
Landslide susceptibility mapping
(LSM) of Swat District, Hindu
Kush Himalayan region of
Pakistan, using GIS-based
bivariate modeling

Fakhrul Islam1, Salma Riaz2, Bushra Ghaffar3, Aqil Tariq4,5*,
Safeer Ullah Shah6, Muhammad Nawaz7,
Mian Luqman Hussain8, Naz Ul Amin9, Qingting Li10, Linlin Lu11*,
Munawar Shah12 and Muhammad Aslam13

1Department of Geology, Khushal Khan Khattak University, Karak, Pakistan, 2Department of Applied
Mathematics and Statistics, Institute of Space Technology, Islamabad, Pakistan, 3Department of
Environmental Science, International Islamic University Islamabad, Islamabad, Pakistan, 4Department
of Wildlife, Fisheries and Aquaculture, Mississippi State University, Starkville, MS, United States, 5State
Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing (LIESMARS),
Wuhan University, Wuhan, China, 6Ministry of Climate Change, Islamabad, Government of Pakistan,
Islamabad, Pakistan, 7International Centre for Integrated Mountain Development, Islamabad, Pakistan,
8National Centre of Excellence in Geology, Peshawar, Pakistan, 9Pakistan Forest Institute, Peshawar,
Pakistan, 10Airborne Remote Sensing Center, Aerospace Information Research Institute, Chinese
Academy of Sciences, Beijing, China, 11Key Laboratory of Digital Earth Science, Aerospace Information
Research Institute, Chinese Academy of Sciences, Beijing, China, 12Department of Space Sciences,
Space Education and GNSS Lab, National Center of GIS and Space Application, Institute of Space
Technology, IST, Islamabad, Pakistan, 13School of Computing Engineering and Physical Sciences,
University of West of Scotland, Paisley, United Kingdom

Landslides are a recurrent environmental hazard in hilly regions and affect the

socioeconomic development in Pakistan. The current study area is the tourism

and hydro energy hub of Pakistan and is affected by environmental hazard. A

landslide susceptibility mapping (LSM) of the Hindu Kush Himalayan, Swat

District, Pakistan, can be created to reduce demographic losses due to

landslides. This current study is conducted to apply three bivariate models,

including weights of evidence (WOE), frequency ratio (FR), and information

value (IV) for an LSM that has not been explored or applied in the current study

area. For this purpose, first, an inventory map of 495 landslides was constructed

from both ground and satellite data and randomly divided into training (70%)

and testing (30%) datasets. Furthermore, 10 conditioning factors (elevation,

slope, aspect, curvature, fault, rainfall, land use land cover (LULC), lithology,

road, and drainage) used for the mapping of landslides were prepared in ArcGIS

10.8. Finally, LSM is generated based on WOE, FR, and IV models and validated

the performance of LSM models using the area under receiver operating

characteristic curve (AUROC). The findings of success rate curve (SRC) of

the WOE, FR, and IV models were 67%, 93%, and 64%, respectively, while

the prediction rate curves (PRCs) of the three models were 87%, 95%, and 73%,

respectively. The validation results for WOE, FR, and IV justified that the FR

model is themost reliable technique of all three of thesemodels to produce the
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highest accuracy LSM for the present study area. Policymakers can use the

findings of current research work to mitigate the loss due to landslide hazard.

KEYWORDS

landslide susceptibility mapping, landslide causative factors, geospatial modeling,
bivariate models, sub Himalayas

1 Introduction

Landslides triggered in mountainous areas can have

catastrophic consequences, threaten human life, and cause

billions of dollars in economic losses. A landslide is a

geological process in which material moves downward from

its parent rocks due to slope failure (Zhang et al., 2020; Zhou

W. et al., 2021; Yue et al., 2021; Zhu B. et al., 2022). Landslides are

the most catastrophic geo-environmental hazard in mountainous

regions, severely impacting the world’s socioeconomic trends

(Ullah et al., 2022). Landslide hazard is a frequent disaster

phenomenon in the mountainous regions in developing

countries like Pakistan (Zhang et al., 2019b, 2019a; Wang S.

et al., 2021; Quan et al., 2021). Landslide hazard is expected to

grow due to anthropogenic interventions such as deforestation,

population growth, urbanization, etc. and natural phenomena

due to topographic, geologic, and climatic factors (Rahman et al.,

2020; Xie et al., 2021a, 2021b; Guo et al., 2022; Ren et al., 2022;

Wahla et al., 2022). Since the 20th century, mortality caused

landslides has reached 6.2 million and has caused up to 10 billion

US dollars of damage. It is essential to assess the anthropogenic

and natural predisposing factors of landslides to reduce their

consequences in mountainous areas (Raghuvanshi, 2019; Tariq

et al., 2021b; Yin et al., 2022a, 2022b; Zhu Z. et al., 2022; Chen

et al., 2022).

