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Plant responses to abiotic stresses through diverse mechanisms and strategic

measures in utilizing nanomaterials have positively impacted crop productivity.

Stress can cause membrane depletion, reactive oxygen species formation, cell

toxicity and death, and reduction in plant growth. However, nanomaterials can

mitigate some of the negative impacts of abiotic stresses and enhance crop

yield. Some endophytic microbes can synthesize nanomaterials, which can

maintain and enhance plant health and growth via nitrogen fixation,

siderophore production, phytohormones synthesis, and enzyme production

without any pathological effects. Nanoparticle-synthesizing endophytes also

help boost plant biochemical and physiological functions by ameliorating the

impact of abiotic stresses. The increase in the use and implementation of nano-

growth enhancers from beneficial microbes, such as nano-biofertilizers, nano-

pesticides, nano-herbicides, and nano-fungicides are considered safe and eco-

friendly in ensuring sustainable agriculture and reduction of agrochemical

usage. Promisingly, nanotechnology concepts in agriculture aim to sustain

plant health and protect plants from oxidative stresses through the

activation of anti-oxidative enzymes. The mechanisms and the use of

nanomaterials to relieve abiotic plant stress still require further discussion in

the literature. Therefore, this review is focused on endophytic microbes, the

induction of abiotic stress tolerance in plants, and the use of nanomaterials to

relieve abiotic plant stresses.
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Introduction

The environmental problems linked to climate abiotic-

induced stresses pose serious threats and ecological pressures

on soils and plant health, limiting crop productivity (Varshney

et al., 2011). Thus, the need to devise a problem-solving approach

to enhance crop yield under stress becomes imperative. The

biotic factors, such as bacterial and fungal pathogens, insect and

nematode pests as well as abiotic factors such as temperature,

salinity, drought, flooding, heavy metals, and pH cause a large

number of modifications in plant biochemical and physiological

processes (Kumar et al., 2019). The approaches to mitigate these

stresses in crops should be targeted to maximally address the

food supply and demand of the world population. Over time, the

use of chemical fertilizers to improve crop productivity has been

employed, but with profound detrimental effects on the

ecosystems (Adeleke and Babalola, 2022). Hence, developing

modern technology remains important to ensure Sustainable

Development Goals (SDGs) without any significant negative

impact on the ecosystem.

Nanotechnological approaches have been employed in

agriculture, industry, and medicine (Audah, 2019; Elemike

et al., 2019; Zulfiqar et al., 2019). Nanoparticles (NPs), are

characterized by sizes ranging from 1 to 100 nm in diameter,

various physical, chemical features, biochemical activity, and

increased reactivity (Dutta and Sugumaran, 2021). Different

methods have been employed in the synthesis of NPs, which

include inert gas condensation, physical ball milling, biological

and chemical processes (Aboyewa et al., 2021). The biological

means of synthesizing NPs can be achieved by harnessing some

endophytic microbes, such as bacteria and fungi (Ahmad F. et al.,

2012; Eid et al., 2021). Some examples of NPs produced by

endophytic microbes include titanium, platinum, cadmium, gold,

zirconium, selenium, magnetite, usnic acid, gold-silver alloy,

uraninite, tellurium, and palladium (Aboyewa et al., 2021).

NPs from endophytic fungi have been reported to play an

important role in plant disease management due to the

presence of NP-assisted genes (Sonawane et al., 2022).

Endophytic microbes are microbes inhabiting the internal

tissues of plants, which can be beneficial or pathogenic (Adeleke

and Babalola, 2022). The beneficial types help ensure sustainable

plant and soil health under a variety of stresses including drought

stress (Premachandra et al., 2020). Some of these microbes also

possess the ability to synthesize nanomaterials, which can be

exploited in maintaining plant health without any pathological

effects (Sonawane et al., 2022). Promisingly, NP-synthesizing

endophytic microbes can help boost plant physiological

functions and can be used as bioinoculants in developing eco-

friendly agriculture. Nevertheless, information on the actual

mechanisms and the use of nanomaterials to relieve abiotic

plant stresses have not been fully discussed in the literature.

Depending on the type, application and use, various NPs of

carbon-based, metallic and non-metallic and organic polymers

have been developed (Kumar et al., 2021; Fadiji et al., 2022b). The

use and implementation of known nano-growth enhancers,

nano-biofertilizers, nano-pesticides, nano-herbicides, and

nano-fungicides are on the increase in modern agricultural

systems (Imade et al., 2022; Sonawane et al., 2022). Based on

experience to date, this approach is considered safe, eco-friendly

for improved soil nutrition and crop yield.

Plants are prone to different environmental stressors, such as

ultraviolent light, drought, flooding, salinity, temperature

extremes (low or high), and the presence of heavy metals

(Chaudhary et al., 2021c). All of these factors can induce

oxidative stress causing membrane depletion, reactive oxygen

species formation, cell toxicity and death, which cause a

reduction in plant growth (Thomas and Puthur, 2017;

Hasanuzzaman et al., 2019). Regardless of the nature of the

abiotic stress, NPs may be involved in plant cellular metabolism,

growth, and stress protection (Ajilogba et al., 2021). Also, some

NPs exhibit the ability to modify the expression of genes involved

in electron transport, energy transport, cell biosynthesis, and cell

organization under stress conditions (Pandey, 2018; Sonawane

et al., 2022). Thus, many studies have validated the

multifunctional attributes of NPs in crop improvement (Abd-

Alla et al., 2019; Chavan and Nadanathangam, 2019; Kibbey and

Strevett, 2019).

Notwithstanding the positive attributes of NPs, information

on the mechanisms of how NPs alleviate stresses and how

endophytic microbes induce plant stress tolerance are still

required. Consequently, this review addresses the role of

endophytic microbes in inducing abiotic stress tolerance in

plants, and the use of nanomaterials to relive abiotic plant

stresses.

Microbe-nanomaterial interactions

Biological activities through alterations in the function and

structure of bacteria can be unveiled using modern and advanced

nano-technological processes (Chaudhary et al., 2021b). Recent

methods are been used to assess the surface chemistry, structural

form of NPs and their effects on biocidal activities (Noukelag

et al., 2022; Rehman et al., 2022). Examples of ecofriendly nano-

sized agents include a variety of phyto/zooplankton, fungal

spores, bacteria, and other microorganisms. NPs react

differently with microbes, which shows that the microbial cell

surfaces can differ substantially in their reactivity and attraction

(Gangadoo et al., 2022). Silica NPs react effectively with

microorganisms of different groups (Wang et al., 2020). For

instance, bacteria and microalgae are smaller with less reactive

attributes compared to fungal spores. A comprehensive

mechanism showing the harmful effect of metallic nano-sized

particles on bacteria cells is still required. In addition, there is a

need for special attention to the structural alteration of bacterial

cells using in vitro studies.
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The continuous upsurge in the cases of fungal infections in

immunocompromised patients, which require urgent medical

treatment has caught the attention of most researchers.

Meanwhile, the need for an ecofriendly measure for treating

mycoses and identification of the source of infection has

prompted researchers toward the use of metallic NPs (Singh

et al., 2019; Soliman et al., 2021). Several studies have assessed the

antifungal effects of NPs (Khatoon et al., 2018; Ahmadpour et al.,

2021; Sadek et al., 2022). A study by Masoumizadeh et al. (2022)

reported the effect of AgNPs on fungal pathogens, Candida spp.

Also, the findings of Santhoshkumar et al. (2019) on the

toxicological ad antidermatophytic activity of AgNPs

synthesized using leaf extract of Passiflora caerulea revealed

the maximum antifungal activities against dermatophyte,

Trichophyton rubrum.

Nanomaterial-microbial
compatibility

Bacteria and NPs

Plasmolysis of bacteria is a slaying event that involves the

breakdown of cytoplasmic components and morphological

reduction of cytoplasm due to the loss of intracellular

components and plasma membrane contraction from the cell

wall. It has been reported that metallic NPs induce pleiotrophic

effect on bacteria cells. Nanomaterials bind with bacteria proteins

(thiol moieties) hindering their activities, forming an attachment

with the cell membrane and causing cell death. Consequently,

altering cell permeability by obstructing the activities of electrons

in cells and obstructing respiration (Radzig et al., 2013; Mohanty

et al., 2014). ROS generated as a result also inhibits respiratory

enzymes. Oxidized DNA precursors result in DNA lesions (Park

et al., 2009).

Advances in the cell to the non-cell formation, the reaction

against resistant, persistent strains and swarming motility have

encouraged researchers about bacterial genes encoding guanine

nucleotide exchange factors. NPs enhance the activities and

response of genes encoding guanine nucleotide exchange

factors, which gives scientists better insights into improved

NPs applications as antibacterial agents. Because of these

highlighted responses, several studies have been conducted to

verify the expression of bacterial genes to nano-sized particles

(Khati et al., 2018). Exposure to metallic NPs revealed consistent

gene patterns using transcriptional analytical methods such as

RT qPCR or microarray. For instance, when E. coli was subjected

to AgNPs, it exhibited a distinctive expression in gene functions,

such as homeostasis of iron, silver and copper, which regulate the

oxidative balance via the use of microarray experiment and its

features to metabolize sulfur (Nagy et al., 2011; McQuillan and

Shaw, 2014). In other studies, researchers assessed alterations in

gene expression of bacteria subjected to the treatment with

carbon NPs. A study by Kang et al. (2008) showed the

leakage of cellular material, disrupted membrane, reduced

viability and metabolism of E. coli when subjected to single-

walled nanotubes. In another study by Pelletier et al. (2010) using

microarray, E. coli was exposed to cerium oxide NPs, the NPs

upregulated several oxidoreductases sowing depletion in iron

deficiency, oxidation stress and cellular respiration. Yang et al.

(2012b) exposed Pseudomonas aeruginosa to quantum dots and

genes controlling metal efflux transporters and oxidative stress

were upregulated.

To check the compatibility of nanomaterials and bacterial

cells, Dimkpa et al. (2012) showed that NPs could also affect

microorganisms and plants by causing modifications in cellular

levels of siderophores (pyoverdine) of plant growth-promoting

bacterium (Dimkpa et al., 2012).

Fungi and NPs

Almost all NPs are capable of creating holes in the membrane

of most fungal cells. The alteration in physiological traits of fungi

releases biomolecules resulting in cell death. In a study by Kim

et al. (2009), Kim and co. observed the reaction between AgNPS

and Candida albicans and discovered membrane depolarization

in C. albicans. Pits and pores were formed on the cell wall of the

organism. This leads to the release of trehalose and glucose into

the prepared suspension. The antifungal activity of AgNPs was

also performed on other fungal species such as Saccharomyces

cerevisiae, Candida tropicalis, Phomopsis spp., Penicillium

expansum, Botrytis cinerea and Trichophyton rubrum (He

et al., 2011; Nasrollahi et al., 2011; Mallmann et al., 2015).

The effect of Fe3O4NPs was tested against Candida spp and

perforation of cell membranes was observed (Prucek et al., 2011).

The cell wall and the membrane of Cryptoccocus neoformans

were also depleted when C. neoformans was exposed to AgNPs in

a study by Ishida et al. (2013).

The use of In silico and mathematical modelling could help

provide a better understanding of microbe-nanomaterial

compatibility and interactions. Studies to experiment with the

interaction between microbes and NPs are extremely important

to unveil the details of these interactions. Meanwhile,

bioinformatics tools are also needed to ensure statistical

analysis and data curation about the future occurrences of

microbial interaction with NPs (Singh et al., 2019; Adeleke

et al., 2022).

