actor’s control over resources, in other words, a

point is said to have a high Bc if it is on a shortcut to multiple

other pairs of points, indicating that this point plays an important

mediating role, and is therefore an index of control. Cc is a

measure of control by others, if the “distance” between a point in

the network and other points " are short, then the point is said to

have a high Cc and is stronger in terms of its ability to transmit

information. The expressions of degree-centrality (Dc),

betweenness-centrality (Bc) and closeness-centrality (Cc) are

respectively as follows:

Dc � (Ic +Oc)/(2n − 2)

Bc � ∑n
j

∑n
k

gjk(i)
gjk

, j ≠ k ≠ ij< k

Cc � ∑n
j�1
dij

(6)

n is the total number of network nodes, gjk is the number of

shortcuts that exist between point j and point k, gjk(i) is the

number of shortcuts that exist between point j and point k

through the third point i, dij is the distance of the shortcut

between point i and point j (the number of lines contained in the

shortcut).

3.3.4 The analysis of QAP
To investigate the influencing factors of Chinese

ALTFP spatial association networks with the help of the

Quadratic Assignment Procedure. Agricultural carbon

emissions and subject to multiple and complex factors,

the correlation between independent variables is a key

issue affecting the reliability of regression results. QAP is

based on the permutation of matrix data, and the

similarity analysis of each element in the two matrices

is performed to obtain the similarity coefficients, while the

coefficients are tested nonparametrically. It does not

require the assumption of mutual independence

between explanatory variables, thus it can well deal

with the endogeneity of relational data. It mainly

includes QAP correlation analysis and QAP regression

analysis.

In performing QAP correlation analysis, QAP first permutes the

rows and columns of amatrix simultaneously and then calculates the

correlation coefficient between the permuted matrix and the other

matrix, which guarantees that the independent and dependent

variable matrices have interdependence in rows and columns, and

then calculates the significance and the probability that the

magnitude of the correlation coefficient is either smaller or

smaller than the actual coefficient. In the QAP regression analysis,

the first step is to perform a conventional multiple regression

estimation for the long vector elements corresponding to the

independent and dependent variable matrices, and the second
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part is to perform a random permutation of the rows and columns of

the dependent variable matrix simultaneously, and then re-estimate

and save the estimated coefficient values and R2 values. The

procedure is repeated several hundred times to obtain the

standard error of the estimated statistic.

3.4 Panel quantile regression model

To further examine the evolutionary process of the change in

the coefficient of influence of network structural characteristics

on ALTFP, a fixed effects panel quantile regression is used with

reference to (Powell, 2020). Five representative quartiles were

estimated: 10%, 25%, 50%, 75%, and 90%.

QRGML(τ|X) � σ + φ(τ)X (7)

whereQRGMLis the conditional quantile of τ for a given condition
of X, X denotes all explanatory and control variables, and φ(τ) is
the quantile regression coefficient.

3.5 Data allocation

3.5.1 ALTFP
The data description of input and output variables in the

calculation of ALTFP is shown in Table 1.

Among them, the undesired outputs are mainly carbon

emissions from farming and livestock, which is calculated by

the following formula:

E1 � ∑Ei � ∑Ti × δi (8)

E1 is the total carbon emissions from farming, Ei is the carbon

emissions from all types of carbon sources, Ti is the amount of

each type of carbon source, δi is the emission factor for each type

of carbon source.

The sources of carbon emissions from livestock are

mainly methane (CH4) emissions from ruminant

gastrointestinal fermentation and livestock manure

management anoxia and nitrous oxide (N2O) emissions

from livestock manure collection, storage, and composting

processes, calculated as:

E2 � ∑GWPCH4 × Di × δ1i +∑GWPCH4 × Di × δ2i

+∑GWPN2O × Di × δ3i (9)

E2 is the total carbon emissions from livestock, GWPCH4,

GWPN2O are the greenhouse benefit indices of CH4 and N2O,

Di is the average annual stocking of livestock, δ1i, δ2i, δ3iare

emission factors for livestock gastrointestinal fermentation

CH4, manure fermentation CH4 and N2O. The carbon

sources and emission factors for each type of carbon

emission are shown in Table 2.

3.5.2 Data sources
The data were obtained from the public data of the

China Statistical Yearbook, China Population and

Employment Statistical Yearbook, China Agricultural

Yearbook, China Rural Statistical Yearbook, China

Agricultural Statistics, China Environmental Yearbook,

and some provincial and municipal statistical yearbooks

from 2001 to 2020. The geographical distances between

provincial capitals were calculated with the help of

ArcGIS10.8.

4 Results and discussions

4.1 Dynamic distribution of ALTFP in China

The RGML index of ALTFP was measured according to

Eqs. 8, 9, and the probability distribution of the RGML index

in different regions is plotted in Figure 1. Overall, the RGML

index is highest in the east, followed by the west, and lowest in

the northeast. In terms of the dispersion of values, there are

more discrete values of high loci in the eastern region, while

ALTFPs in other regions are not high and are more evenly

distributed, especially the smallest and most concentrated

TABLE 1 Description of agricultural production input and output variables.

Classification of indicators Carve metrics Indicator description

Input Indicators Labor Number of people working in agriculture, forestry, livestock and fishery

Capital Capital stock of agriculture, forestry and fisheries

Machinery Total power of agricultural machinery

Land Crop sown area and aquaculture area

Natural Resources Irrigated area measures water inputs

Outputs Indicators Desired output Total agricultural output Total output value of agriculture, forestry, livestock and fishery at constant prices in 2000

Non-desired outputs Agricultural carbon emissions Carbon emissions from farming and livestock
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values in the northeastern region. In terms of temporal

trends, ALTFP gradually increases over time, and in 2001,

the RGML indices among the four major regions were all low

but with small differences, and in 2005, the RGML indices in

the central and western regions tended to converge, while the

discrete values of the low loci in the northeast increased.