It is expected that landslides will originate in certain areas

due to the combined effects of many causative parameters instead

of a single causative factor. Therefore, assessing all-natural and

human-induced parameters and their association with landslide

inventory can help develop LSM for predicting landslides to

minimize the damages of said hazard (Girma et al., 2015; Chimidi

et al., 2017; Zhang et al., 2021; Shah et al., 2022). An LSMmay be

produced based on the postulation that the predisposing factors

for the imminent landslide will be the same as in earlier landslides

(Pham et al., 2015; Zhou et al., 2021a, 2021b; Sharifi et al., 2022;

Zhan et al., 2022). An LSM demarcates the region exposed to

landslide hazards and classifies the area into different potential

hazard zones by using various approaches to manage the

landslide hazard in the region of interest. Researchers have

developed various GIS-based techniques for landslide

modeling (Pourghasemi et al., 2005; Reichenbach et al., 2018;

Tian et al., 2021a; Wang P. et al., 2021, 2022; Fu et al., 2022).

Generally, these methods can be grouped into qualitative and

quantitative versions to construct detailed LSM of the area. The

qualitative approach is subjectively used by researchers based on

their relevant experience and judgment. A quantitative method is

an objective-based method in which the inventory of landslides

and causative factors is evaluated through mathematical and

statistical ways to produce LSM (Milevski et al., 2019; Majeed

et al., 2022). Qualitative and quantitative methods can be used to

assess landslide inventories and causative factors, and both

techniques incorporate various pros and cons in the research

(Tian et al., 2019, 2020; Tian et al., 2021b; Chen et al., 2021; Li Y.

et al., 2022). Qualitative methods play significant roles in LSMs,

but this technique is time-consuming in landslide research

(Barredo et al., 2000; Zuhairi et al., 2020; Zhao et al., 2021; Li

Q. et al., 2022; Sadiq Fareed et al., 2022). An LSM is generated

using quantitative methods like bivariate and multivariate

analysis in the modern era due to their high accuracy results

and easy implementation. These approaches can compute the

impacts of each class of causative factor with landslide events

(Lee and Pradhan, 2007; Dahal et al., 2008; Pradhan, 2010; Choi

et al., 2012; Park et al., 2013; Vakhshoori and Zare, 2016; Fayez

et al., 2018). The GIS-based statistical approach used the

association of landslide inventory and predisposing landslide

factors to generate LSM (Khanchou et al., 2020; Narimah Samat

and Ismail, 2020). This study we used bivariate statistical models,

such as weights of evidence (WOE), frequency ratio (FR), and

information value (IV), to compute the association between

landslide events and causative factors.

In this study, we used bivariate statistical models like WOE,

FR, and IV to compute the mathematical association between

landslide events and causative factors. These quantitative models

quantify the authentic and reliable association between the

variables more accurately than in the qualitative and semi-

quantitative models. WOE is a GIS-based statistical model

that estimates probability using the Bayesian principle and the

concepts of prior and posterior probability. This technique is

mostly applied in prediction mapping (Elmoulat et al., 2015;

Hussain et al., 2022). The FR technique is considered to be a

consistent and experimental method that can be used to calculate

the association of landslide events with causative factors and to

produce applicable LSM of the study area (Oh et al., 2017; Farhan

et al., 2022). This model (IV) is a GIS-based bivariate models and

has been applied to produce predicted study maps based on

dependent and independent variables (Li et al., 2021; Tariq et al.,

2021c; Imran et al., 2022).

Swat is Pakistan’s emerging tourism and hydel energy hub

and has been affected by terrorism and various natural hazards,

i.e., floods, landslides, etc. Many researchers have worked on

different hazards using diverse techniques and models. Some

researchers have focused on floods, while few have concentrated
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on slope instability in the Swat region. However, scientists of

various fields ignored landslide investigation in the current study

area using satellite data, Google Earth Engine (GEE), and

geospatial modeling. In this study, we used GIS-RS-based

emerging and innovative techniques to fill the research gap in

the Hindu Kush Himalaya Ranges in Swat District of Pakistan.

We selected this area because it has not been explored and nor

investigated by researchers regarding landslide mapping using

integrated study of GIS-RS with ground truth information.

The main goal of the present research work is to assess the

quantities association of dependent variable (landslide events)

with independent variables (causative factors) to generate an

accurate, updated LSM of the study area using GIS-RS based

methods and precariously emphasize the low, medium, high, and

very high zone of landslides in Swat District of Pakistan. Finally,

the LSM of models is validated by area under receiver operating

characteristic curve (AUROC) technique and by ground data

from the field, which can be helpful to decision makers at

organizations to reduce the loss to hazard in the study region.

2 Materials and methods

2.1 Study area

This study is conducted in Swat District of Khyber

Pakhtunkhwa (KPK), as shown in Figure 1. Geographically, the

Swat District is situated within a latitude and longitude range of 34°

30′ 00″ 34° 30′ 00″’North and 72° 05′ 00″’ and 72° 50′ 00″’ East, at
500–6,500 m elevation above sea level (Atta-ur-Rahman and Khan,

2011). Topographically, the study area is part of the Hindu Kush

Himalayan range (Qasim and Hubacek, 2013), and the tourism hub

of KPKhas an area of 5,337 km2. The study area is divided into semi-

arid, sub-humid, and humid climate regions (Bahadar et al., 2015;

Sharifi et al., 2022; Zamani et al., 2022). Geologically the research

area is engraved in a Suture Zone (SZ) between the Indian Plate and

Kohistan IslandArc (KIA). The SZ betweenKIA and theAsian Plate

occurs on the Northside and is tectonically the most active

geomorphic region (Tahirkheli, 1979; Abbas et al., 2021; Hu

et al., 2021; Waqas et al., 2021).