Synergistic relationship: Endophyte-
induced NPs

Recent developments required to ensure an ecofriendly

interface for nanoscience studies have delivered exciting

results by revealing multifaceted metal-based NPs with
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numerous applications and functions (Baker et al., 2015a;

Kumari et al., 2020). Ecofriendly biological resources viz.

algae, fungi, bacteria and plants have been adopted to

synthesize NPs, with each bio-factory having its pros and cons

(Iravani et al., 2014; Rahman et al., 2019). Microorganisms are

said to be an attractive option because of their dependable and

unlimited metabolite production which are useful as reducing

agents. In the case of plants, the disturbing plant diversity/species

most times complicate the usage (because of selection problem)

(Baker et al., 2015b). Even though microorganisms have been

identified as the best option for the ecofriendly synthesis of NPs,

the potential of endophytes remains under-explored. Adopting

endophytes as reducing agents for the biosynthesis of

nanomaterials opens new opportunities for the discovery of

novel NPs with various applications (Rahman et al., 2019).

Microorganisms (e.g., endophytes) remain the biological

agents with harmless, clean and the most commercially

available approach for NPs synthesis. That said, limitations

faced by often synthesized endophyte NPs affect the stability

of NPs because microbes are retarded overtime. With the

variation in parameters such as substrate condition, synthesis

condition, growth on media, pH, temperature and

physicochemical parameters (stability, shape, and size) of NPs,

which might change easily (Ovais et al., 2018).

The diverse endophytic microbes from different sources have

been used in the synthesis of NPs. These include; the biosynthesis

of AgNPs using Bacillus cereus isolated from Adhatoda beddomei

and Garcinia xanthocymus as recapping agents to produce

AgNPs with antibacterial properties (Sunkar and Nachiyar,

2012a; b). A study by Devi and Joshi (2015) also reported the

use of Cryptosporiopsis ericae isolated from Poteotilla fulgens L. in

the synthesis of NPs. The synthesized nanomaterial had an

absorbance peek of ≈430 nm, spherical, and a diameter

ranging between 2 nm and 16 nm. Rahi and Parmar (2014)

and Singh et al. (2013) also synthesized AgNPs using

Penicillium spp. isolated from the tissue of Curcuma longa

and Aloe vera root. The synthesized NPs had a size range

between 15 nm and 45 nm with immense antibacterial activity

against antibiotic-resistant pathogens. Several studies have used

endophytes as an ecofriendly route for the biosynthesis of

multifunctional metal-based NPs. These include; Hulikere and

Joshi (2019)—Cladosporium cladosporoides, Ramalingmam et al.

(2015)—Cochliobolus lunatus, Qian et al. (2013)—Epicoccum

nigrum, Yashavantha Rao et al. (2016)—Endophytic bacterium

EH419, Neethu et al. (2018)—Penicillium polonicum and Abdel-

Aziz et al. (2018)—Aspergillus spp.

Impact of nanomaterials on microbial
diversity and soil health

In natural ecosystems, microorganisms drive ecological

processes (Chaudhary et al., 2022). These processes include;

anaerobic digestion, removal of nutrients in wastewater

treatment, and biogeochemical cycling (Ahmed et al., 2012).

On a single cell or population of microbes, antimicrobial

activities and the potency of nanomaterials have been studied

extensively elucidating their effects on the microbial community.

As a result, there is an extensive understanding of the pros and

cons associated with the ecotoxicity of NPs. Recently, scientists

have studied the effect of nanomaterials on the community

structure and functions of microorganisms in natural

environments, such as water treatment facilities, marine, rivers

and soils (Mohanty et al., 2014).

Effect of nanomaterials on microbial
diversity

Microbial diversity in the soil plays a crucial role in nutrient

cycling, plant diversity and agricultural output (Mohanty et al.,

2014). Scientists have shown that important nanomaterials

properties viz., aggregation, size, shape and charge, could be

influenced by the environment (Lowry et al., 2012; Liu et al.,

2014). NPs migrate at different levels in the soil matrix, and as

such altering the microbial community structure in the soil. Also,

the type of soil affects the impact of NPs. In a study by Frenk et al.

(2013), the microbial community in clay and sandy soils were

shown to respond differently to magnetite and copper oxide NPs.

In a related study by Pawlett et al. (2013), a similar result was

obtained from the reaction of microorganisms in the sandy soil to

zero-valent iron nanomaterials. Herein, the microbial groups

obtained from the combination of sandy soil and FeNPs were

more susceptible than microbial communities in clay soil. Also,

AgNPs were suspected to affect the community profile of

freshwater microbial habitat in a study by Das et al. (2012).

Both microbial biofilms and planktonic communities were

influenced by nanomaterials as related in the study by

Flemming and Wingender (2010) and Ding et al. (2014).

Although, planktonic communities most times exhibit low

tolerance to antimicrobial agents and toxic environments

compared to their biofilm counterparts (Cao et al., 2012). For

instance, the exposure of marine biofilm to AgNPs does not affect

the community structure, succession and biofilm development of

the community (Fabrega et al., 2011). However, apart from the

reduction in microbial communities associated with a biofilm,

the integrity of cells in a biofilm could be compromised because

of its exposure to NPs (Battin et al., 2009).

In an engineered ecosystem using nanomaterials, most

researchers adopt microbial communities associated with

waste plants as model systems. Often, the impact of microbial

communities and their community composition is of utmost

interest to researchers. Meanwhile, most studies concentrate on

the impact of NPs on commonly studied bioprocesses with the

inclusion of methanogenesis, phosphorus and nitrogen removal.

Even though most studies have reported the negative of
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nanomaterials on microbial community structure (Liang et al.,

2010; Ahmed and Rodrigues, 2013), some other studies showed

that the microbial communities associated with sludge digester

were not affected by nanomaterials (Nyberg et al., 2008; Yang

et al., 2012a). This discrepancy could be associated with

variations in the physical and chemical properties of

nanomaterials and their complex reaction with several other

materials from either organic or inorganic sources (Mohanty

et al., 2014).

Impact of nanomaterials on microbial
community functions

The effect of nanomaterials on microbial community

functions is another important aspect of NPs-induced

community variation yet to be explored. Some studies have

further highlighted possible alterations in microbial functions

induced by the exposure of the environment to nanomaterials.

These include functions associated with nutrient removal and

methanogenesis in wastewater treatment plants. In a study by

Alvarez and Cervantes (2012), the process of methane

production was significantly inhibited by nanomaterials such

as Al2O3 and its toxicity was reduced when coated with humic

acids. In a similar study, Yang et al. (2012a) reported the effect of

AgNPs on methane production in landfill bioreactors at different

concentrations.

Several studies viz., Masrahi et al. (2014), Liang et al. (2010),

and Li et al. (2014) also reported nitrogen removal processes

using nanomaterials such as TiO2 and AgNPs. The negative

impact of graphene oxide was also reported on wastewater

treatment by removing nitrogen and phosphorus from waste

materials (Ahmed and Rodrigues, 2013). To discuss the effect of

nanomaterials on microbial diversity, structure and functions,

organism-determined toxicity of nanomaterials is required

i.e., each microorganism with susceptible nanomaterials

because bacteria tolerate nanomaterials differently. For

instance, Gram-positive bacteria react positively to single-

walled carbon nanotubes by changing their membrane lipid

composition. The mechanism of nanomaterials-microbe

specificity is widely unknown and there is a need to further

investigate the process (Jin et al., 2014; Mohanty et al., 2014).

Mechanisms of mitigating abiotic
stress in plants

Abiotic stresses remain one of the most significant factors

limiting the growth and yield of plant crops (Yadav, 2017). There

is a need for plants to resist stressful edaphic and environmental

conditions using either innate or induced biological mechanisms.

For induced biological mechanisms to relieve the plant of

unwanted stressors, an environmentally friendly method is

needed to avoid complications associated with the use of

synthetic chemicals. In this regard, the use of endophytic

microbes remains one of the more reliable methods to

mitigate the effects of abiotic stresses. Microbes are ubiquitous

in diverse natural environments and exhibit diverse metabolic

responses to manage soil stressors (Meena et al., 2017; Akinola

and Babalola, 2020; Akinola et al., 2021b). Due to the proximity

between plants and microbes in the soil, the plant microbiome

induces local and systemic mechanisms in crop plants to cope

with continuous changes to the environment. This synergism

(plant-microbe) in the agroecosystem induces complex

mechanisms within the plant cellular system (Figure 1).

Interestingly, the continuous change in climatic conditions has

paved the way for a better understanding of plant cellular

complexity; researchers are constantly ruminating on

questions associated with the physiological, molecular, and

biochemical processes related to plant-microbe interplay

(Glick, 2020; Akanmu et al., 2021).

Because of the growing concern about climate change, it is

important to explicitly explicate the synergy between plant-soil-

microbe about protection against abiotic stressors.

Understanding the changes in different abiotic stresses

induced by either anthropogenic or natural means is crucial

to reducing the negative effects of environmental stress as it

impacts agricultural productivity (Jalil and Ansari, 2019). A

report by the Food and Agriculture Organization (FAO) of

the United Nations on the challenges limiting global food

productivity argued that one of the major problems faced by

the scientific community in the effort to increase crop production

is unwanted abiotic stressors (FAO, 2009). As such, there is a

need to address the challenges associated with plant growth

sustainably. These include eco-friendly technological processes

and the efficient use of bioproducts to address the constraints

posed by environmental stresses (FAO, 2009).

Several abiotic factors can limit plant growth and

development including low or high temperature, heavy metal

toxicity, soil alkalinity or acidity, drought, flooding and salinity

(Emamverdian et al., 2015; Pasala et al., 2016; Jalil and Ansari,

2019). Abnormal soil acidity can lead to nutrient deficiency in

plants thereby reducing essential physiological attributes needed

to improve plant growth and development (Jalil and Ansari,

2019; Akinola and Babalola, 2020). Similarly, salt treatment

induces toxicity in plant tissues, leading to osmotic imbalance

and stress which hinders plant growth. In addition, abiotic

stressors increase the production of ROS and induce

phytotoxicity by negatively impacting protein structure and

functions (Baral and Izaguirre-Mayoral, 2017; Mukhtar et al.,

2018; Komaresofla et al., 2019).

Naturally, plant cell organelles viz., chloroplasts,

peroxisomes and mitochondria help in producing ROS,

with hydrogen peroxide and oxygen radicals being

produced in the mitochondria. Hydrogen peroxide and

oxygen are produced in the chloroplast (Jalil and Ansari,
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2019). Using peroxidase dismutase, the peroxides are

transformed into hydrogen peroxide (H2O2). The oxidation

process involved in the conversion of xanthine and

hypoxanthine to uric acid is achieved in the peroxisomal

matrix using xanthine oxidase to generate oxygen radicals

(Halliwell and Gutteridge, 2015; Jalil and Ansari, 2019). These

radicals destroy cell biomolecules, such as DNA,

carbohydrates, lipids, and proteins, resulting in cell death.