Starting from 2015, the RGML index in the eastern region

further increased, accompanied by an increase in the discrete

values of the high points. In other regions, the increase of

RGML index is smaller than that in the eastern region, but the

dispersion value decreases, it indicates that the balanced

development of the region has achieved some success.

Note: Violin diagram as a combination of box line diagram

and kernel density diagram, The box line plot shows the location

of the quantile, and the violin plot shows the density at any

location. The white dots are the medians, the red box shapes

range from the lower to upper quartiles, and the thin blue lines

indicate whiskers. The external shape is the kernel density

estimate.

4.2 Spatial association network
characteristics and evolutionary trends

Inspired by Luo et al. (2021), we used ArcGIS to conduct a

comparable analysis. Figure 2 visualizes the intensity of spatial

association of provincial ALTFP in China in 2020. According to

Eq. 6, considering the bidirectional and asymmetric nature of

provincial ALTFP, if two provinces are connected by only one

line, the difference in the magnitude of their bidirectional

association cannot be reflected. Therefore, if the left graph in

Figure 1 shows the gravitational intensity of province i to

TABLE 2 Carbon sources, emission factors and sources of agricultural carbon emissions.

Carbon
sources

Emission factors Unit References sources

Fertilizer 0.8956 Kg/Kg Oak Ridge National Laboratory (2009)

Pesticides 4.9341 Kg/Kg Oak Ridge National Laboratory (2009)

Agricultural film 5.1800 Kg/Kg Agricultural Resources and Ecological Environment Institute, Nanjing
Agricultural University

Diesel 0.5927 Kg/Kg The Intergovernmental Panel on Climate Change (2006)

Plowing 3.1260 Kg/hm2 School of Biology and Technology, China Agricultural University

Irrigation 25.0000 Kg/Cha Dubey (2009)

Carbon sources Emission factors of CH4 Emission factors
of N2O

Kg/head/
year

All coefficients are from The Intergovernmental Panel on Climate
Change (2006), where the CH4 greenhouse efficiency index is taken as
25, and The N2O greenhouse efficiency index was taken as 298

Gastrointestinal
fermentation

Fermentation of
manure

Pig 1.00 4.00 0.53 Kg/head/
year

Rabbit 0.25 0.08 0.02 Kg/head/
year

Poultry 0.00 0.02 0.02 Kg/head/
year

Dairy cattle 61.00 18.00 1.00 Kg/head/
year

Non-Dairy
cattle

51.40 1.50 1.39 Kg/head/
year

Horse 18.00 1.64 1.39 Kg/head/
year

Donkey 10.00 0.90 1.39 Kg/head/
year

Mule 10.00 0.90 1.39 Kg/head/
year

Goat 5.00 0.17 0.33 Kg/head/
year

Sheep 5.00 0.15 0.33 Kg/head/
year

Camelot 46.00 1.92 1.39 Kg/head/
year
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province j, the right graph shows the gravitational intensity of

province j to province i.

In Figure 2, the spatial association network of ALTFP in

China’s province has broken the traditional geographical

limitation of neighbor as friend, has a complex, multi-

threaded spatial association network overflowing to non-

neighboring provinces, showing a situation of “dense in the

east and sparse in the west”. From the gravitational strength

of the line colors, the whole network forms a radiation network

with Shanghai and Beijing as the south and north centers, and the

association strength of Beijing-Tianjin-Hebei and Yangtze River

Delta urban agglomeration is significantly higher than that of

other regions.

Further, to analyze the spatial association network structure

morphology of ALTFP, the spatial association intensity data

obtained from Eq. 6 were binarized to turn the attribute-based

data into relational data, and the spatial network topology of

Chinese ALTFP in 2001 and 2020 was plotted using the

visualization tool Net draw of UCINET (Figure 3). It can be

seen that from 2001 to 2020, the density of the spatial association

network of China’s ALTFP has increased significantly, and the

inter-regional connections have gradually become closer. Among

them, Beijing, Shanghai, and Tianjin have been in the core

position in the whole network, while most of the western

provinces are at the edge of the network and have less

connection with other provinces. Mainly because these regions

have strong economic development capacity, strong capital,

talent, and agricultural green innovation base, and have good

transportation infrastructure and strong factor mobility. This

greatly reduces the cost of green technology spillovers and thus

forms the core region of the spatially linked network of

agricultural green development.

4.2.1 The whole network characteristics
In terms of network density (Figure 4), network relevance

and network density maintain the same evolutionary trend

during the sample period, showing an “inverted U-shape”

evolutionary trend that slopes first and then decreases. In

terms of specific values, the number of network relationships

was 150 in 2001, peaked at 187 in 2017, and dropped to 181 in

2020. Correspondingly, the overall network density increased

from 0.17 in 2001 to 0.22 in 2015, and then decreased to 0.21 in

2020, it still has a large gap between the maximum number of

possible network relationships (870) and the maximum possible

network density 1, indicating that the spatial correlation of

ALTFP is still at a low level and the linkage spillover effect

between them is low.