FIGURE 1
Map of the study area along with elevation in meters and spatial location of landslide events: (A) Pakistan administrative boundaries of KPK
province; (B) Swat District in KPK shapefile; (C) elevation and landslide inventory of study area.

Frontiers in Environmental Science frontiersin.org03

Islam et al. 10.3389/fenvs.2022.1027423

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2022.1027423


TABLE 1 Detailed RS and ground data availability, statement, source, and purpose.

Data Availability of data Data
availability statement/Source

Parameter maps

Landsat-8 Data openly available The data supporting this study’s findings are openly available in
[USGS] at https://earthexplorer.usgs.gov. The spatial resolution
is 30 m

Land use land cover

Sentinel-2 Data openly available The data supporting this study’s findings are openly available in
[ESA] at https://www.esa.int. The sentinel -2 data of 10 m of spatial
resolution

Landslide inventory

DEM (ALOS) Data openly available The data supporting this study’s findings are openly available at
https://asf.alaska.edu/. Spatial resolution is 12.5 m

Elevation, slope, aspect,
curvature, and drainage

CHIRPS Data openly available The data supporting this study’s findings are available in [UCSB] at
https://www.chc.ucsb.edu. The spatial resolution of CHIPRS is
0.05° (5.54 km) and daily gridded

Rainfall maps

Rainfall Surface
Precipitation Gauge (SPG)

Available in PMD organization on
through proper channel based

The SPG data for 2010 to 2020 were acquired from PMD Peshawar
regional center. https://www.pmd.gov.pk/en/.

Rainfall maps

Geological data From Northern Map of Pakistan The tectonic evolution of the Kohistan-Karakoram collision belt
along the Karakoram Highway transect, north Pakistan. Tectonics
1999, 18, 929–949. Scale 1:650, 000

Lithological and tectonic map

Road Available in PKHA organization on
through proper channel based

https://pkha.gov.pk/ Scale 1:25000 Proximity to road

FIGURE 2
Methodology for GIS and RS-based landslide susceptibility mapping.

Frontiers in Environmental Science frontiersin.org04

Islam et al. 10.3389/fenvs.2022.1027423

https://earthexplorer.usgs.gov/
https://www.esa.int/
https://asf.alaska.edu/
https://www.chc.ucsb.edu/
https://www.pmd.gov.pk/en/
https://pkha.gov.pk/
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2022.1027423


2.2 Datasets

In this research, we used both satellite and ground datasets to

achieve the goal of the present study. The satellite data used in

this study was composed of Landsat-8 Operational Land Imager

(OLI), Sentinel-2, Advanced Land Observing Satellite Digital

Elevation Model (ALOS DEM), Climate Hazards Group

InfraRed Precipitation with Station data (CHIRPS), and

Google Earth. Landsat-8 images from July 2020 with a spatial

resolution of 30 m were used for the LULC classification of the

present study area. Sentinel-2 data were used to detect and map

landslide events. We used sentinel-2 images with Google Earth

and a field survey to produce an updated landslide inventory

map. ALOS DEM data were downloaded from Earth data, Alaska

Satellite Facility (ASF), to compute the topographic causative

factors. CHIRPS data from 2010 to 2020 were used to prepare a

rainfall map of the study area.

The ground data consist of rainfall, geological, and road

network data. The daily rainfall data from three meteorological

stations, i.e., Saidu Sharif (34.73°N, 72.35°E), Kalam (35.52°N,

72.54°), andMalam Jabba (34.83°N, 72.55°E), for 2010–2020 were

obtained from Pakistan Meteorological Department (PMD),

Peshawar Regional Center (Tariq et al., 2022a; 2022b). The

geological map was scanned and digitized from the geological

map of northern Pakistan to prepare a lithological and tectonic

map of the study area. The updated road data was acquired from

KPK Highway Authority (PKHA). The details of both RS and

ground datasets of the current study area are mentioned in

Table 1. Further details are presented in Figure 2.

3 Methodology

3.1 Landslide inventory map

Past and current landslide inventory data are a significant

factor in predicting landslide potential in a study area (Guzzetti

et al., 1995). Therefore, a landslide inventory map is the first

mandatory element for generating and compiling authentic LSM

of a study area (Aslam et al., 2022a). The inventory map is a

significant parameter for performing various quantitative

analyses and validating the models’ accuracy (Chalkias et al.,

2014; Baloch et al., 2021; Baqa et al., 2021; Shah et al., 2021). The

landslide inventory map for this study was developed using

Sentinel-2 and Google Earth images and validated with field

survey data. In the research area, 495 past and present landslide

events were detected from satellite imageries and ground-based

data, as shown in Figure 1. After landslide inventory generation,

we developed the non-landslide area of the research region. First

we extract the landslide polygon from the study area polygon to

generate non-landslide area. Then we used ArcGIS tools to

produce random points in the study area which have been

considered as non-landslide area in the current research.

During a field survey we validated the satellite-based

inventory of landslide and observed the impacts of various

type of landslide on forest, water quality, infrastructure, and

human loss. Landslide hazard has had significant effects on the

forest and environment of Swat District. This environmental

hazard also affected the infrastructure and engineering

structures. The impacts of the different type of landslide are

shown in Figure 3.