Plants can rapidly acclimatize to an abrupt change in the

environment, such as unwanted abiotic conditions. A shift in the

soil condition alters plant metabolic equilibrium and causes plant

cells to modify genetic and metabolic processes (Tuteja and

Mahajan, 2007; Tuteja and Sopory, 2008; Simontacchi et al.,

2015). Plants then activate defense mechanisms needed to relieve

unwanted stress conditions, reprogramming metabolic processes

within the plant cell, thus facilitating bio-physicochemical relief

of abiotic stress conditions (Massad et al., 2012; Mickelbart et al.,

2015; Yolcu et al., 2016).

Due to uncertainty surrounding the mechanism of action of

metallic NPs, different hypothetical mechanisms were frequently

mentioned in different studies. These include that:

a) NPs aggregate and dissolve the cell membrane, resulting in

the alteration of cell permeability and dissolution of the

PMF—Proton motive force (McQuillan, 2010; Singh et al.,

2019).

b) ROS—Reactive oxygen species that help in the destruction of

the cellular structure are produced by metallic NPs and ions

(Singh et al., 2019).

c) Absorption of metal ions by cells helps in the degradation of

intracellular ATP and the disruption of DNA synthesis (Singh

et al., 2019).

Oxidation reactions attributed to metallic ions in cells induce

responses such as ROS—due to cell signal differentiation and cell

death (Mueller et al., 2005). The integral components of ROS

include peroxomonocarbonate (HOOCO2‾), peroxynitrate

(O2NOO‾), peroxynitrite (ONOO‾), nitric compounds,

hypochlorite and hypochlorous acids, peroxyl (RO2‾), and

hydroperoxyl (HO2‾), and other oxygen-related compounds

(Wu et al., 2014). With the catalysis of superoxidase

dismutase (SOD), oxygen ions have a short lifespan due to

instant reduction. NADPH—nicotinamide adenine

FIGURE 1
Concept of endophyte interactions and biosynthesized nanoproducts to alleviate abiotic stress and enhance crop yield.
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dinucleotide phosphate oxidase in the mitochondria induces

lipid peroxidation of the cell membrane (Singh et al., 2019).

SOD initiates the complete conversion of oxygen into hydrogen

peroxide. Physiologically, different detoxifying enzymes viz.,

glutathione peroxidase, catalase, SOD and antioxidants

(flavonoids, vitamin E and ascorbic acids) modulate

intracellular stages. Meanwhile, ROS activated by NPs of

either CuO, ZnO or Ag plays a crucial role in genotoxicity.

Oxidative stress degraded genetic materials are associated with

different biological mechanisms viz., mutagenesis. Stress

activation due to oxidative species results in nanotoxicity and

the accumulation of oxidative stress leading to DNA destruction

(Fu et al., 2014). The destruction of DNA because of OS; involves

the breakage of single and double-stranded sugar bases, the

generation of basic sites and DNA-protein crosslinks. Closely,

hydroxyl radicals cause rapid damage to cells, whereas, from a

distance, less-reactive ROS may interact easily (Fu et al., 2014).

Microbe-induced abiotic stress
tolerance

An adaptation used in the process of abiotic stress tolerance

is often referred to as induced systemic tolerance/resistance (IST/

ISR). The intrinsic genetic and metabolic potential of microbes

contribute immensely to the relief of plants from abiotic stresses

(Gopalakrishnan et al., 2015). The role of endosphere and

rhizosphere inhabitants belonging to different genera viz.,

Cyanobacteria (Singh et al., 2011), Trichoderma (Pandey et al.,

2016; Igiehon and Babalola, 2021), Burkholderia (Naveed et al.,

2014a; Naveed et al., 2014b), Methylobacterium (Meena et al.,

2012), Bradyrhizobium (Tittabutr et al., 2013), Enterobacter

(Sorty et al., 2016), Bacillus (Ashraf et al., 2004; Sorty et al.,

2016), Pantoea (Sorty et al., 2016), Rhizobium (Igiehon and

Babalola, 2021; Igiehon et al., 2021), Azospirillum (Omar

et al., 2009), Azotobacter, and Pseudomonas (Ndeddy Aka and

Babalola, 2016) have functional traits useful in improving plant

growth under abiotic stresses. The functional role of Trichoderma

harzianum in alleviating soil stresses through the upregulation of

genes such as malonialdehyde, dehydrin, and aquaporin genes,

has been reported by Pandey et al. (2016) on different serotypes

of rice. Also, the synthesis of exopolysaccharides, antioxidants,

protein defensins and phytohormones may be induced using

plant growth-promoting rhizobacteria. Most of these functions

are effective against drought and other abiotic stressors (Kaushal

and Wani, 2016). Therefore, the effective productivity

monitoring parameters, viz., screening, selection and

inoculation of stress-mitigating microbes, can be helpful as a

viable option to increase crop productivity to solve the problem

of a growing world population with insufficient food (Akinola

and Babalola, 2021). Trichoderma harzianum inoculation

enhances the oil content of Brassica juncea inhibited by

salinity stress and improves the plant’s physiological traits,

such as reducing sodium ion uptake, enhancing osmolyte

synthesis, antioxidant accumulation, and facilitating the

uptake of essential plant nutrients (Ahmad et al., 2015).

Similarly, ACC deaminase production was shown to be

responsible for the upregulation of monodehydroascorbate

reductase in B. juncea (Brotman et al., 2013). Also, the

addition of Acinetobacter sp. and Pseudomonas sp. have been

used to increase the production of ACC deaminase and indole-3-

acetic acid (IAA) in oat and barley grown in salinity-stressed soil

(Chang et al., 2014). Streptomyces sp. strain PGPA39 has also

been used to alleviate salinity stress in tomato plants (Palaniyandi

et al., 2014). In Arabidopsis, wheat, and maize plants,

Burkholderia sp., has been used to relieve plants and soil of

salt and drought stresses (Naveed et al. (2014a); Naveed et al.

(2014b); Pinedo et al. (2015).

There are a large number of microorganisms within

proximity to plant tissues and across the vicinity of plant

roots because the plant root exudates provide diverse

metabolites and nutrients which attract beneficial

microorganisms. These metabolites are crucial to the

microbial presence surrounding and attached to plants

(Akinola et al., 2021a; Akinola and Babalola, 2021) with

chemoattraction being associated with microbial movement

toward these compounds (Meena et al., 2017). While utilizing

these plant exudates, plant growth-beneficial microorganisms

associated with the plant endosphere induce both direct and

indirect mechanisms, such as biocontrol agents,

phytostimulation, and biofertilization (Hayat et al., 2010;

Akinola and Babalola, 2020).

Indirect mechanisms of plant growth promotion include the

production of antimicrobial agents, hydrogen cyanide (HCN),

and antibiotics, which exert antagonistic effects against plant

pathogens. Direct mechanisms include nitrogen fixation,

stimulation of plant hormone synthesis, solubilization of

potassium and phosphorus, synthesis of siderophores which

facilitate iron uptake, and sequestration of zinc and other

micro-and macronutrients from the soil (Meena et al., 2017).

In addition, many plant-associated microbes also induce

systemic resistance against various phytopathogens triggered

by plant secondary metabolites (Meena et al., 2017;

Omomowo and Babalola, 2019). Apart from bacteria,

mycorrhizal fungi are also good to plant growth promoters.

These include both vesicular-arbuscular mycorrhiza (VAM)

and other ectomycorrhizal fungi (Akinola and Babalola, 2021).

These fungi use their extensive hyphal networking to increase

plant nutrient uptake. For instance, in studies by Sun et al. (2010)

and Baltruschat et al. (2008), an endophytic

fungus—Piriformospora indica was used to improve drought

and salinity tolerance in Chinese cabbage and barley,

respectively. These processes were achieved by improving both

physiological traits and the level of plant antioxidants. At some

point, microbes activate systemic or local stress responses in

plants under abiotic stress. In other instances, they activate direct
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TABLE 1 Examples from the recent literature of the effect of plant growth-promoting microbes in the relief of plant stress.

Crop type Adopted organism(s) Stress Inference References

Fungi Bacteria Archaea

Wheat Bacillus pumilus (FAB10) Salinity Enhanced wheat growth with
improvement in
photosynthesis, plant tissue
proline content, and
transpiration

Ansari et al.
(2019)

Paddy plants Curtobacterium albidum
(SRV4)

Salinity Improved plant proline
content, membrane
solubilization index, and
photosynthetic pigment
efficiency

Vimal et al. (2019)

Wheat Bacillus megaterium + B.
licheniformis + Fulvic acid

Alkalinity Improved plant growth,
reduction in soil cadmium,
increase in organic matter

Li et al. (2019)

Guinea grass (Megathyrsus
maximus)

Bacillus spp. Drought Increased accumulation of
proline and glutathione
reductase activity

Moreno-Galván
et al. (2020)

Maize (Zea mays L.) Azotobacter salinestris, A.
chroococum

Drought Increase in shoot dry weight,
chlorophyll content, plant
height and N, P, Fe
concentration

Shirinbayan et al.
(2019)

Lettuce Latuca sativa Curtobacterium herbarum
(CAH5)

Drought Reduction in oxidative stress
and lipid peroxidation

Silambarasan
et al. (2019)

Common ice-plant
(Mesembryanthemum
crystallinum L.)

Streptomyces diastaticus
WZ902 (LC390202), Bacillus
subtilis subsp. Inaquosorum
LM03-B (LC390203)

Salinity Increased plant growth, and
elongated roots. ACC
deaminase activity,
phosphorus solubilization,
and siderophore production

Mahmood et al.
(2019)

Sorghum and sudan grass
seedlings on red mud

Trichoderma
asperellum RM-28

Sodic/saline-
Alkalinity

Decreased pH and EC of red
mud, and improved plant
chlorophyll content, growth,
and oxidative stress

Anam et al. (2019)

Salicornia sp Staphylococcus
sp. (rhizosphere strain) +
Staph. sp. (endophytic strain)

Salinity Enhanced growth and high
salt tolerance with both
strains. Increased phosphate
solubilization and IAA
production

Komaresofla et al.
(2019)

Thale cress Arabidopsis
thaliana

Pantoea stewartii JZ2, Bacillus
sp. JZ34, Microbacterium
barkeri JZ37, Arthrobacter
sp. JZ12, Cellulomonas
sp. JZ18

Salinity Endophytic bacteria from the
desert help reduce Na+/K+

ratio and increase plant shoot
and root biomass

Eida et al. (2019)

Sulla carnosa Actinobacter sp. (Br3) +
Pseudomonas putuda (Br18) +
Curtobacterium sp. (Br20)

Salinity Enhanced soluble sugar,
oxidative enzyme activities,
ameliorated induced soil
salinity and increased plant
growth

Hmaeid et al.
(2019)

Wheat (Triticum aestivum) 1-aminocyclopropane-1-
carboxylate dismutase
(ACCD)-producing Klebsiella
spp. (8IJA, 27IJA)

Salinity Increase in plant biomass and
superoxidase dismutase
activity

Acuña et al.
(2019)

Maize (Zea mays L.) Glomus tortuosum Salinity Increased crop output,
chlorophyll content, and
rubisco activity

Xu et al. (2018)

Finger millet (Eleusine
coracana L. Gaertn)

Pseudomonas spp. Drought Improved growth
performance and foliar
nutrient content and
increased antioxidant
properties

Chandra et al.
(2018)

(Continued on following page)
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TABLE 1 (Continued) Examples from the recent literature of the effect of plant growth-promoting microbes in the relief of plant stress.