In terms of network relevance, we adopt network

connectedness, network efficiency, and network hierarchy to

reflect the connectedness of the spatially connected network

FIGURE 1
Dynamic distribution of ALTFP from 2001 to 2020.
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structure of ALTFP in China (Figure 5). The network

connectedness showed an obvious stepwise upward trend

from 0.776 in 2001 to 0.871 in 2020, indicating that the

connectivity and robustness of the network were gradually

strengthened, and provinces could be spatially linked

through direct and indirect means. In terms of network

hierarchy, the value declined from 0.385 to 0.245 from

2001 to 2020, showing a stepwise decline, indicating that the

hierarchy structure of Chinese ALTFP is gradually loosening,

but there is still a hierarchy gradient and the network structure

needs to be further optimized. In terms of network efficiency,

the network efficiency declined from 0.783 in 2001 to 0.727 in

2020, with a less pronounced decline than the network

hierarchy, indicating that although the connectivity of inter-

provincial nodes is gradually increasing, there is still a high

number of redundant relationship numbers, and there is an

obvious phenomenon of overlapping association in the network

of each province.

FIGURE 2
Spatial correlation intensity of ALTFP in China in 2020. Note: The map is made based on the standard map downloaded from the standard map
service website of the National Bureau of Surveying, Mapping and Geographic Information, with the review number GS (2019) 1,673 and no
modification of the base map (https://service.tianditu.gov.cn/#/).

FIGURE 3
Structure of ALTFP in China in 2001 (A) and 2020 (B).
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4.2.2 Regional network structure characteristic
The study shows that there are significant differences in

economic and social development between regions in China (Wu

H. et al., 2020), and the regional differences in agricultural carbon

emission rates mainly come from the regional differences

between East-Central-West. To further investigate the spatial

correlations of low-carbon agricultural development between

regions, the 30 provinces in China were divided into four

regions: eastern, central, northeastern, and western. The

association network E-I index and the density matrix of each

zone of the Chinese ALTFP were obtained by measuring the four

major sectors as a unit.

The degree of faction throughout the network from 2001 to

2020 of ALTFP shows a narrowing trend (Figure 6). The E-I

association index of the entire network of China’s ALTFP was

0.543 in 2020, indicating that relationships tend to occur

among the four major segments, with a smaller degree of

factional forestry. In terms of regional density (Table 3), the

FIGURE 4
Network association and network density.

FIGURE 5
Network association, network efficiency, and network hierarchy.
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northeastern network has the highest density of 0.67,

indicating that resources are more closely linked to

agricultural development in the northeast. The density of

0.40 in the eastern region may be confined to the obvious

natural resource-dependent attributes of agricultural

development, the large north-south span, the different

natural resource attributes, and the north-south policy

differences, thus reducing the spatially linked network

density of ALTFP in the eastern region. The density in the

central and western regions is smaller, which may be limited

by the regional economic development base and natural

resource endowment differences.

In terms of inter-regional connections, the East is more

strongly connected to the Midwest and generally connected to

the Northeast. The Central region has strong connectivity with

the East, little connectivity with the West, and almost no

connectivity with the Northeast. The western region also has

almost no connection with other regions except for the strong

connection with the east. The northeast is only connected to the

east. It is found that the four major regions are spatially

connected, with the eastern region being more closely

connected to other regions, while the central, western, and

northeastern regions have very few connections with each

other. Combined with the spatial linkage density of the

regions themselves, the East is more connected both

internally and externally, with the Northeast having a higher

density value of its internal connections than that of its

connections with other regions, indicating that the

northeastern region has formed a “cohesive subgroup”

locally. The central and western regions, on the other hand,

are highly factionalized, with relatively few internal and

external linkages.

4.2.3 Individual network structure
characteristics

To further illustrate the position and role of each province in

the spatially linked network of agricultural low-carbon

development, we measured the centrality of each province.

The results show that there are no significant changes in the

indicators for each province during the sampling period;

therefore, we analyzed the indicators for 2020 as an example,

which are reported in Table 4.

First, degree centrality is used to discriminate whether each

province is at the center of the ALTFP spatial network. The

results show that six provinces are higher than the mean value of

32.18 of the degree-centrality, and all of these provinces are

located in the economically developed areas of the eastern coastal

region of China. Indicating that the eastern coastal region is more

closely related to other provinces in the ALTFP network and is in

the central dominant position in the spatially linked network of

ALTFP. However, Anhui, Jilin, Liaoning, Shanxi, Xinjiang,

Hubei, and Heilongjiang are in the last positions and are at

the edge of the network. The in-degree is greater than the out-

degree in 7 provinces, Beijing, Tianjin, Shanghai, Jiangsu,

Zhejiang, Fujian and Anhui in 2020. It shows that these

provinces benefit from the driving effect of ALTFP in other

provinces, and their high level of agricultural low-carbon

development can effectively attract resource elements of

agricultural green development and transform them effectively

to promote ALTFP, showing a significant spatial polarization

effect.

Second, closeness-centrality was used to discriminate the

ease of ALTFP spatial association generation among provinces.

The mean value of closeness-centrality is 60.81, and the

provinces that exceed the mean value and rank in the top

five are Shanghai, Beijing, Tianjin, Jiangsu, and Zhejiang,

indicating that these provinces have shorter distances from

other provinces, and can quickly make connections with other

provinces, and are central actors in the ALTFP spatial

association network. This may be because these provinces

are located in the eastern region with high inter-provincial

resource mobility, and developed economic strength and

accessibility expand access and capacity to agricultural

development resources. In contrast, Xinjiang, Shanxi,

Liaoning, Jilin, Anhui, Hebei, and Henan are ranked low,

mainly because these provinces are mainly located in the

geographical periphery of China and have weak links with

other provinces, playing a marginal role in the linkage network.