3.2 Causative parameters

The incidence of landslides is predisposed by the combined

effects of topographic, hydrological, and geological parameters

(Costanzo et al., 2012; Marchesini et al., 2014; Tariq and Shu,

2020; Tariq et al., 2021a). Therefore, selecting causative factors is

a significant step toward producing LSM. In this paper, We

selected 10 precondition factors as independent variables for

developing LSM for the region of interest. These factors are

elevation, slope, aspect, curvature, precipitation, land use land

cover (LULC), proximity to the fault, lithology, road proximity,

and drainage network. In the following paragraphs, we briefly

present the significance of each causative factor in the LSM. The

details of causative factors are as follows.

3.2.1 Elevation
Elevation is an influential precondition for landslide

incidence (Tosic et al., 2014). Altitude is used for landslide

susceptibility mapping and investigation (Dou et al., 2015).

Elevation was extracted from advanced land observation

satellite (ALOS) with a 12.5 m spatial resolution and

reclassified into different classes using the natural break

algorithm in ArcGIS 10.8, as shown in Figure 4A.

3.2.2 Slope
The slope is a crucial causative factor in landslide

investigation because it triggers the downslope movement of

loose sediment material (Nolasco-Javier et al., 2015). The slope of

the current study area was computed from ALOS DEM having

12.5 m spatial resolution. The calculated slope was then

reclassified into five classes in ArcGIS 10.8, as shown in

Figure 4B.

3.2.3 Aspect
Aspect also plays an influential role in the instability of strata

because it controls moisture in the rocks and soil due to wind and

sunlight exposure in the study area. The slope aspect map in the

current study area was calculated fromALOSDEMusing ArcGIS

10.8 and reclassified into nine classes, as shown in Figure 4C.

3.2.4 Curvature
The curvature is a morphological parameter and has a

significant role in LSM. The geomorphic structures of the
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terrain can be classified based on curvature style (Pourghasemi

et al., 2013). Curvature affects surface water flow and regulates

landslides (Pham et al., 2019). The curvature of the current study

area was extracted from ALOS DEM and reclassified into three

classes, i.e., using ArcGIS 10.8 platform as shown in Figure 4D.

3.2.5 Rainfall
Precipitation is a triggering parameter for landslide

occurrence globally (Hong et al., 2017; Tariq et al., 2021a;

Farhan et al., 2022). Precipitation infiltrates the pore spaces

and fractures of strata and affects the landslide frequency

(Dou et al., 2015). The rainfall map of the current research

was generated from CHIRPS satellite data and validated with

ground data of PMD, as shown in Figure 5A. The rainfall map

was rescaled to a 12.5 m resolution using the ArcGIS platform.

3.2.6 Land use land cover
Many scientists have evaluated the impacts of LULC change

in landslide investigation (Miller et al., 2009). LULC was

computed from Landsat eight images using GEE, as shown in

Figure 5B. LULC parameter was rescaled to 12.5 m spatial

resolution to run model smoothly.

3.2.7 Distance from fault
The geological fault is generally considered the external

causative factor in regulating the instability of beds and

landslide occurrence. The tectonic map of the study area

was scanned and digitized from the geological map of

northern Pakistan (Searle et al., 1999), as shown in

Figure 5C. The fault map was rescaled to same spatial

resolution as ALOS DEM.

FIGURE 3
Field photographs of the study area showing the impacts of various types of landslide: (A) affected road and water quality; (B) affected road and
vegetation; (C) affected water quality and vegetation; (D) affected vegetation; (E) affected road; (F) affected infrastructure.
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3.2.8 Lithology
Lithology is a crucial predisposing factor for landslides

through stresses in the geological mass body (De Vallejo and

Ferrer, 2011). Geology is the significant and prominent internal

contributory factor in landslide susceptibility mapping

(Abdollahi et al., 2019). The consolidated and compacted

rocks show more resistance to mass wasting than loose rocks.

A lithological map of the study area polygon vector maps was

prepared and digitized from the geological map of northern

Pakistan and rescaled to 12.5 m resolution, as shown in

Figure 5D.

3.2.9 Distance from the road
Road construction is considered a human-induced factor for

slope instability (Wu and Chen, 2009). The road network map is a

polyline vector produced from the data of PKHA, as shown in

Figure 5E. According to the literature, the spatial resolution of road

map was rescaled to the resolution of ALOS-DEM to perform well.

3.2.10 Distance from drainage
Hydrology is a significant and influencing external

parameter in the instability of strata to trigger landslides in

the area. Another critical factor in the formation of landslides

(Pham et al., 2015). The surface drainage network is

considered one of the most active and crucial factors in

landslide occurrence (Tosic et al., 2014). This parameter

was computed from ALOS DEM 12.5 m resolution and

divided the distance from drainage to landslide into five

classes, as shown in Figure 5F.

3.3 LSM techniques

Appropriate terrain mapping is important in generating the

LSM of the study area (Aslam et al., 2022b). We used WoE, FR,

and IV techniques to compute LSM for the study area. The details

of the mentioned methods are as follows.

FIGURE 4
Topographic parameters derived from DEM for LSM: (A) elevation map; (B) slope map; (C) aspect map; (D) curvature map for the study area.
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3.3.1 Weight of evidence
WOE is a bivariate statistical model that uses the Bayesian

rule to estimate probability, adopting the concepts of prior and

posterior probability (Elmoulat et al., 2015). Researchers have

used this method for mineral exploration mapping. Later on, this

method was widely used in landslide prediction mapping due to

its authentic results compared to field and other deterministic

approaches (Cao et al., 2021).