Crop type Adopted organism(s) Stress Inference References

Fungi Bacteria Archaea

Ice plant (Aizoaceae spp.) Mesembryanthemum
crystallinum

Salinity Increase in rubisco activity,
crop output, and chlorophyll
content

Zhang et al.
(2018)

White clover (Trifolium
repens)

Azospirillum brasilense Salinity Polyphenols and phenol
production

Khalid et al.
(2017)

Lettuce (Latuca sativa) Curtobacterium herbarum
(CAH5)

Drought and
Aluminium
stress

Increased plant root and
shoot growth, enhanced
plant growth under 4-
nitroaniline

Silambarasan and
Vangnai (2017)

Maize (Zea mays L.) Pseudomonas putida (FBKV2) Drought Increase in root length and
dry biomass

Vurukonda et al.
(2016)

Mung beans (Vigna radiata) Bacillus drentensis,
Enterobacter cloacae

Salinity Increase in plant height, seed
yield, dry biomass,
chlorophyll content, water
absorption rate,
transpiration, and salt
tolerance

Mahmood et al.
(2016)

Tomato (Solanum
lycopersicum)

Arthrobacter strains (TF1,
TF7), Bacillus megaterium
(TF2, TF3)

Salinity Increase in seedling length,
vigor index, dry weight, and
tomato seed germination

Fan et al. (2016)

Maize (Zea mays L.) Chryseobacterium humi
ECP37 + Pseudomonas
reactans EDP28

Salinity Increased seedling and plant
yield

Moreira et al.
(2016)

Maize (Zea mays L.) Glomus
etunicatum +

Methylobacterium oryzae
CBMB20

Improved crop yield after the
in vivo application of
organisms

Lee et al. (2015)

Garden thyme (Thymus
vulgaris)

Enterobacter sp. + Bacillus
sp. + Bacillus thuringensis +
agrowaste

Drought Optimal nutrition and better
physiological traits compared
to control

Armada et al.
(2015a)

French lavender (Lavandula
dentate), Common sage
(Salvia officinalis), Lavender-
cotton (Santolina
chamaecyparissus)

Maize (Zea mays L.) Consortium
of AMF

Bacillus thuringensis Drought Increased plant growth,
photosynthesis efficiency,
decreased oxidative damage
to lipids, increased
accumulation of proline and
nutrient

Armada et al.
(2015b)

Chicken pea (Cicer arietinum)
cultivars BG-3629, BG-1003

Pseudomonas putida Drought Conferred drought tolerance
by improving several
biochemical and
physiological parameters

Tiwari et al.
(2016)

Mung beans (Vigna radiata) Pseudomonas putida (SB21) Acidity The large increase in plant
growth

Saluja et al. (2014)

Mung beans (Vigna radiata) Comamonas spp. (SB20) Alkalinity Increase in plant yield after
exposure to alkaline soil

Saluja et al. (2014)

White clover (Trifolium
repens)

Arbuscular
mycorrhiza fungi
(AMF) +

Combination of any two of
Bacillus thuringensis,
Rhizophagus intraradices,
Pseudomonas putida

Drought Increased root and shoot
weight with high
superoxidase dismutase
(SOD) activity

Ortiz et al. (2015)

Common bean (Phaseolus
vulgaris)

Pseudomonas fluorescens Salinity Na+ exclusion, proline
production, increased SOD,
catalase activity and shoot
biomass

Younesi and
Moradi (2014)

(Continued on following page)
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TABLE 1 (Continued) Examples from the recent literature of the effect of plant growth-promoting microbes in the relief of plant stress.

Crop type Adopted organism(s) Stress Inference References

Fungi Bacteria Archaea

Barley (Hordeum vulgare),
Oats (Avena sativa)

Pseudomonas sp.,
Acinetobacter spp.

Salinity Increased IAA and ACC
deaminase production

Chang et al.
(2014)

Rice sensitive to salt (GJ-17) Bacillus pumilus,
Pseudomonas
pseudoalcaligenes

Salinity Increased SOD activity and
reduced lipid peroxidase

Jha and
Subramanian
(2014)

Tomato (Solanum
lycopersicum)

Streptomyces sp. (PGPA39) Salinity Phosphate solubilization,
increased plant yield, IAA
production, and ACC
deaminase activity

Palaniyandi et al.
(2014)

Mung beans (Vigna radiata L) Pseudomonas sp. +
Rhizobium sp

Salinity Increased ACC deaminase
activity and IAA production

Ahmad et al.
(2013)

Wheat (Triticum aestivum) Serratia ficaria, Enterobacter
cloacae, Pseudomonas
fluorescens, P. putida

Salinity Improved nutrient uptake
and enhanced plant growth

Nadeem et al.
(2013)

Rice (Oryza sativa) Bacillus amyloliquefaciens
NBRISN13 (SN13)

Salinity Increased colonization of
osmoprotectant utilizing
microbes to induce salt
tolerance in rice

Nautiyal et al.
(2013)

Wheat (T. aestivum) Halobacillus spp Bacillus
halodenitrificans

Salinity Increase in dry weight and
root length of the plant

Ramadoss et al.
(2013)

Tomato (Solanum
lycopersicum)

Bacillus pumilis, Bacillus
subtilis

Salinity High PGP traits, vigor index,
and ability to tolerate saline
soil

Damodaran et al.
(2013)

Wheat (T. aestivum) Streptomyces sp Salinity Increase in N, P, Fe, and Mn
of the wheat shoots and
alleviation of salt inhibition

Sadeghi et al.
(2018)

Rice (Oryza sativa) Bacillus sp., Alcaligenes sp.,
Ochrobactrum sp

Salinity Increased germination, root,
shoot growth, and
chlorophyll content. ACC
deaminase reduces ethylene
production under salt stress

Bal et al. (2013)

Groundnut (Arachis
hypogaea L.)

Haererohalobacter sp. (JG-11),
Bravibacterium casei (JG-08),
Brachybacterium
saurashtrense (JG-06)
Raoultella planticola Rs-2

Salinity Increase in phosphorus,
nitrogen content, High Ca2+

and balanced K+/Na+ ratio.
ACC deaminase activity

Shukla et al.
(2012)

Salinity ACC deaminase activity and
high plant yield

Wu et al. (2012)

Mung bean (Vigna radiata) Rhizobium phaseoli + PGPR
(Pseudomonas fluorescens
(MK20), P. syringae MK1)

Salinity Increased efficiency of water
use and ACC deaminase
activity

Ahmad et al.
(2012b)

Wheat (T. aestivum) Bacillus sp. (SKU-3),
Paenibacillus sp. (SKU-11)

Salinity Exopolysaccharides
produced by test organisms
mitigate soil salinity

Upadhyay et al.
(2011)

Sunflower treated with NaCl Pseudomonas fluorescens
biotype F, P. fluorescens
CECT378T

Salinity Balanced K+/Na+ ratio,
siderophore, and IAA
production

Shilev et al. (2012)

Wheat (T. aestivum) Pseudomonas extremorientalis
(TSAU6), P. aureantiaca
(TSAU22), P. extremorientalis
(TSAU20)

Salinity Production of
phytohormones such as
gibberellin, auxin, zeatin, and
alleviation of salinity
inhibition

Egamberdieva
(2009)

Soybean (Glycine max) P. putida (62BN) Acidity Reduction in cadmium
concentration and increased
plant growth in acidic soil

Rani et al. (2009)

Soybean (Glycine max) P. monteilli (97AN) Alkalinity Increased plant growth and
amelioration of soil alkalinity

Rani et al. (2009)

(Continued on following page)
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TABLE 1 (Continued) Examples from the recent literature of the effect of plant growth-promoting microbes in the relief of plant stress.

Crop type Adopted organism(s) Stress Inference References

Fungi Bacteria Archaea

Wheat seedling Exopolysaccharides producing
bacterial strains viz.
Aeromonas hydrophila/caviae
(MAS-765), Bacillus insolitus
(MAS17), Bacillus
sp. (MAS617, MAS620,
MAS820)

Salinity Increased physiological
properties (root, shoot, and
yield) in a saline
environment and reduced Na
+ uptake by the plant

Ashraf et al.
(2004)

Indian mustard (Brassica
juncea L.) Barley (Hordeum
vulgare)

Trichoderma
harzianum
Piriformospora
indica

Salinity An antioxidative defense
system was used to mitigate
the effect of NaCl on plant

Ahmad et al.
(2015)

Salinity Microorganism induces
desaturation of fatty acids in
leaves, attenuated NaCl-
induced lipid peroxidation
and metabolic heat efflux
useful in salt tolerance

Baltruschat et al.
(2008)

Arabidopsis thaliana Trichoderma spp. Salinity Activation of antioxidative
compounds viz. ACC
deaminase for tolerance
against salt stress

Brotman et al.
(2013)

Soybean (Glycine max) AMF Rhizobium spp Drought The synergy between AMF
and Rhizobium spp. Relieve
plants of drought stress by
increasing the level of plant
proline

Igiehon and
Babalola (2021)

Rice (Oryza sativa L) Bacillus pumilus Salinity and
heavy metal

The bacterium reduces the
antioxidative activity of the
plant due to the limited
uptake of Na+

Khan et al. (2016)

Rice (Oryza sativa L) Trichoderma
harzianum Th-56

Drought T. harzianum modulates the
activation of essential
compounds such as lipid,
peroxidase, SOD, and
proline, needed to improve
drought tolerance in tice

Pandey et al.
(2016)

Micro Tom Tomato Streptomyces sp. PGPA 39 Salinity Reduction in leaf proline
content increased
chlorophyll content and
plant biomass after
inoculating the plant with
Streptomyces sp

Palaniyandi et al.
(2014)

Piptatherum miliaceum L.
Thymus vulgaris Letc.

AMF Bacillus thuringensis Drought Decreased stomatal
conductance, electrolyte
leakage, proline activity,
increased water content, and
nutrient uptake

Ortiz et al. (2015)

Brassica juncea Pseudomonas aeruginosa,
Bacillus subtilis, Alcaligenes
faecalis

Heavy metal Organisms reduce the
uptake, toxic effect of heavy
metals and also increase
plant growth

Ndeddy Aka and
Babalola (2016)

Maize (Zea mays L) Endophytes Burkholderia
phytofirmans (PsJN),
Enterobacter sp. FD17

Drought Endophytes relieve the effect
of drought by increasing
root-shoot biomass,
chlorophyll content,
photosynthesis, leaf area, and
other physiological traits

Naveed et al.
(2014b)

Wheat Burkholderia phytofirmans
PsJN

Drought B. phytofirmans increases
ionic balance, antioxidant
level, nutrient uptake, and

Naveed et al.
(2014a)

(Continued on following page)
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responses to support plant growth and development. This

complex and multipronged action of soil microbes makes

them a vital and viable choice for disease suppression and

abiotic stress control in plants (Franken, 2012; Meena et al.,

2017).

Several mechanisms have highlighted the enormous benefit

of plant-associated microbiomes (Kushwaha et al., 2020; Glick

and Gamalero, 2021; Adeleke and Babalola, 2022). The microbes

found in the plant root environment typically belong to the

genera Pseudomonas, Klebsiella, Aeromonas, Azotobacter,

Enterobacter, Bacillus, Azospirillum, and Achromobacter (Ortiz

et al., 2015; Kaushal and Wani, 2016; Sorty et al., 2016; Babalola

et al., 2021; Fasusi et al., 2021) (Table 1).