Finally, the betweenness-centrality is used to reflect the

ability of each province to control resources and information

in the process of low-carbon development of agriculture. The

mean value of betweenness-centrality is 2.42, with Shanghai,

Tianjin, Beijing, Jiangsu, and Zhejiang exceeding the mean value.

It shows that these provinces play the role of “intermediary” and

“bridge” in the linkage network, have strong control and

dominant role in the flow of talent, technology, and capital in

low-carbon agricultural development, and are the important

hubs in the linkage network. These provinces are located in

the economically developed eastern region, with a high level of

technological innovation and relatively high government

regulation of extensiveness. It is easier to absorb the inflow of

green development factor resources from other provinces and

achieve strong control over other provinces. In contrast, Shanxi,

Hubei, Xinjiang, Jilin, and Shanxi have lower betweenness-

centrality and rank lower, indicating that these provinces are

TABLE 3 Spatial correlation density matrix of ALTFP in four major
regions of China in 2020.

Region East Middle West Northeast

East 0.40 0.55 0.56 0.40

Middle 0.55 0.00 0.02 0.00

West 0.56 0.02 0.22 0.00

Northeast 0.40 0.00 0.00 0.67
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in the marginal position of “dominated” in the correlation

network.

4.3 Network structure effect analysis

Spatially linked networks are not only networks of

relationships between regions, but also spatial flows and

connections that contain knowledge and technology. The

characteristics of the spatial network structure reflect the

region’s access to resources and the degree of connection

with other regions, therefore, different characteristics of the

network structure will affect the level of development of the

region.

The indicators of overall network structural

characteristics, regional network structural characteristics,

and individual network structural characteristics were

obtained using the previous calculations as explanatory

variables, the agricultural low carbon TFP was selected as

the explanatory variable for the sample survey period, and

Ordinary Least Squares (OLS) was used to estimate. The

explanatory and explanatory variables were treated using a

logit strategy to avoid differences between indicators and

multicollinearity. In addition, to examine the evolutionary

process of the change in the impact effect of network structure,

further fixed-effects panel quantile regressions were used to

estimate representative five quartiles:10%, 25%, 50%, 75%,

and 90%, as shown in Table 5. Among them, the estimation

TABLE 4 Centrality of spatially linked networks of ALTFP in China in 2020.

Provinces Degree-centrality Closeness-
centrality

Betweenness-
centrality

Out-degree In-degree Degree No. Degree No. Degree No.

Beijing 7 23 79.310 3 82.857 3 13.003 3

Tianjing 6 24 82.759 2 85.294 2 14.862 2

Hebei 3 3 13.793 28 53.704 28 0.022 29

Shanxi 5 3 17.241 24 54.717 24 0.091 26

Neimenggu 6 6 31.034 7 59.184 7 0.732 7

Liaoning 4 2 17.241 25 54.717 25 0.071 27

Jilin 5 1 17.241 26 54.717 26 0.132 24

Heilongjiang 6 0 20.690 20 55.769 20 0.305 19

Shanghai 4 27 93.103 1 93.548 1 23.484 1

Jiangsu 5 19 65.517 4 74.359 4 7.514 4

Zhejiang 3 16 55.172 5 69.048 5 4.559 5

Anhui 4 5 17.241 27 54.717 27 0.126 25

Fujian 6 9 37.931 6 61.702 6 1.706 6

Jiangxi 7 5 24.138 16 56.863 16 0.359 16

Shandong 3 2 10.345 30 52.727 30 0.022 30

Henan 4 3 13.793 29 53.704 29 0.050 28

Hubei 6 2 20.690 21 55.769 21 0.196 20

Hunan 7 2 24.138 17 56.863 17 0.359 17

Guangdong 7 7 27.586 12 58.000 12 0.647 8

Guangxi 8 3 31.034 8 59.184 8 0.589 9

Hainan 8 1 27.586 13 58.000 13 0.359 18

Chongqing 9 5 31.034 9 59.184 9 0.545 10

Sichuan 9 1 31.034 10 59.184 10 0.528 11

Guizhou 8 4 31.034 11 59.184 11 0.528 12

Yunnan 8 2 27.586 14 58.000 14 0.528 13

Shanxi 5 2 20.690 22 55.769 22 0.170 23

Gansu 7 1 24.138 18 56.863 18 0.190 21

Qinghai 8 2 27.586 15 58.000 15 0.383 15

Ningxia 6 1 20.690 23 55.769 23 0.190 22

Xinjiang 7 0 24.138 19 56.863 19 0.410 14
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results of the 50% quantile are only slightly different from the

results of the other quantile in terms of coefficient magnitude,

and the direction of the coefficient is consistent with the

estimation results of the other quantile, so it is not shown

in Table 5.

4.3.1 Impact of overall network structure on
ALTFP

Table 5 reports the estimation results of the impact of

overall network structure on ALTFP. Where model (1) is the

result of OLS estimation and models (2) to (5) are the

results of panel quantile estimation. It can be seen that the

OLS estimated coefficients of network density, network

connectedness, network hierarchy, and network efficiency

are 5.045, 8.050, −2.008, and −0.147, all of which pass the

1% significance test, indicating that the overall network

structure has a significant effect on the level of ALTFP.