W+ � ln
h(BD)
h(BD)

(1)

W− � ln
h(�B

D
...)

h(�B
D
...)

(2)

In this technique, positive (W+) and negative (W−) weights are

given to different classes of causative factors and computed

from Eq. 2.

In Eq. 2, h shows probability, and ln denotes the natural log.

B denotes the presence of the landslide evidence parameter B�on

appearance of the landslide evidence parameter. Similarly, D
...

refers to the presence of a landslide, while D
...
is the absence of a

landslide.

We further used Eq. 3 to evaluate the impacts of causative

factors on LS occurrence.

W+ � ln
NPix1
NPix2

+ NPix2
NPix3

+ NPix3
NPix4

(3)

W− � ln
NPix3
NPix1

+ NPix2
NPix4

+ NPix3
NPix4

(4)

FIGURE 5
Different parameters for landslide susceptibility mapping: (A) precipitation map; (B) LULC map; (C) fault buffer; (D) lithological map; (E) road
buffer; (F) stream buffer.
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where NPix1 number of pixels shows the existence of

predisposing factors and landslides, NPix2is the absence of

landslides predisposing parameter and presence of landslide,

NPix3 is the presence of the contributing factors to landslides

and the non-existence of landslides, and NPix4is the absence of

both landslides and landslides predisposing factors. The final

LSM of WOE is shown in Figure 6A.

3.3.2 Frequency ratio
The FR model is considered to be among the best bivariate

statisticalmodels for use in computing the spatial association between

two variables (Oh et al., 2017). This statistical method is a reliable

experimental technique to produce LSM in the research area (Fayez

et al., 2018). Eq. 5 is used to calculate the FR for each factor.

FR � NiPx/N
NilQ/Nl (5)

where FR = frequency ratio, NiPx = number of pixels in each

landslides conditioning factor class, N = number of all pixels in

the study area, NilP = number of landslide pixels in each

landslide conditioning factor, and Nl = number of all

landslide pixels in the study area.

The following mathematical representation is used to

generate LSI for the region of interest.

LSI � ∑
n

i�1
FRij (6)

The expression FRij is frequency ratio value for the “j” class of

factor “i”, and n is the total number of factors. After performing

these steps, the LSM map was produced, as shown in Figure 6B.

3.3.3 Information value
In this work, the IV method generates the LSM of the study

area. This statistically based GIS technique predicts the spatial

association between landslide inventory and classes of

predisposing factors (Li et al., 2021).

This analysis can be achieved through the following

calculation:

FIGURE 6
Landslide susceptibility mapping derived from bivariate models: (A) LSM by WOE; (B) LSM by FR; (C) LSM by IV.
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TABLE 2 Detailed analysis of different causative parameters with landslide events using bivariate models (IV, FR, andWoE) to understand the impacts
of each class in LSM.

Parameters Class No.
of pixels
in a
class

No.
of landslide
pixels
in a
class

W+ W− WC % of
pixels
in a
class

% of
LS pixels
in a
class

(FR) IV =
log (A/B)