All rhizosphere and endosphere bacteria with the ability to

maintain plant growth under different adverse soil conditions are

referred to as plant growth-promoting bacteria (PGPB) (Agri

TABLE 1 (Continued) Examples from the recent literature of the effect of plant growth-promoting microbes in the relief of plant stress.

Crop type Adopted organism(s) Stress Inference References

Fungi Bacteria Archaea

protein concentration in
grains

Legume Bradyrhizobium,
Rhizobacteria containing
stress-induced ACC
deaminase

High
temperature,
Drought, and
salinity

Synergism between used
organisms mitigated
different plant stressors by
adjusting the expression of
ACC deaminase to varying
levels of stress conditions

Tittabutr et al.
(2013)

Chinese cabbage Piriformospora
indica

Drought Plastid-localized CAS
proteins, drought-related
genes and antioxidant
enzymes were stimulated

Sun et al. (2010)

Rice (Oryza sativa L.) Pseudomonas putida
MTCC102

Nutrient
deficiency

P. putida strain relieved the
stress of iron deficiency

Sharma et al.
(2013)

Rice (Oryza sativa L.) Pseudomonas strains PF1,
TDK1

Salinity Pseudomonas strains relieved
the plant of salt stress,
increased physiological
parameters, such as root and
shoot length, dry weight, and
plant height

Sen and
Chandrasekhar
(2014)

Arabidopsis thaliana Burkholderia phytofirmans
PsJN

Salinity B. phytofirmans induces
long-term transcriptional
and metabolic changes in
plants, suggesting the need to
understand spatiotemporal
mechanisms associated with
the process

Pinedo et al.
(2015)

Wheat (Triticum aestivum L.) Sinorhizobium strains,
Rhizobium sp., Pseudomonas
sp., Enterobacter sp.,
Acinetobacter sp., Bacillus,
Pantoea sp

Salinity Plant growth-promoting
bacteria isolated from
halophytic weeds help
germination and seedling
wheat growth under saline
stress

Sorty et al. (2016)

Chinese cabbage Piriformospora
indica

Drought The upregulation of the
expression level of drought-
related genes, viz. RD290A,
ANACO72, CBLI, and
DREB2A in the leaves of
Chinese cabbage help relieve
plants of imposed drought
stress

Sun et al. (2010)

Barley (Hordeum vulgare L.) Hartmannibacter
diazotrophicus E19T

Salinity H. diazotrophicus increased
the root and shoot ratio of
barley under salt stress. This
growth promotion was
associated with ACC-
deaminase production

Suarez et al.
(2015)
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et al., 2022). There are other mechanisms plant microbes use to

promote plant growth and development. IAA is produced to

improve plant root development (Meena et al., 2017) where

auxins initiate root growth and cell elongation. However, the

high production of auxin may negatively affect root growth

(Sorty et al., 2016; Akinola and Babalola, 2020). High auxin

secretion also has drawbacks because of the increased ethylene

production. In addition, the enzyme ACC deaminase is a key

component in lowering the stress ethylene that results from both

biotic and abiotic stress (Glick, 2004).

The mechanisms mentioned above have been reported in

rhizosphere bacteria and fungi with enhanced phytohormones

production for sustainable plant growth (Belimov et al., 2007;

Ojuederie et al., 2019; Akinola et al., 2021c). Other studies have

employed rhizobiomes to mitigate environmental stresses and

improve the growth of crop plants in maize (Rojas-Tapias et al.,

2012; Akinola et al., 2021a; Chaudhary A. et al., 2021), rice

(Sharma et al., 2013), soybean (Sen and Chandrasekhar, 2014),

and barley (Suarez et al., 2015).

The use of nanomaterials to relieve
abiotic plant stresses

Plants possess several mechanisms needed to cope with

unwanted soil conditions, including heat stress, drought,

flooding, salinity, and chilling. Several researchers have

studied molecular and cellular plant responses to abiotic stress

(Gepstein and Glick, 2013; Ali and Glick, 2019; Santoyo et al.,

2021a). Primarily, plants respond to abiotic stress using methods,

such as an increase in MAPK (mitogen-activated protein kinase),

abscisic acid, ROS, increased intracellular messenger viz.,

polyphosphate, inositol and raised Ca2+ in the cytoplasm as

shown in Figure 2.

Meanwhile, stress relief responses, such as regulation of the

expression of specific stress genes, and the proteins involved in

the protection from cellular damage are involved in the advanced

level of plant response. In addition, secondary metabolites ensure

physiological processes to reduce abiotic stress conditions by

activating the biosynthesis of polyamines signal transduction,

ROS-induced photosystem protection and stabilizing cellular

structure (Oh et al., 2009; Jalil and Ansari, 2019).

In mitigating soil stresses, the plant cell wall helps in plant

adaptation and guides against stress perception. Induced

peroxidases modify plant cell walls, which bring together

oxidative stress and ROS when in contact with plant stressors

(Rouet et al., 2006; Daudi et al., 2012). When plants encounter

oxidative stress, immediate defense responses, such as the

regulation of gene expression, enzyme production,

phenylpropanoid aggregation, and ROS are produced (Daudi

et al., 2012; Jalil and Ansari, 2019).

Although plants develop various mechanisms to initiate

responses against adverse conditions. Nevertheless, their

responses may differ even among the same plant species.

Consequently, augmentation of stress tolerance in plants and

identification of tolerant plant material remains conservative and

FIGURE 2
The use of nanotechnology to suppress abiotic stress conditions in a plant cell.

Frontiers in Environmental Science frontiersin.org13

Adeleke et al. 10.3389/fenvs.2022.1015897

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2022.1015897


ecofriendly methods towards sustainable agricultural practices

and crop production (Akinola et al., 2022; Chaudhary et al.,

2022). Nanoscience is an emerging multi-disciplinary area that

involved the use of nanomaterials in different fields at the nano-

level. The most promising application of nanoscience could be

exploited in agroecosystem practices, food processing and

packaging materials. In the current scenario, nanomaterials

can be used as a tool to effectively promote plant growth and

also ameliorate plant stressors (Saxena et al., 2016; Chaudhary

et al., 2021b).

A lot has been done on the use of nanotechnological

approaches to stress responses (Shabnam et al., 2014; Tripathi

et al., 2015; Singh and Lee, 2016). The effect of NPs on sustainable

plant growth and development is concentration-dependent,

which also increases antioxidant enzyme activity. For example,

in a study to assess the effect of TiO2 NPs on onion seedlings,

TiO2 NPs increased the activity of the superoxidase dismutase

enzyme (Laware and Raskar, 2014). Meanwhile, a drastic change

in the physiological traits of the onion plant was noticed with an

increased concentration of TiO2 NPs (Laware and Raskar, 2014).

Under these conditions, the activities of the catalase and amylase

enzymes decreased at lower concentrations of TiO2. In another

study by Changmei et al. (2002), SiO2 and TiO2 NPs showed

significant positive effects on the growth and sprouting ofGlycine

max seedlings.

Effect of NPs on heavy metal stressed
plants

Contamination of the plant-soil environment by metallic

ions is a severe menace to sustainable agricultural practices

worldwide. Heavy metal stress increases plant toxicity, thus

leading to retarded plant growth (Chibuike and Obiora, 2014;

Jalil and Ansari, 2019). This happens due to decreased enzymatic

activities induced by a continuous decrease in essential nutrients

available in the soil (Sharma et al., 2012). Furthermore, heavy

metal ions induce ROS production affecting the plant’s

physiological properties; viz., membrane permeability

reduction, cell structure deformation, and degradation of

available plant cell protein. To relieve the constraints

attributed to heavy metal stress, plants induce defense

mechanisms including the production of polyphosphates,

organic acids, and metal chelates, which all reduce the influx

of metal ions and activate the synthesis of antioxidants to lower

ROS production. The activation of these defense mechanisms

ensures resistance against heavy metal stress. Moreover, the use

of synthesized NPs can reduce the burden of phytotoxicity

induced by heavy metals on plants (Sharma et al., 2012;

Gunjan and Zaidi, 2014; Tripathi et al., 2015).

Because of the small size and surface area of synthesized NPs,

they can easily penetrate plant cells and retain a high affinity for

metallic ions. In a study by Worms et al. (2012), it was reported

that quantum dots (i.e., the nanoparticles of a semiconductor)

reduce Pb and Cu accessibility to plant cells. The report of Singh

and Lee (2016) showed TiO2 NPs reduce Cd toxicity and improve

physiological traits, viz., plant growth, and photosynthetic rate.

The study of Li and Huang (2014) with Brassica juncea revealed

the effect of hydroxyapatite NPs in the relief of cadmium toxicity.

Similarly, synthesized SiNPs helped to reduce chromium toxicity

in peas (Tripathi et al., 2015). Shabnam et al. (2014) also

discovered that the treatment of cowpea with AuNPs induces

a reduction of Au ions to a nontoxic form by phenolic

compounds of cowpea seeds (Table 2).

Effect of NPs on heat stress

Exposing a plant to an extreme temperature for a long period

results in retarded plant growth and development. Heat stress

reduces photosynthetic and chlorophyll content, membrane ion

leakage, protein degradation, and lipid depletion. This is because

an increase in ROS generation induces oxidative stress (Wahid,

2007; Karuppanapandian et al., 2011; Prasad et al., 2011).

Haghighi et al. (2014) reported the effect of low

concentrations SeNPs in reducing heat stress by stimulating

the photosynthetic ability of plants, increasing hydration, and

improving plant growth.

Anti-oxidative properties of the plant have also been

improved at low SeNPs levels, while high concentrations of

SeNPs induce oxidative stress (Haghighi et al., 2014). Plants

induce the production of molecular chaperones and heat shock

proteins during heat stress to resist oxidative stress

(Hasanuzzaman et al., 2013; Hasanuzzaman et al., 2014).

Furthermore, carbon nanotubes, such as HSP90 have been

used to upregulate genes involved in heat shock protein synthesis.

A study by Zhao et al. (2012) showed that the exposure of maize

to CeO2NPs upregulates HSP70 and generates large amounts of

hydrogen peroxide.

Effect of NPs on salinity stress

Salinity is an important abiotic stressor that deteriorates and

limits the output of food crops. Owing to the susceptibility of

most plants (i.e., lycophyte category) to salt stress, the majority of

plant products are negatively affected, thereby reducing their

economic value (Munns and Tester, 2008; Akinola and Babalola,

2020). Salinity stress hinders both physiological and biochemical

processes associated with the sprouting of the plant.

Salinity causes one or more of the following: specific ionic

toxicity, nutritional imbalance, and a reduced osmotic potential

(Jalil and Ansari, 2019). In addition, some other critical

physiological processes, such as lipid metabolism, protein

synthesis, and photosynthesis, are often negatively affected

(Parida and Das, 2005). The use of nano-based-fertilization
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TABLE 2 Some recent reports of the effect of nanotechnology in alleviating plant stressors.

Nanoparticle Characterization Plant
stress

Size of
the
nanoparticle

Test plant Inference References

CuNPs SEM, XRD Drought 30 nm–40 nm Maize (Zea
mays L.)