Increasing network density and network relevance,

reducing network hierarchy and network efficiency can

significantly improve the level of low carbon TFP in

agriculture. The quantile regression estimation results

showed that each indicator of network structure

characteristics passed the 1% significance test at each

quantile, and the signs were all consistent with the OLS

estimation results, further indicating the reliability of the

above results. This result is consistent with the findings of

Qu and Huang (2021) and Chen Z. et al. (2022).

This may be because, firstly, the increase in network

density indicates an increase in the number of associated

relationships in the network, and the core provinces will

exert a strong diffusion effect to drive the development of

inter-provincial complementarities, ultimately promoting

the growth of the ALTFP. Second, increased network

connectivity can enhance the robustness and inter-

regional connectivity of the network, all provinces can

join the network, there is no isolated area, and the

enhanced spatial spillover effect promotes the growth of

ALTFP. Again, the reduction of network hierarchy can

make the original one-way connected provinces develop

into two-way connectivity, the advantageous provinces

and the disadvantaged provinces gradually tend to be

equal, and the provincial-led low-carbon TFP

development model with the high level of economic

development and rich agricultural science and technology

resources changes to the overall agricultural green and

coordinated development model, thus improving the

overall agricultural green development level. Finally, the

reduction of network efficiency has increased the

connections in the relevant networks, that is, the network

hierarchy has been reduced, thus reducing the factor

endowment differences among provinces in agricultural

low-carbon development, lowering the inter-provincial

flow costs of agricultural low-carbon development factors,

enhancing the relevance of regional resources to agricultural

low-carbon development, and significantly improving the

overall level of ALTFP.

4.3.2 Effect of regional network structure on
ALTFP

The E-I index reflects the severity of regional assignment,

and as shown in Table 6, regional network structure under

OLS estimation significantly affects ALTFP at the 5% level

with a coefficient of 0.380, indicating that the weakening of

regional factional forestry is conducive to promoting

agricultural low-carbon development. The quantile

regression results show that the regional network structure

can only play a role in the enhancement of ALTFP if the level

of ALTFP is at the 75%.

TABLE 5 Results of the impact of the overall network structure on ALTFP.

Variables Density Connectedness

(1)OLS (2)Q10 (3)Q25 (4)Q75 (5)Q90 (1)OLS (2)Q10 (3)Q25 (4)Q75 (5)Q90

Whole network 5.045*** 4.468*** 4.479*** 4.534*** 6.288*** 8.050*** 7.904*** 8.727*** 8.216*** 8.500***

(0.540) (0.330) (0.421) (1.260) (0.917) (0.908) (0.833) (1.350) (1.240) (0.978)

R2 0.828 0.746 0.722 0.527 0.539 0.814 0.542 0.533 0.617 0.650

N 20 20 20 20 20 20 20 20 20 20

Variables Hierarchy Efficiency

(1)OLS (2)Q10 (3)Q25 (4)Q75 (5)Q90 (1)OLS (2)Q10 (3)Q25 (4)Q75 (5)Q90

Whole network −2.008*** −1.999*** −1.783*** −2.027*** −2.189*** −0.147*** −0.124*** −0.129*** −0.135*** −0.157***

(0.248) (0.270) (0.362) (0.327) (0.302) (0.134) (0.007) (0.009) (0.023) (0.021)

R2 0.785 0.514 0.450 0.592 0.617 0.863 0.785 0.765 0.585 0.538

N 20 20 20 20 20 20 20 20 20 20

Notes: ***, ** and * show the significance level at 1%, 5%, and 10%. The values in parentheses are standard errors. Same below.
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4.3.3 Effect of individual network structure on
ALTFP

Model (1) in Table 7 is an OLS estimation using a panel data

model, and models (2) to (3) are panel quantile regressions under

the adaptive Monte Carlo method. Among them, the estimation

results for the 25%, 50%, and 75% quantile points differ only

slightly from those for the 10% and 90% quantile points in terms

of the magnitude of the coefficients and are otherwise basically

the same, so they are not shown in Table 7.

The OLS regression coefficients of degree-centrality,

closeness-centrality, and betweenness-centrality are 0.418,

4.734, and 0.129, all of which are significant at the 1%

significance level, indicating a significant positive effect of

provincial centrality on increasing the level of ALTFP. This

finding is consistent with that of Chen Z. et al. (2022).

Possible reasons are: firstly, the higher the centrality, the

closer the relationship between a province and other provinces,

and accordingly the higher the degree of local relevance, the

more favorable it is that all provinces can benefit from the whole

network structure and improve their ALTFP. Secondly, higher

closeness-centrality means that the greater the sum of shortcut

distances between a province and other provinces, the less likely

the province’s agricultural low-carbon development is

constrained by other provinces, the closer the inter-

provincial relationship, the higher the degree of inter-

provincial communication and cooperation, the lower the

cost of factor flow and resource allocation, and the

increasing level of the province’s agricultural low-carbon

development. Finally, the provinces with higher

betweenness-centrality have obvious comparative advantages

in the ALTFP network, which can effectively guide the rational

allocation of resource factors, effectively control the correlation

effect with other provinces, and make the huge network

structure regionally effective and reasonable, thus

contributing to regional agricultural low-carbon development.