Elevation <1,500 7,738,778 756 −4.78 0.26 −5.04 22.52 0.190 0.01 −4.77

1,500–2,500 6,531,545 4,635 −2.80 0.20 −3.00 19.01 1.168 0.06 −2.79

2,500–3,500 5,878,979 101,163 0.42 −0.11 0.53 17.11 25.486 1.49 0.42

3,500–4,500 7,471,119 150,000 0.82 −0.23 0.79 21.74 37.790 1.74 0.55

>4,500 6,738,623 140,374 0.21 −0.22 0.82 19.61 35.365 1.80 0.59

Slope <10° 5,900,546 16,596 −1.42 −0.14 −1.57 17.17 4.18 0.24 −1.41

10–20 8,400,816 69,688 −0.33 −0.08 −0.42 24.45 17.56 0.72 −0.33

20–30 10,285,258 124,369 0.40 −0.04 0.26 29.93 31.33 1.05 0.17

30–45 7,243,458 141,275 0.175 0.14 0.54 21.08 35.59 1.69 0.43

>45 2,528,966 45,000 0.43 0.08 0.48 7.36 11.34 1.54 0.40

Aspect F 3,547,098 15,766 −0.96 0.07 −1.03 10.32 3.97 0.38 −0.96

NE 3,747,398 53,686 0.22 −0.03 0.25 10.91 13.53 1.24 0.22

E 3,819,815 69,991 0.47 −0.08 0.55 11.12 17.63 1.59 0.46

SE 4,111,079 77,868 0.50 −0.09 0.59 11.97 19.62 1.64 0.49

S 4,011,237 62,890 0.31 −0.05 0.36 11.67 15.84 1.36 0.31

SW 4,214,290 61,685 0.24 −0.04 0.28 12.27 15.54 1.27 0.24

W 3,938,948 39,437 −0.14 0.02 −0.16 11.46 9.94 0.87 −0.14

NW 3,613,212 11,340 −1.31 0.08 −1.39 10.52 2.86 0.27 −1.30

N 3,355,967 4,265 −2.22 0.09 −2.31 9.77 1.07 0.11 −2.21

Curvature Concave 3,828,011 287,611 1.94 −1.18 3.12 11.14 72.46 6.50 1.87

Flat 28,186,139 66,509 −1.60 1.58 -3.17 82.03 16.76 0.20 −1.59

Convex 2,344,894 42,808 0.46 −0.04 0.51 6.82 10.78 1.58 0.46

Precipitation <1,200 9,463,996 197,974 0.60 −0.37 0.98 27.54 49.88 1.81 0.59

1,200–1,300 6,471,282 120,882 0.49 −0.16 0.64 18.83 30.46 1.62 0.48

1,300–1,400 8,295,914 49,103 −0.67 0.15 −0.82 24.14 12.37 0.51 −0.67

1,400–1,500 6,692,712 16,976 −1.52 0.18 −1.70 19.48 4.28 0.22 −1.52

>1,500 3,441,168 11,957 −1.40 0.08 −1.29 10.01 3.01 0.30 −1.20

LULC Water 260,922 448 −1.92 0.01 −1.92 0.76 0.11 0.15 −1.91

Forest 6,891,142 387 −5.34 0.23 −5.56 20.07 0.10 0.00 −5.33

Grass 213,081 174 −2.66 0.01 −2.67 0.62 0.04 0.07 −2.65

Flood vegetation 45 1 0.66 0.00 0.66 0.00 0.00 1.92 0.65

Crops 1,257,688 154 −4.56 0.04 −4.60 3.66 0.04 0.01 −4.55

shrub 14,895,916 234,000 0.31 −0.32 0.64 43.39 58.95 1.36 0.31

Builtup_area 3,675,808 1,139 −3.63 0.11 −3.74 10.71 0.29 0.03 −3.62

Bare ground 4,185,037 147,827 1.14 −0.34 1.48 12.19 37.24 3.05 1.12

Snow 2,947,648 12,798 −0.99 0.06 −1.04 8.59 3.22 0.38 −0.98

Distance to fault <100 75,904 10 −4.49 0.00 −4.49 0.22 0.00 0.01 −4.474

100–200 76,090 73 −2.50 0.00 −2.50 0.22 0.02 0.08 −2.489

200–300 76,257 91 −2.28 0.00 −2.28 0.22 0.02 0.10 −2.270

300–400 76,440 215 −1.42 0.00 −1.42 0.22 0.05 0.24 −1.413

>400 34,061,693 396,732 0.01 −2.21 2.22 99.11 99.90 1.01 0.008

Lithology Ka 6,347,601 3,158 −3.17 0.20 −3.37 34.41 0.80 0.0231 −3.16

KB 9,948,821 235,797 0.72 −0.56 1.28 53.93 59.41 1.1015 0.71

EC 1,185,411 86,665 1.90 −0.21 2.11 6.43 21.84 3.3978 1.83

(Continued on following page)
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W � log
MQox(Ro)
MQox(Ro)

∑ MQox(Ro)∑MQox(Ro)
(7)

whereW denotes the weight of the causative factor for landslides.

Mox(Ro) shows the number landslide of pixels within class

“o”; MQox(Mo) is the number of all pixels within class “o”;

MQOx(RO) is the total number of landslides pixels; and

∑MQOx(Mi)) is used for the total number of pixels in the

study area. The LSI can be generated for the study area using the

following formula:

LSI � WE +WS +WA +WC +WLULC +WL +WP +WF +WR

+WD

(8)
where WE = weight of elevation, WS = weight of slope, WA =

weight of aspect, WC weight of curvature, WLULC = weight of

landuse landcover, WL = weight of lithology, WF = weight of

fault,WR = weight of road, WP = weight of rainfall, and WD =

weight of stream network. The LSM of IV is given in

Figure 6C.

4 Results

In this research, 495 landslide events were detected by the

integrated interpretation of satellite imageries and ground-

based data in the study area. The spatial distribution of

landslide events is given in Figure 1. These landslide events

consist of different types of landslides, i.e., mudflow, debris,

rockfall, rockslide, topple, and creep. In the current study,

three bivariate models are applied to produce the LSM of the

study area. The details of the results for each model are shown

in Table 2. The comprehensive, detailed description of Table 2

is as follows.

The elevation parameters used in the current study represent

a strong association with landslide events. The most influential

class of elevation is >4,500 m, followed by 3,500–4,500 m and

2,500–3,500 m. The < 1,500 m class of elevation is less

susceptible. The independent variable, i.e., the slope, is

considered the crucial factor in the present study. The slope

factor is influential up to 45° because as slope increases, landslide

occurrence also increases, but above 45°, landslide activity

declines with increasing slope, as shown in Table 2. The

TABLE 2 (Continued) Detailed analysis of different causative parameters with landslide events using bivariate models (IV, FR, and WoE) to understand
the impacts of each class in LSM.