CuNPs increased carotenoid,
chlorophyll, and anthocyanin
levels in maize grown under
drought stress. Also, reactive
oxygen species (ROS) decreased
as a result of the activities of
scavenging enzymes

Van Nguyen et al.
(2022)

MgNPs SEM, XRD Lead-induced ≈20 nm Daucus carota MgNPs help to detoxify ROS to
mitigate Pb-induced stress and
improve plant growth and
nutrient uptake

Faiz et al. (2022)

Chitosan-Selenium NPs
(Cs-SeNPs)

XRD, SEM, TEM Salinity ≈50 nm Bitter melon
(Momordica
charantia)

Cs-SeNPs alleviated the effect of
salinity stress by reducing Na+

aggregation, MDA and H2O2

oxidants and increased relative
water content, K+, proline
concentration and antioxidant
enzyme activity in plant

Sheikhalipour et al.
(2021)

CeNPs XRD, SEM Salinity 10 nm Rice (Oryza
sativa L.)

CeNPs enhanced nitric oxide
production by activating the
transcription of NIA2-encoding
nitrate reductase and controlling
dephosphorylation of its protein
which resulted in NO production
and plant tolerance to salt

Zhou et al. (2021)

FeNPs FTIR, XRD, SEM,
TEM, EDS

Drought and
Cadmium
toxicity

18 nm–94 nm Rice (Oryza
sativa L.)

FeNPs decreased ROS and
improved plant biomass, nutrient
acquisition, photosynthesis
efficiency, and other plant
physiological traits. More also,
Cd transporter genes (OsLCT1,
OsHMA2, OsHMA3) were
curtailed in FeNPs-treated rice
plant

Ahmed et al. (2021)

SiNPs XRD, SEM, TEM Salinity < 50 nm Lentil (Lens
culinaris
Medik.)

SiNPs improved the
physiological traits viz. root
length, shoot length, seedling
fresh and dry weight of lentil
under salinity stress

Sabaghnia and
Janmohammadi (2015)

ZnNPs SEM, XRD Drought 10 nm–30 nm Soybean
(Glycine max)
seeds

ZnNPs were effective on seedling
growth in water stress conditions

Sedghi et al. (2013)

AgNPs + 2, 4-
dichlorophenoxyacetic
acid

XRD, SEM Oxidative 10 nm–40 nm Vigna radiata L The synergistic effect of AgNPs
and 2, 4-dichlorophenoxyacetic
acid inhibited senescence in
plants under oxidative stress

Karuppanapandian
et al. (2011)

TiNPs SEM, XRD Cold 7 nm–40 nm Cicer
arietinum L

TiNPs increased cold tolerance
via an improved redox status of
plant

Mohammadi et al.
(2013)

SiNPs SEM, UV-Vis, XRD Heavy metal 10 nm–30 nm Pisum sativum L SiNPs protected plants against
phytotoxicity induced by
chromium and improved plant
growth

Tripathi et al. (2015)

CeNPs SEM, XRD Heat shock
and lipid
peroxidation

10 nm ± 1 nm Zea mays L Improved plant growth under
heat shock

Zhao et al. (2012)

TiNPs SEM, XRD, TEM Heavy metal < 100 nm Glycine max TiNPs increased Cd uptake and
minimize stress induced by Cd
on soybean

Singh and Lee (2016)

(Continued on following page)
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processes proffers solutions to relieve unwanted plant stresses

and enhance the efficient use of plant resources. Less than 50%

of applied chemical pesticides and fertilizers are used by the

plant; the remainder often increases soil toxicity. This problem

and many other growth-impeding factors may be effectively

resolved using nanoscience (Martínez-Ballesta et al., 2016). For

instance, the use of SiNPs and Si-fertilizer has a sustainable

effect on the morphological and physiology of basil plants

(Ocimum basilicum) under salinity stress. The results of this

study suggested that the change in the physiological traits may

be a result of tolerance induction in the basil plant, which helps

to mitigate the effect of salt stress (Kalteh et al., 2018). Many

other studies have shown that SiO2NPs can relieve the effect of

salinity stress. For example, Haghighi et al. (2014) and

Sabaghnia and Janmohammadi (2015) showed the positive

effects of SiNPs on Lens culinaris Medik. Under salinity

stress, SiNPs was able to induce a significant increase in the

growth of Lens culinaris Medik seedlings and the germination

of seeds. Introducing SiNPs not only enhances early seedling

growth and seed germination but also improves other growth

features associated with the plant under salinity stress. In the

same study by Haghighi et al. (2014) on tomatoes, SiO2NPs

decreased ionic toxicity of the stressor leading to a substantial

increase in the shoot, root fresh and dry weight of tomato plants

under salt stress. Gao et al. (2006) showed the effect of SiO2NPs

on maize plants after long exposure to salinity stress. Applying

SiO2NPs enhanced the sprouting of the plant (Savvas et al.,

2009), as shown in Table 2. The mechanism of action of silica

nanoparticles reduces the Na+ ion concentration in the plant.

As a result, limited Na+ ion is available for absorption by plant

tissues. Since salinity stress increases Na+ ion uptake and

osmotic potential, the process of contamination is reduced

using SiO2NPs because of this mechanism of action (Raven,

1983).

TABLE 2 (Continued) Some recent reports of the effect of nanotechnology in alleviating plant stressors.

Nanoparticle Characterization Plant
stress

Size of
the
nanoparticle

Test plant Inference References

SiNPs XRD, SEM, TEM Salinity 20 nm–30 nm Basil (Ocimum
basilicum)

Significantly increased the
morphological and physiological
traits of plants under salt stress

Kalteh et al. (2018)

Single-walled carbon
nanotubes (SWNTs)

ICP-MS, SEM Drought 10 nm–20 nm Arabidopsis
thaliana

Plant nanotubes augmented
photosynthetic and biochemical
sensing

Giraldo et al. (2014)

TiNPs SEM, TEM Drought 20 nm–30 nm Wheat TiNPs increased the agronomic
traits of plants under drought
stress

Jaberzadeh et al. (2013)

TiNPs SEM, XRD Cold 7 nm–40 nm Cicer
arietinum L

TiNPs induced positive
physiological effects on plant cells

Hasanpour et al. (2015)

SeNPs XRD, SEM High and low
tempt

20 nm–30 nm Lycopersicum
esculentum

SeNPs helped to improve plant
growth under high and low-
temperature stress

Haghighi et al. (2014)

Hydroxyapatite
(HAP) NPs

SEM, TEM Heavy
metal (Cd)

10 nm–40 nm Brassica
chinensis L. (bok
choy)

HAPNP reduced Cd uptake and
other effects of Cd-contaminated
soil

Li and Huang (2014)

SiNPs XRD, ICP-MS, SEM Drought 10 nm–30 nm Hawthorn
(Crataegus sp.)

Increased plant biomass, xylem
water potential, and
malondialdehyde (MDA)
content

Ashkavand et al. (2015)

SiNPs TEM Drought 10 nm–15 nm Wheat grass
(Agropyron
elongatum L.)

SiO2NPs significantly increased
seed germination of tall wheat
grass

Azimi et al. (2014)

TiNPs TEM, SEM Drought ≈21 nm Onion (Allium
cepa)

TiNPs enhanced seed
germination and seedling growth.
It also increased the activities of
hydrolytic and antioxidant
enzymes, amylase, protease,
and SOD

Laware and Raskar
(2014)

AgNPs XRD, SEM Salinity, cold,
Heat and
Drought

10 nm–30 nm A. thaliana AgNPs are a novel and eco-
friendly method to control
multiple abiotic stressors

Kohan-Baghkheirati
and Geisler-Lee (2015)

Key (definition of abbreviations): SEM, scanning electron microscope, XRD—X-Ray Diffraction Crystallography, TEM, Transmission Electron Microscopy; FTIR, Fourier-Transform

Infrared Spectroscopy; EDS, Energy Dispersive Spectroscopy, UV-Vis—Ultraviolet-Visible Infrared Spectrophotometry, ICP-MS, Inductively Coupled Plasma Mass Spectrometry; MDA,

Malonaldehyde.
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In addition, multi-walled carbon nanotubes (MCN) have

been tested against salinity-stressed broccoli plants (Martínez-

Ballesta et al. (2016). The MCN-treated plants exhibited

increased assimilation of CO2, aquaporin transduction,

increased water uptake and modified the broccoli root plasma

membrane which increased the sprouting of the plant.

Effect of NPs on chilling stress

Low temperatures can destroy plant cells because of ion

leakage and permeability distortion of the plant cell

membrane. This chilling stress leads to a reduction in plant

growth and germination (Bhattacharya, 2022; Petruccelli et al.,

2022) with tolerance to chilling varying between different plant

species. The greater the damage to plant membranes, the more

deleterious the effect of chilling stress on the plant (Rawat et al.,

2020). In addition, photosynthesis and its biochemical

components are greatly affected by chilling stress because low

temperature damages the photosystems, inhibiting properties

associated with light absorption, such as increasing Rubisco

degradation, CO2 assimilation, transpiration rate, and

reducing the chlorophyll content (Jajoo and Mathur, 2021;

Sherin et al., 2022). To ensure the relief of plants from

chilling stress, NPs are used to enhance photosystem activities

by inhibiting ROS production, increasing the activities of the

chloroplast, and improving the production of Rubisco enzymes

(Ayyaz et al., 2022; Chandel et al., 2022).

TiO2NPs activate processes needed to enhance the synthesis

of chlorophyll and the expression of the Rubisco binding protein

gene, improve leaf pigment, antioxidant enzyme synthesis, and

decrease the effect of chilling stress by reducing plant cell damage

and ion leakage (Asadi and Cheniany, 2022; Sardar et al., 2022;

Zare et al., 2022). Low-temperature stress upregulates the

expression of MeAPX2 and ZnSOD/MeCu genes, which

increases glutathione reductase, dehydroascorbate reductase,

and monodehydroascorbate activities that remove ROS. It also

helps to reduce oxidative stress (Sonkar et al., 2021). The use of

TiO2NPs to reduce chilling stress has restructured plant

biochemical physiognomies whenever plant cells are exposed

to low-temperature environments (El-Gazzar et al., 2020;

Elsheerya et al., 2020; Nasr et al., 2021).

Effect of NPs on drought stress

Soil drought is an abiotic stress limiting crop productivity in

arid and semi-arid regions (Gamalero and Glick, 2022). Several

studies have highlighted the effects of silicon NPs on drought-

induced plant stress. For instance, SiNPs have been used to

relieve the impact of drought stress on hawthorns (Crataegus sp.)

(Ashkavand et al., 2015). The aforementioned study was

conducted using different concentrations of SiNPs, depending

on the severity of the stress. Biochemical and physiological

responses differ in plant seedlings based on the positive effect

of SiNPs on carbohydrate contents, proline, leaf pigments,

membrane leakage, water content, malondialdehyde, and

photosynthetic parameters (Ashkavand et al., 2015). A study

was conducted to test the effect of SiNPs on two different

sorghum (Sorghum bicolor (L.) Moench) cultivars with

different drought tolerance susceptibility patterns, maintaining

the photosynthetic rate and reducing the root-to-shoot ratio.

This showed that SiNPs was able to augment plant water uptake

efficacy (Hattori et al., 2005). Also, a low concentration of sodium

silicate was used to mitigate the effect of drought stress on wheat

(Pei et al., 2010). The silicon content of the compound was able to

maintain the leaf potential in water absorption, improve the leaf

chlorophyll content, and enhance shoot growth. Although the

mechanism of action of this compound is yet to be determined,

silicon compounds have been reported to be involved in the

reduction of plant membrane lipid peroxidation.