5 The analysis of driving factors about
spatial differences of ALTFP

5.1 Analysis of driving factors of spatial
association network of ALTFP

According to the mechanism analysis, the “potential

energy difference” due to the difference between regions is

the main driving force for the spatial closeness of the

association of ALTFP. Next, the factors affecting the spatial

association network are discussed, and the following nine

relational variables are selected to examine the factors

affecting the spatial association: 1) spatial proximity of

Provincial adjacency (RO) is expressed as 1 if the two

provinces are adjacent, otherwise it is 0. It has been

confirmed that low carbon efficiency in agriculture between

neighboring regions affects each other (Wu et al., 2015); 2)

agricultural industry structure differences (ST) are expressed

by the proportion of the output value of the farming in the

TABLE 6 Results of the regional network structure influencing the effects.

Explained variables ALTFP

Estimation methods (1)OLS (2)Q10 (3)Q25 (4)Q75 (5)Q90

E-I index 0.380** 0.155 0.215 0.453* 0.139

(0.147) (0.267) (0.292) (0.226) (0.221)

R2 0.998 0.966 0.964 0.956 0.953

N 20 20 20 20 20

TABLE 7 Results for individual network structure effects.

Variables (1)OLS (2)Q10 (3)Q90 (1)OLS (2)Q10 (3)Q90 (1)OLS (2)Q10 (3)Q90

Degree-centrality 0.418*** 0.179*** 0.181***

(0.041) (0.004) (0.005)

Closeness-centrality 4.734*** 1.087*** 1.088***

(0.776) (0.057) (0.045)

Betweenness-centrality 0.129*** 0.056*** 0.055***

(0.012) (0.002) 0.002)

N 600 600 600 600 600 600 600 600 600
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total output value of agriculture, forestry, livestock, and

fishery. Different crops differ in terms of resource

consumption, marginal benefits, and carbon effects.

Accordingly, the structure of farmland use determines the

input mix, desirable output, and environmental burden.

Therefore, the restructuring of farmland use may affect the

flow and allocation of factors, which in turn affects

agricultural low-carbon development generating spatial

correlations (Zhu et al., 2019); 3) urbanization level

differences (UR) are expressed by the proportion of the

urban resident population to the total population. The

essence of the urbanization process is a multidimensional

transmutation process accompanied by the flow of capital,

labor, technology, and other factors from the countryside to

the city, and the reconfiguration of factors between urban and

rural areas, which has a great impact on the production scale

and cultivation structure of agriculture (Tian et al., 2016;

Xiong et al., 2020; Joséf, 2022); 4) rural labor education

level differences (ED) is expressed by the average years of

education of rural residents. The labor force is the decision

maker of agricultural production methods and its level of

education has a significant impact on the adoption and

application of pioneering technologies (Wang et al., 2019;

Wu et al., 2021; Khanh and Nguyen, 2022); 5) financial

development level differences (FI) is expressed by the ratio

of deposit and loan balance of financial institutions to GDP, a

sound financial service system can provide financial support

for agricultural transformation and upgrading and green

technology progress (Huang et al., 2014; Cao et al., 2022;

Gao et al., 2022); 6) agricultural irrigation water utilization

rate differences (WA) is expressed by the ratio of effective

irrigated area to cultivated area in each region, agricultural

irrigation water use efficiency can affect agricultural carbon

emissions and output efficiency by changing inter-regional

agricultural production costs and intra-agricultural

production structure (Xu et al., 2022); 7) farmland

operation scale differences (SC) is expressed by the per

capita crop sown area, it has been proven that the scale of

agricultural production leads to differences in the cost of

adoption of agricultural technology, and that larger scale of

operation makes it easier to obtain economies of scale and

adopt advanced technology (Helfand and Taylor, 2021; Mao

et al., 2021); 8) financial support differences (IN) is expressed

by the proportion of local financial expenditure on

agriculture, many scholars have found that financial

support for agriculture significantly affects agricultural

carbon emissions (Guo et al., 2022); 9) marketization level

differences (MA) is expressed by the marketization index

measurements, according to (Fan et al., 2011). The level of

marketization determines the flow and allocation of

production factors and therefore has an impact on the

spatial association network (Guo et al., 2021). The model

was constructed as follows:

R � f(RO, ST,UR,ED, FI,WA, SC, IN,MA) (10)

Where R is the spatial correlation matrix of ALTFP after

binarization, the rest of the indicator data are

variance matrices consisting of the absolute differences in

the mean values of the corresponding indicators for each

province from 2001 to 2020. Figure 7 shows the results of

the QAP analysis of the driving factors, it can be seen that

there are different degrees of correlation between the drivers,

implying that the impact of the driving factors on the spatial

correlation network overlaps significantly and there is a high

degree of multicollinearity among the driving factors, further

indicating that the QAP regression analysis is more

appropriate.

5.2 QAP correlation analysis

The correlation coefficients of each influencing factor with

the structure of the spatial correlation network of low-carbon

TFP in Chinese agriculture were first tested using the QAP

method of the quadratic assignment procedure, as shown in

Table 8. It can be seen that the correlation coefficients for

province adjacency, differences in urbanization levels,

differences in the education level of the rural labors,

differences in financial development levels, and differences

in agricultural irrigation water utilization rates are all

significant, indicating that these influencing factors had a

significant impact on the formation of the spatial

correlation network. In contrast, the correlation coefficients

of differences in agricultural industry structure, the scale of

farmland operation, financial support to agriculture, and the

level of marketization are not significant, indicating that their

inter-provincial differences do not play a significant role in the

spatial association structure of ALTFP.

5.3 QAP regression analysis

Using QAP regression to analyze the relationship between

the spatial association network and the drivers, the results of

regression fitting were obtained by 2000 random permutations

(Table 8). The adjusted decision coefficient was 0.301, indicating

that the drivers could explain about 30.10% of the variation in the

structure of the spatial association.