Parameters Class No.
of pixels
in a
class

No.
of landslide
pixels
in a
class

W+ W− WC % of
pixels
in a
class

% of
LS pixels
in a
class

(FR) IV =
log (A/B)

GI 1,439,183 39,579 0.87 −0.06 0.93 7.80 9.97 1.2781 0.86

UV 1,180,316 12,271 −0.12 0.00 −0.12 6.40 3.09 0.4832 −0.12

KV 957,401 2,726 −1.42 0.02 −1.44 5.19 0.69 0.1323 −1.41

BBS 916,768 14,635 0.32 −0.01 0.33 4.97 3.69 0.7419 0.31

GM 155,417 4 −6.13 0.00 −6.13 0.84 0.00 0.0012 −6.12

CC 6,876,463 2015 −3.70 0.22 −3.92 37.28 0.51 0.0136 −3.69

ISM 352,208 4 −6.95 0.01 −6.96 1.91 0.00 0.0005 −6.94

PZG 757,560 6 -7.31 0.02 -7.33 4.11 0.00 0.0004 −7.30

SWG 800,352 11 −6.76 0.02 −6.78 4.34 0.00 0.0006 −6.75

CB 268,165 13 −5.50 0.01 −5.50 1.45 0.00 0.0023 −5.49

Q 463,000 3 −7.51 0.01 −7.52 2.51 0.00 0.0003 −7.50

MS 2,313,318 5 −8.61 0.07 −8.68 12.54 0.00 0.0001 −8.60

Distance to road <100 2,078,393 4,753 −.63 0.05 −1.68 6.05 1.20 0.20 −1.62

100–200 1,476,459 4,014 −1.46 0.03 −1.49 4.30 1.01 0.24 −1.45

200–300 1,163,424 4,415 −1.12 0.02 −1.14 3.39 1.11 0.33 −1.11

300–400 998,097 4,137 −1.03 0.02 −1.05 2.90 1.04 0.36 −1.02

>400 28,650,011 379,609 0.14 −1.35 1.49 83.37 95.64 1.15 0.14

Distance to stream <100 810,632 25,395 0.94 −0.04 0.98 2.36 6.40 2.71 0.93

100–200 1,017,643 23,000 0.61 −0.03 0.63 2.96 5.79 1.96 0.60

200–300 1,222,348 21,800 0.37 −0.02 0.38 3.56 5.49 1.54 0.36

300–400 1,393,655 17,000 −0.02 0.00 −0.02 4.06 4.28 1.06 −0.02

>400 29,922,106 339,530 −0.09 0.46 −0.56 87.07 85.54 0.98 −0.09
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results revealed that 30°–45° is the most susceptible class of slope

while, slopes of <10° are the most resistant to landslide, followed

by 10°–20° class of slope. Table 2 indicates that SE is the most

crucial class of aspects, followed by E, S, and SW. The tabulated

results explained that concave structure is the critical class of

landslides, as noted in Table 2. In the present study, a rainfall

map was generated from CHIRPS data, validated with ground-

based data, and then reclassified into five classes to evaluate the

association of rainfall parameters with landslide events. As

shown in Table 2 for precipitation, the results indicated that

rainfall is a significant factor for landslides. The results revealed

that <1,200 mm/year precipitation class is the censorious class

for landslide, followed by 1,200–1,300, 1,300–1,400, 1,400–1,500,

and >1,500 mm/year. In the current research, the tabulated

results clearly explained that every class of LULC has diverse

impacts on landslide events. The results of Table 2 show that the

barren land and flooded vegetation of the present study area is

most susceptible to landslides. The forest and built-up area show

greater resistance to landslides in the study area than other

classes of LULC.

The results of the present study demonstrate that faults have

no direct influence on landslide occurrence, as shown in Table 2.

The results illustrate that very a smaller number of landslide

pixels occurred in a <100 m buffer zone near the fault, i.e., values

of −4.49, 0.01, and −4.47 for WOE, FR, and IV, respectively. The

most vulnerable buffer zone of a geological fault is >400 m, as

most landslide events occur in this buffer region. The WOE, FR,

and IV models for the >400 m buffer are 2.22, 1.01, and 0.008,

respectively.

The results prove that lithology is a significant causative

factor for landslide investigation. As shown in Table 2, EC is the

most susceptible geological formation for landslides, followed by

GI and KB. The output results of bivariate models for road

association with landslide events, as shown in Table 2, indicate

that the road network has no direct impact on the instability of

strata. The <100 m buffer zone of road network is not susceptible

to landslides in the study area. No direct association can be

observed between the dependent variable and the road network.

The >400 m buffer zone of the road network is most susceptible

to landslides with values of 1.49, 1.15, and 0.14 for the WOE, FR,

and IV models.

The results for landslide events and stream networks show

that both variables feature a substantial direct association with

each other, because in this study, we observed that most

landslide events and landslide pixels occurred near streams,

while smaller numbers of landslide events were observed far

from drainage. The bivariate statistical results revealed that

a <100 m buffer from the stream network is the most

susceptible class to landslide occurrence followed by

100–200 m and 200–300 m. The WOE, FR, and IV models

values of −0.56, 0.98, and −0.09 revealed that both dependent

variable and independent variables in the >400 m buffer zone

are not susceptible to landslide.

The tabulated analysis concluded that the concave structure

is the most crucial class for landslide occurrence, followed by

lithology, barren land, stream network, and elevation. The

influential factors for the WOE results mentioned above are

3.12, 2.11, 1.48, 0.98, and 0.82, respectively. The FR model results

for concave, lithology, bare ground, stream network, and

elevation are 6.50, 3.39, 3.05, 2.71, and 1.80, respectively. The

IV model values for concave, lithology, bare ground, stream

network, and elevation are 1.87, 1.83, 1.12, 0.93, and 0.59.