In soybean, ZnONPs have been reported to boost the

resilience of soybean plants to drought stress (Sedghi et al.,

2013). This study revealed that the application of ZnONPs

helped in the germination of soybean in a drought-stressed

plant; an effect attributed to the role of Zn in the

improvement of seed viability and sprouting of plant seeds in

Zn deficient areas (Degenhardt and Gimmler, 2000).

Iron is an essential nutrient needed for plant growth and

development; an iron-deficient plant shows physiological change,

viz., chlorosis and reduced metabolism (Jalil and Ansari, 2019).

Micronutrients can be used to relieve the effects of drought stress

in some plants. Davar et al. (2014) showed the impact of

exogenous FeNPs in the flowering and fruiting stages of a

plant under drought stress. In addition, to reduce the adverse

effects of drought stress, TiO2NPs have been applied to the leaves

of wheat to improve agronomic and physiological features, such

as gluten, starch, photosynthetic activities, biomass, harvest

index, final yield and plant weight (Jaberzadeh et al., 2013).

Plant microbes in agriculture to
address future food scarcity

Some bacteria and fungi can colonize the internal tissues of

their host plants without causing any detrimental effects

(Adeleke and Babalola, 2021b). Various bacterial and fungal

endophytes produce plant growth traits, such as siderophores,

nitrogen fixation, phosphate solubilization, antibiotic production

and induced systemic resistance to various environmental

stresses (Santoyo et al., 2016; Adeleke et al., 2021).

Plant roots absorb water and minerals from the soil, then

translocate them to other plant parts (Liu et al., 2021). In

addition, the plant produces copious amounts of exudates

such as amino acids, organic acids, and sugars into the soil

which are utilized by soil microbes and contribute to the
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microbial biomass in the root environment (Lyu et al., 2021).

Also, seeds produce low molecular weight organic exudates into

the surrounding soil during germination. Several endophytes

have been reported to be present in the endosphere (He et al.,

2021).

Endophytic relationships with the host plants can be

symbiotic or pathogenic. Often, essential and uncommon

organic substances are secreted by endophytes that assist in

providing various functions, not only for soil health but also

as a solution to plant stress challenges. Endophytes can often

protect plants from phytopathogens and abiotic stresses

(Table 3).

The impact of abiotic stressors on plant growth and soil

health can be major or minor depending on the prevailing

environmental conditions (Sachdev et al., 2021). Abiotic

stresses negatively affect crop production and microbial

diversity (Chouhan et al., 2021). Various mechanisms

employed by endophytic microorganisms induce systemic

resistance (ISR) or abiotic stress tolerance in plants (Gupta

et al., 2021). Therefore, there is a need to restructure modern

agricultural systems to include recent developments in

endosphere biology (Santoyo et al., 2021b). Some studies have

explained the role of endophytic bacteria in agricultural systems

under abiotic stresses in combating future food scarcity. For

instance, B. amyloliquefaciens RWL-1 producing ABA can

enhance rice yield in soil with a high salt concentration

(Ganie et al., 2021). This bacterium produces essential amino

acids and salicylic acid which assist rice growth in salinity/

drought conditions (Thepbandit et al., 2021). The endophytic

fungus, Bipolaris sp., produces gibberellins which contribute to

the growth of Glycine max (Lubna et al., 2022). Sphingomonas sp.

LK11 is an endophyte from leguminous plants that also

synthesizes gibberellins which enhance tomato growth and the

plant chlorophyll content (Adeleke and Babalola, 2021a).

Various reports revealed the presence of IAA-producing

endophytic bacteria (Rashid et al., 2012; Panigrahi et al., 2020;

Turbat et al., 2020). Burkholderia kururiensis is an endophyte

that stimulates the expression of IAA genes, especially in the

roots of transgenic rice, thereby contributing to rice growth

(Zhou et al., 2020).

Some endophytes are halotolerant, which can be isolated

from the weed Psoralea corylifolia to assess their PGP activity in

wheat. The growth of wheat plants can be improved with the aid

of an extract from the bacterial isolates during the production of

IAA under saline-stress conditions (Amini Hajiabadi et al.,

2021). The identification of various strains embedded in

weeds revealed various genera including Acinetobacter,

Enterobacter, Marinobacterium, Pseudomonas, Rhizobium, and

Sinorhizobium (AlSharari et al., 2022). The hormone cytokinin is

also produced by some endophytic bacteria, according to Eid

et al. (2021). Pseudomonas resinovorans and Paenibacillus

polymyxa isolated from Gynura procumbens are good

examples of endophytic bacteria producing cytokinin (Eid

et al., 2021). From a bacterial culture, the obtained extracts

were tested in vitro and inoculated into the cotyledon of

cucumber to observe their cytokinin activity.

A strain of Sinorhizobiummeliloti engineered to overproduce

cytokinin by transferring the Agrobacterium tumefaciens ipt gene

into the bacterium, and a strain of Pseudomonas spp., that

protected alfalfa plants from drought-stressed conditions

(Oleńska et al., 2020), these two bacteria were inoculated

together or separately, in the cultivation of sorghum (Sorghum

bicolor). The results revealed that the two strains inoculated

together reduced the requirement for chemical nitrogen fertilizer

TABLE 3 Various endophytic microbes inhabiting crop plants and their functions.

Endophyte Plant(s) Functions References

Burkholderia seminalis strain
869T2

Arabidopsis, loose-leaf lettuce, romaine
lettuce, red-leaf lettuce, and Chinese
amaranth

Plant growth promotion, auxin production, siderophore
synthesis, and phosphate solubilization

Hwang et al. (2021)

Cyanobacteria (Nostoc
punctiforme PCC 73102)

Rice (Oryza sativa) When these organisms are inoculated into the roots of rice, they
produce heterocysts and nitrogenase activity that contributes to
plant growth under a limited nitrogen supply

Álvarez et al. (2020)

Firmicutes Tomato (Solanum lycopersicum) These endophytes dominate different cultivars of tomato
promoting resistance against Ralstonia solanacearum

Sahu et al. (2020)

Proteobacteria, Bacteroidetes,
Firmicutes, Actinobacteria

Sugarcane (Saccharum officinarum) These organisms were isolated from sugarcane leaves, sheaths,
and roots. They contributed to plant growth promotion

Teheran-Sierra et al.
(2021)

Klebsiella MK2R2, Bacillus B2L2,
Enterobacter E1S2

Maize (Zea mays) These endophytic organisms have the potential to improve the
growth of maize and nitrogen fertilization

Mowafy et al. (2021)

Pseudomonas protegens MP12 Grapevine (Vitis vinifera) This organism colonizes inner grapevine tissues, and contributes
to antifungal ability, preventing mycelial growth of certain
grapevine phytopathogens

Andreolli et al.
(2021)

Rhizobium (Bacillus siamensis) Chickpea plants (Cicer arietinum L.) This rhizobium had various PGP features including nitrogen
fixation, phosphate solubilization, ACC deaminase, IAA
production, synthesis of hydroxamate-type siderophores

Gorai et al. (2021)
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TABLE 4 The biological activities of nanoparticle-synthesizing endophytic microbes against plant pathogens.

Endophytic organisms Plant pathogens Microbial activity References

Silver (Ag) Nanoparticle

Alternaria alternate Bacillus cereus, Klebsiella pneumoniae, Pseudomonas
aeruginosa, E.coli, Staphylococcus aureus, Proteus
mirabilis

Antibacterial and
antioxidant

Govindappa et al.
(2022)

Micromonospora sp. SH121 (Mm-AgNPs) Bacillus cereus, Enterococcus faecalis, Enterococcus
hirae, Escherichia coli, Klebsiella pneumoniae, Proteus
vulgaris, Pseudomonas putida, Staphylococcus
epidermidis, Streptococcus pneumoniae, Aspergillus
flavus

Antimicrobial, antibiofilm,
and anticancer

Mazmancı et al. (2022)

Streptomyces species Bacterial and fungal agents Biosynthesis and
Antibacterial

ALqahtani et al. (2022)

Phoma sp. (MN995524), Chaetomium globosum
(MN995493), and Chaetomium sp. (MN995550)

Klebsiella pneumonia Antibacterial activities Sonbol et al. (2022)

Trichoderma atroviride Pathogenic bacteria and fungi Antibacterial, anticandidal,
and antifungal effects

Abdel-Azeem et al.
(2020)

Pseudomonas poae Fusarium graminearum head blight pathogen Antifungal Ibrahim et al. (2020)

Rhizobium pusense (MS-1), Bacillus cereus MS-2,
Bacillus flexus (MS-3), Methylophilus flavus (MS-4),
Pseudomonas aeruginosa (MS-5)

Bacillus thuringiensis, Azotobacter chroococcum
(CL13), Escherichia coli, Pseudomonas putida (ECL5),
Bacillus licheniformis (R-1), Rhizobium sp. (CV1)

Antibacterial activity Singh et al. (2022b)

Talaromyces purpureogenus Listeria monocytogenes, Escherichia coli, Shigella
dysenteriae, Salmonella typhi

Antibacterial activity Sharma et al. (2022)

Serratia marcescens, Burkholderia cepacia Aspergillus niger, A. fumigatus, Fusarium oxysporum,
Pythium sp., Rosellinia sp

Antifungal activity Mittal et al. (2021)

Terminalia arjuna Escherichia coli MTCC1687, Pseudomonas aeruginosa
ATCC9027, Staphylococcus aureus ATCC6538

Antibacterial activity Singh et al. (2022a)

Penicillium cinnamopurpureum Bacillus subtilis (MTCC-121), Pseudomonas
aeruginosa (MCC-3097), Staphylococcus aureus
(MCC-2043), Escherichia coli (MCC-3099)

Antibacterial activity Dinesh et al. (2022)

Phoma glomerata, Phoma herbarium, Fusarium
semitectum, Trichoderma, Candida albicans

Candida albicans, Pseudomonas aeruginosa, E. coli,
Bipolaris sorokiniana, Magnaporthe grisea

Antibacterial, antifungal,
and insecticidal activity

Shinde et al. (2022)

Gold (Au) Nanoparticle

Phoma sp Rhizoctonia solani AG1-IA, Xanthomonas oryzae Antifungal and antibacterial
activity

Soltani Nejad et al.
(2022)

Pseudomonas aeruginosa Vigna unguiculata Plant growth enhancement/
promotion

Panichikkal and
Krishnankutty, (2022)

Aspergillus terreus Fusarium oxysporum, Rhizoctonia solani Antimicrobial, antioxidant,
and antifungal activity

Mishra et al. (2022)

Alternaria alternate, Fusarium species Cervical carcinoma (HeLa), breast carcinoma (MCF-
7), non-small cell lung carcinoma (H1975),
hepatocellular carcinoma cell line (Hep G2)

Anticancer activity Ravi et al. (2022)

Aspergillus sp., Alternaria sp Escherichia coli, Staphylococcus aureus Antibacterial, antifungal,
and antitumor activities

Mostafa et al. (2022)

Lysinibacillus odyssey Staphylococcus epidermidis Staphylococcus aureus,
Streptococcus pyogenes, Enterococcus faecalis, Bacillus
subtilis

Dose-dependent antioxidant
and antibacterial activity

Cherian et al. (2022)

Zinc-oxide (ZnO) nanoparticles

Aspergillus niger Staphylococcus aureus Antibacterial activity Abdelkader et al. (2022)

Enterobacter hormaechei Klebsiella pneumoniae (ATCC: 4617), Escherichia coli
(ATCC: 15224), Pseudomonas aeruginosa (ATCC:
9721), Bacillus subtilis (ATCC: 6633), Staphylococcus
epidermidis (ATCC: 14990) Aspergillus fumigatus,
Aspergillus niger, Aspergillus flavus, Fusarium solani,
Mucor mycosis

Antifungal, antibacterial,
and antioxidant potential

Saqib et al. (2022)

Trichoderma viride Staphylococcus aureus, Bacillus spp., Pseudomonas
aeruginosa, Klebsiella spp., Acinetobacter baumannii,
Candida albicans

Antimicrobial and
antioxidant activities

Kaur et al. (2022)
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to a low level and significantly improved the cultivation of

sorghum. The procedure also enhanced the colonization

effectiveness of both bacteria in the roots of rice plants

(Abbaszadeh-Dahaji et al., 2020). In summary, endophytes

can play a major role in modulating phytohormone levels in

plants, thereby contributing to plant growth and managing

various stress conditions.