The spatial proximity of provinces, differences in

urbanization, differences in financial support for

agriculture, differences in financial development levels, and

differences in marketization have a positive effect on the

formation of spatially linked networks. Among them: the

coefficient of spatial proximity is significantly positive, which

indicates that inter-provincial geographical proximity can

break down the barriers to resource flow and promote
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provincial mobility for low-carbon agricultural development.

The specific reason may be the geographical proximity of the

location with many similar characteristics, such as

geographical environment, resource endowment,

cultivation structure, and technology level, etc. These

similarities reduce the cost of production factor flow and

low-carbon technology diffusion and promote closer inter-

regional linkages. The coefficient of urbanization differences

is significantly positive, which indicates that provinces with

greater urbanization differences are more likely to have

economic linkages between regions, probably mainly

because of the difference in urbanization levels, with

FIGURE 6
The trend of the E-I index of ALTFP in China from 2001 to 2020.

FIGURE 7
Heat map of correlation coefficients of driving factors.
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factors such as labor and capital tending to flow more from

provinces with low levels of urbanization to those with high

levels of urbanization, in the process promoting the spread of

technological progress and radiation to neighboring regions.

The coefficient of the difference in fiscal support to

agriculture is significantly positive, which indicates that

the greater the difference in the level of fiscal support to

agriculture between provinces, the more likely it is to cause

spatial correlation, mainly because finance provides the

foundation for agricultural production, infrastructure, and

advanced technology, the higher the level of financial support

for agriculture in a province, the more it helps the region to

establish a model for low-carbon agricultural development,

attracting regions that are lagging behind in development to

learn from and exchange with these regions, and promoting

policy references and the diffusion and application of low-

carbon technologies among provinces. And the regression

coefficients of differences in the level of financial

development and differences in the level of marketization

are not significant (p > 0.1), indicating that inter-provincial

differences do not yet significantly affect the formation of

ALTFP spatial association networks in China.

Differences in the education level of rural labor, differences in

irrigation water use efficiency in agriculture, differences in

agricultural industry structure, and differences in agricultural

production scale have negative effects on the formation of spatial

association networks. Among them: the coefficient of influence of

the difference in the education level of the rural labor is

significantly negative, which indicates that the greater the

difference in the education level of the regional rural labor

force, the fewer its agricultural economic linkages, this is

mainly because agricultural human capital largely affects the

application of advanced agricultural technologies, and if the

difference in human capital between regions is too large, it is

not conducive to the absorption and digestion of technological

overflows from advanced regions by regions with relatively low

technology levels and will hinder the spread of advanced

agricultural production technologies, thus not conducive to

the formation of ALTFP spatially linked networks. Regression

coefficients for differences in agricultural irrigation water use

efficiency, differences in agricultural industry structure, and

differences in agricultural production scale are not significant

(p > 0.1), indicating that inter-provincial differences do not yet

significantly affect the formation of ALTFP spatial association

networks in China.

Agricultural irrigation water use efficiency reflects

resource endowment. Generally speaking, the greater the

difference in resource endowment, the stronger the

complementarity between regions, and the more frequent

the flow of logistics, capital, and technology with resource

flow as the carrier, the more conducive to the formation and

development of a spatially linked network of green economic

efficiency. However, the results of this paper show that the

effect of differences in agricultural irrigation water use

efficiency on the spatial linkage network is not significant,

probably because the role of resource endowment differences

on the spatial linkage of green economic efficiency has been

reduced in recent years as the development approach has

shifted from factor-driven to innovation-driven, and

technology substitution effects have become prominent.

The main reasons for the insignificant effect of agro-

industrial structure and marketization on the association

network are: Due to the sticky nature of agricultural

production and the inherent characteristics of

agriculture such as strong dependence on natural resources

and environmental endowments and weak risk resistance, the

internal industrial structure of agriculture is more

stable, resulting in the slow development of agricultural

factor markets. At the same time, Chinese agriculture has

been a distinctive “big country, small farmer” model since

TABLE 8 The analysis of driving factors of spatial association network of ALTFP.

Variables QAP correlation analysis QAP regression analysis

Correlation coefficient p-value p ≥ 0 p < 0 Regression coefficient p-value PA PB

RO 0.127 0.001 0.001 0.999 0.180 0.000 0.000 1.000

ST −0.067 0.140 0.860 0.140 −0.233 0.176 0.825 0.176

UR 0.467 0.000 0.000 1.000 0.018 0.057 0.000 1.000

ED −0.013 0.014 0.987 0.014 −0.138 0.001 1.000 0.001

FI 0.239 0.003 0.003 0.997 0.012 0.402 0.402 0.599

WA 0.123 0.063 0.063 0.937 −0.124 0.419 0.581 0.419

SC −0.063 0.176 0.724 0.176 −0.022 0.235 0.766 0.235

IN 0.084 0.124 0.124 0.876 1.397 0.086 0.086 0.915

MA −0.031 0.326 0.675 0.326 0.003 0.435 0.435 0.566

Notes: PA, represents the probability that the regression coefficient from random substitution is not smaller than the observed regression coefficient in the two-tailed test, and PB, represents

the probability that the regression coefficient from random substitution is not larger than the observed regression coefficient.
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ancient times, so the impact of differences in agricultural

production scale on spatial association networks is not obvious.

The smaller penetration of financial development into the

agricultural economy compared to other sectors may be the

reason for the insignificant effect of differences in financial

development on spatial association relationships.