Symbiotic nitrogen fixation reduces atmospheric nitrogen by

the action of the leguminous plants in association with nitrogen-

fixing bacteria, increasing the plant’s nutritional value (Rana

et al., 2020). Several years ago, the only known nitrogen-fixing

bacteria in legume nodules were rhizobia. However, numerous

non-rhizobial bacterial species have been found in legume root

nodules. Hanaka et al. (2021) reported how an endophytic

bacteria isolated from the soybean, Bacillus mojavensis,

exhibited biocontrol activity against the soybean pathogenic

fungus, Rhizoctonia solani. These endophytic microorganisms

have antagonistic activity against soil-borne pathogens and

possess the ability to enhance the growth of soybean plants.

The B. mojavensis strain produced ammonia, HCN, and

siderophores. It also contributed to chitinase activity and

solubilization of phosphate (Hanaka et al., 2021). The

inoculation of this endophyte onto soybean seeds can help

control various pathogens.

The introduction of nanotechnology in agriculture is a

developing sector in agriculture despite several applications,

and the true possibilities are yet to be obtained.

Nanotechnology constitutes certain substances with unusual

features that are revealed either as a result of the quantum

confinement effects or the production of certain reactive

surfaces that are at a nanoscale (Umapathy et al., 2022). The

nanoscale degree when compared with the macroscopic level,

reveals the properties of the material that are special as a result of

the reduced size, shape of nanomaterials, and greater surface

area-to-weight ratio. Nanomaterials or nanoparticles (NPs) have

beneficial properties, with high reactivity, modified bioactivity,

and surface effects (Bruchiel-Spanier et al., 2022). NPs are

produced by either a single element like silver (Au) or gold

(Au) or by a mixture of elements, which are observed in those

constituting oxides like titanium oxide (TiO2), silicon oxide

(SiO2), and zinc oxide (ZnO) (Behl et al., 2022). Gold and

silver NPs regarded as inorganic NPs, are relevant as a result

of their application. Although, few studies have shown how the

NPs are manufactured from endophytes (Fadiji et al., 2022a;

Kaur et al., 2022; Saqib et al., 2022), thus suggesting possible

means for continuous studies on endophytic nanoparticles.

Various approaches including biological, chemical, and

physical approaches are made use of in the production of NP,

yet, the process of biosynthesis is environmentally friendly, free

of chemical derivatives that are hazardous to humans, animals,

and the environment. These chemicals have been used recently to

reduce the potential of applying chemicals in the biomedical and

food processing industries. Several procedures involving

intracellular and extracellular for the biological synthesis of

nanomaterials coexist in nature. In this field, the study is still

understudied (Qian et al., 2022). The production of

environmentally friendly, and non-toxic biological materials

for manufacturing NPs would result in supporting the

production of natural materials with the aid of living

organisms (Fadiji et al., 2022a).

NPs produced from metal-based are manufactured by

microorganisms through extracellular and intracellular

mechanisms (Franco et al., 2022). The process of electrostatic

induction takes place in metallic ions between negative and

positive charges intracellularly in the cell wall of the

microorganisms, followed by the decrease of the metal ions to

their metallic form. Cell disruption is a constitutional

prerequisite to acquiring pure NPs (Fadiji et al., 2022a). The

biomass extracts from the cell, or culture supernatant when

added to the solution of metals produce NPs outside the cell

of the microorganisms (extracellularly) (Jadoun et al., 2022).

Reductases are produced and liberated into the culture medium

by cofactors, with microbial cells that execute this procedure.

Endophytic microbes have been suggested as biofactories for the

synthesis of metal-based NPs with agricultural and therapeutic

applications. These microbes are embedded in plants

intercellularly, producing a symbiotic link (Roy et al., 2022).

The advantage confers on the plant by the endophytes is to

improve health status via various mechanisms, like the release of

antimicrobial (antibacterial and antifungal) compounds and the

secretion of growth-promoting metabolites (Shahid et al., 2022).

In plant tissues, endophytic microbes accommodating them

can produce nanoparticles, which are advantageous to the host

plant by promoting plant growth or reducing the prevalence of

diseases (Koné et al., 2022). Endophytes can resist metals

occurring in the environment to alleviate toxicity and stress in

the host plant, as well as improve their beneficial association and

adaption over other microbes inhabiting the ecosystem (Mathur

and Ulanova, 2022). The potential of endophytes to take away

metals can be applied to manufacture metal-based NPs via

extracellular and intracellular processes (Table 4). Typical

examples were obtained in the production of AgNPs, which

have a spherical shape and a mean size of 22 nm–45 nm, which

can be manufactured intracellularly employing the supernatant

of Ag-resistant Bacillus safensis TEN12 (Ahmed et al., 2020).

Zinc oxide (ZnO) NPs sized 2 nm–9 nm, were produced

extracellularly by the zinc-tolerant endophyte Curvularia

geniculata (Ahmed et al., 2020). Gürsoy et al. (2021) reported

how gold nanoparticles (AuNPs) sized 20 nm–40 nm were

produced intracellularly in the cell wall and cytoplasm of

Chlorella sorokiniana. Cobalt oxide nanoparticles (CoONPs),

which are spherical at 20 nm in diameter, were produced

extracellularly by the A. nidulans that are CoO-tolerant

(Ahmed et al., 2020). Aspergillus nidulans are endophytes,

which reveal the potential of the CoO-tolerant produced

spherical CoONPs with a diameter of 20 nm through an
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extracellular tract (Fadiji et al., 2022a). Endophytic

microorganisms can produce some biological active materials

with a broad gap of structural and biological potential, which can

be employed to examine the health and promote plant growth

and are significant in improving the sustainability of agriculture

(Kumar and Nautiyal, 2022). Fungi and bacteria isolated from

parts of plants can be cultured in the laboratory under the most

desirable growth conditions to synthesize NPs with the needed

characteristics for application in the agricultural sector (Elnahal

et al., 2022).

Fate of NPs

The use of NPs for agroecosystem practices could be a very

complicated matrix and information on the fate of nanomaterials

in the soil is inadequate. After applying NPs to the soil, they are

absorbed in the plant tissue directly. Such interaction could either

increase or decrease the bioavailability and toxicity of NPs

depending on the physicochemical properties of the soil.

However, the potency of NPs is most dependent on the type

of crop and the properties of the soil viz., microbial community,

clay content, ionic strength, pH, salinity, organic matter, etc.,

(Reddy et al., 2016; Thiagarajan and Ramasubbu, 2021).

Effect of microbial community

Plant endophyte and the microbial community helps in the

transformation of NPs. They help to recycle nutrients, effectively

decomposition of organic compounds and conserve soil quality.

The introduction of nanomaterials could affect microbial

inhabitation which invariably reduces plant productivity

(Jacoby et al., 2017; Chavan et al., 2020). The effect of NPs on

the rhizosphere bacteria of butter crunch lettuce was reported by

Kibbey and Strevett (2019). NPs and rhizosphere bacteria react

together via electrostatic interactions that affect the surface

properties of bacteria, which disallow easy attachment to the

root surfaces of the plant. They also reported that fluctuations in

soil mineral nutrients (P, Fe, Mn, etc.) were a result of spiked

biosolid amendment of soil with NPs, which affects soil microbial

load. Withal, NPs were also reported to have affected the

sequestration of plant nutrients and other agroecosystem

processes as reported by Bellani et al. (2020).

At times, NPs may also inhibit the colonization of plant

growth promoters when combined with other nutrients. This

deleterious effect was reported by Liu et al. (2020). Here, the

negative effect associated with the combination of TiO2NPs with

Cu2 (OH)2 CO3 was reported. The synergy between TiO2NPs

and Cu2 (OH)2 CO3 boosted photocatalytic disinfection

processes that disabled the effect of microorganisms such as

Fusarium graminearum and E. coli within a short time of

application (Liu et al., 2020).

Effect of clay content

Another important component that determines the fate of

NPs is the clay content of the soil. The high the clay content of the

soil, the decreased mobility of NPs because both the physical

straining and electrostatic interactions would be increased.

However, the soil retention capacity depends mainly on the

clay to NPs ratio. The higher the ratio, the better the soil

retention capacity (Shah et al., 2016). Metals are easily

retained in the soil when there is an increase in the clay

content. And as such reduces the uptake of metallic ions by

the plant. This simply indicates the low toxicity of metallic NPs

(Larue et al., 2018; Thiagarajan and Ramasubbu, 2021).

Effect of natural organic matter

NOM influences the stability and aggregation of NPs within

the soil. NOM includes mobile and reactive organic fractions viz.

hydrocarbons, amino acids, hydrophilic acids, fatty acids, fulvic,

and humic acids. NOM is produced through the disintegration of

animal and plant remains in the soil. Sludge-amended soil and

NOM have been reported to cover 10.9% and 8.9% of soil,

respectively. Meanwhile, the physicochemical properties of

NPs and features of proximal soil are usually influenced after

the adsorption of NOM (Bakshi et al., 2019). A recent study by

Zhang et al. (2020) showed the stability of TiO2NPs when

introduced to a paddy field with high organic matter. In

another study that demonstrated the effect of a high

concentration of NOM on the bioaccumulation of NPs, the

ability of NOM to retrain NPs could be attributed to the

change in the surface area of soil as a result of an increase in

the concentration of NOM. The interaction of NPs with NOM

alters the binding property of the soil to improve the steric

repulsion between nanomaterials by aggregating and retaining

them in the soil. Asides, the reaction of NPs and NOM depends

greatly on their particle sizes through hydrophobic interaction

(Lee et al., 2011).

Conclusion

Globally, crop improvement and productivity are faced with

diverse abiotic stress challenges. To avert this problem, the use of

nanomaterials from endophytic microbes has the potential to

mitigate the effects of abiotic stresses affecting plants by

stimulating plant defense mechanisms. Beneficial endophytic

microbes as bioinoculants can be effectively harnessed for

various ecological purposes such as abiotic stress reduction,

nutrient absorption, enhancing photosynthesis, increasing

plant growth parameters, and obviating agrochemical use.

Additionally, the nanomaterial synthesizing endophytic

microbes promise to improve crop productivity sustainably.
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