6 Conclusion and implications

6.1 Conclusion

In our study, by examining the ALTFP of 30 Chinese provinces

from 2001 to 2020, we explored the network characteristics and

driving mechanisms of spatially linked relationships with the help of

UCINET visualization tools and social network analysis methods,

and we mainly obtained the following conclusions and insights.

1) In terms of network structural characteristics, the spatially

linked network of low-carbon development in China’s agriculture

has broken the traditional geographical limitation of “neighbors as

friends” and exhibited a complex network of links. However, the

overall network structure is relatively loose, and there is still much

room for improving the coordinated development of low-carbon

agriculture between provinces. The connectivity and robustness of

the network are gradually strengthened, but the network still has a

certain hierarchical gradient and some redundant relationship

numbers, the network structure needs to be further optimized.

In terms of regional network structure characteristics, the

correlations of China’s agricultural low-carbon development

during 2001–2020 tend to occur among the four major plates in

the east, center, west, and northeast, with a smaller degree of

factional forestry, the eastern region is more connected to other

regions, while there are fewer connections between the central,

western and northeastern. Individual network characteristics show

that there is a significant “Matthew effect” in China’s agricultural

low-carbon development. The eastern provinces of Shanghai,

Beijing, Tianjin, Jiangsu, Zhejiang, and Fujian are at the heart of

the entire network and have a stronger role in allocating resources

needed for agricultural low-carbon development, while remote

provinces such as Xinjiang, Jilin, Liaoning, and Anhui are at the

edge of the network and have aweaker ability to access resources for

agricultural low-carbon development.

2) The analysis of the network structure effect shows that

network structure has a significant effect on the level of

low carbon in agriculture, and increasing the overall network

density and network relevance, decreasing the network

hierarchy and network efficiency can significantly increase

the ALTFP. The weakening of regional factional forestry is

conducive to promoting low-carbon agricultural development.

The province’s central position in the network and its

dominance and control over resources and factors in low-

carbon agricultural development are conducive to increasing

the ALTFP. The panel quantile regression model further

verified the reliability of the above findings.

3) The QAP results show that the spatial proximity of

provinces, the widening of differences in urbanization

levels and differences in financial support for

agriculture, and the narrowing of differences in the

educational attainment of the rural labor have

significantly contributed to the formation of provincial

spatial linkages And differences in the level of financial

development, differences in the level of marketization,

differences in the efficiency of agricultural irrigation water

use, differences in the structure of agricultural industries

and differences in the scale of agricultural production do

not have significant effects on the spatial correlation

network of ALTFP, and their response mechanisms and

response effects need to be further explored.

6.2 Implications

Firstly, inter-provincial geographical proximity can break down

barriers to resource flows and facilitate provincial flows of low-

carbon development in agriculture, for example, the development of

city clusters such as Yangtze River Delta and Pearl River Delta is

conducive to promoting the formation of related networks, so the

linkage leading effect of China’s city clusters and metropolitan areas

should be accelerated. At the same time, it is necessary to promote

the construction of agricultural low-carbon development

demonstration areas, strengthen the interconnection of core and

peripheral regions, eliminate the Matthew effect of agricultural low-

carbon TFP, and give full play to the role of the “leader” of Beijing-

Tianjin-Hebei and the Yangtze River Delta, which are regions with

high levels of economic development, to radiate and drive the

balanced development of the region, to narrow the gap between

provinces in the spatially linked network of green economy in terms

of capital, technology, and management methods, effectively reduce

the network hierarchy, and realize the spatial synergy of green

economy development.

Secondly, the central and western regions need to

strengthen spatial ties with developed regions, ride on the

coattails of the urbanization process, undertake the overflow

of factor resources such as capital, industry, and technology

from the eastern regions, and formulate more precise regional

policies to enable the flow of factors to the central and western

regions under the guidance of market mechanisms. At the

same time, the construction of agricultural low-carbon

development demonstration regions within the central and

western regions should also be accelerated to form a

polycentric pattern of agricultural low-carbon

development, which reduces the rising transaction costs in

the central and western regions and accelerates the flow of

agricultural resources and factor capital in the marginal

regions.
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Finally, local governments should clarify the position and

role of each region in the low-carbon development of agriculture,

give full play to the role of government macro-control and market

regulation mechanisms to promote the spatial correlation of green

economic development, minimize the intervention in the financial

system leading to financial distortion, and effectively guide the

financial expenditure to support the low-carbon development of

agriculture. At the same time, we should also focus on the

improvement of education level in the backward areas and

gradually narrow the gap between the educational level of the

labor force in the backward areas and the developed areas.

6.3 Research deficiencies and future
directions

Although the paper makes an obvious contribution to the low

carbon development of agriculture, there are still some

limitations: First, considering the limitation of data availability,

this paper examines the spatial correlation network of low carbon

development of Chinese agriculture from the provincial level, and

the results are relatively rough; in the subsequent research, the data

should be further explored in depth to refine the research results

and make the paper more valuable in the application. Second, for

the analysis of spatially linked network drivers of low carbon

development in agriculture, the paper selects nine aspects of

influencing factors, and inevitably there are other influencing

factors, such as climate and soil type, which should continue to

be explored more deeply in future studies.
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Nomenclature

Super-RSBM Super-efficiency Ray Slacks-Based Model

GML Global Malmquist-Luenberger

RGML Super-RSBM method to characterize the low carbon TFP

level in agriculture

RSBM-GML Super-efficiency Ray Slacks-Based Model - Global

Malmquist-Luenberger

ALTFP low carbon TFP of agriculture.
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