This study used GIS-based statistical analysis of various

causative factors with landslide events in ArcGIS 10.8 to

produce the LSM of the research area, as shown in

Figure 6. These were reclassified into five classes, i.e., very

low, low, high, and very high. The LSM produced by WOE, as

shown in Figure 6A, indicated that the major portion of the

north region of the study area is highly susceptible to

landslides, followed by high and moderate susceptibility

class of landslides, while the south region of the LSM is

occupied has low and low susceptibility classes. The south

region of the study area is safe according to results of WOE

model. The final LSM generated by FR model, as shown in

Figure 6B, reveals that the most northern area of LSM is

exposed to very high, high, moderate susceptibility. By

contrast to the WOE model in the results for this

technique, we observe some low and very low

susceptibility zones in the region of the study area. The

resulting map of the IV model is different from both

mentioned models. In this LSM map, the north region is

mostly susceptible to the very high and high class. The very

low zone is not mentioned in the north region, and the

moderate class is negligible in this LSM relative to WOE

and FR. The WOE and FR on this LSM of the IV model

contains low and very low class of susceptibility in the north

region, which was not identified in the previous two models.

The south portion of LSM, generated by the IV model,

consists of very low and low susceptibility class and

contains some high zones that are not mentioned in the

previous model amps. Beyond the north and south zones

of the LSM, the central region of the WOE and FR models are

mostly susceptible to high and moderate susceptibilities,

while some areas have low and very high classes as well. In

the LSM generated by IV model the central region is mostly

susceptible to low class. According to the IV model, the

central region is safe.

To validate the performance of bivariate models, we used

the AUROC method. The validation graphs of WOE, FR, and

IV are shown in Figure 7 using 30% of landslide inventory

data. AUC chart for the WOE model showed that the SRC and

PRC values of the model are 67.3% and 87%, respectively. The

SRC and PRC graphs for the WOEmodel are shown in Figures

7A,B. The validation charts of the FR bivariate model illustrate

values of 0.93 and 0.95 for the SRC and PRC, respectively.

Based on training and validation data, these SRC and PRC
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values can be represented in percentage format, i.e., 93% and

95%, respectively. The SRC and PRC graphs are illustrated in

Figures 7C,D. The visual record for the IV model revealed that

the chart values were 0.64 and 0.73 for SRC and PRC,

respectively meant that the model accuracy is 64% and

73.85%. The SRC and PRC graphical representation for the

IV model is shown in Figures 7E,F. The validation outcomes of

WOE, FR, and IV indicate that the FR is a reliable model to

produce LSM for the present study area.

5 Discussion

Landslide development is a multifaceted phenomenon

because it is triggered and predisposed by various natural and

human-induced factors (Chen et al., 2019). In this study, LSM

was generated using geospatial techniques based on landslide

events and predisposing factors (elevation, slope, aspect,

curvature, precipitation, LULC, distance to fault, lithology,

distance to road, and distance to streams) to mitigate current

FIGURE 7
Success rate curve (SRC) and predicted rate curve (PRC) for WOE, FR, and IV model: (A) SRC for WOE; (B) PRC for WOE; (C) SRC for FR model;
(D) PRC for FR model; (E) SRC for IV; (F) PRC for IV.
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and future hazard impacts. All 10 causative factors were

considered important because they were selected and prepared

according to the literature, but some parameters are more

influential than others. First of all, we prepared an inventory

map using satellite and ground-based data. The topographic

factors of altitude, slope, aspect, and curvature are reflected as

the influential parameters for landslides (Alkhasawneh et al.,

2013; Tariq et al., 2020; Ghaderizadeh et al., 2021). This paper

focused on topographic causative factors that are associated with

landslide events, and a tabulated explanation is given in Table 2.

The outcome results of topographic parameters in this study

prove that these are the most influential independent variables

for landslide occurrence. The results section of this paper

indicates that curvature, lithology, barren ground, stream

network, and elevation are the most significant parameters,

while the contribution of other factors also can never be

ignored. The concave curvature is more strongly associated

with landslide events than convex structures (Xu et al., 2014).

The results of the present study clearly showed that concave

structure is mainly affected by landslides than convex curvature.

The precipitation is the most influential external triggering

factor for landslides but also depend on the lithology, slope, and

LULC of the study area (Silalahi et al., 2019). In the present study

heavy precipitation occurred in the hilly region which have

compacted lithology and vegetation cover, so the area was not

affected by landslide hazard. In the same study area some region

have low precipitation with major landslide because low

precipitation area was occupied by loose lithology and

barren land.

The LSM literature indicates that lithology is often

considered an influential factor (Segoni et al., 2020). The

findings this analysis agree that lithology is an influential and

significant internal factors in LSM. The literature suggests

that barren class of land cover is the most influential

triggering factor in landslide occurrence (Khan et al.,

2019). The findings of this study confirm that barren land

is the susceptible class of land cover for a landslide. The last

causative factor found in this research but not the least is

drainage network, which is an external influential causative

factor in landslide occurrence (Pradhan et al., 2012). This

study revealed strongly positive correlation of drainage with

landslides. During a field survey, we validated ground truth

information with GIS-based models and concluded that all

landslide-affecting factors contribute to landslide occurrence,

but curvature, lithology, barren ground, stream network, and

elevation are the most trigging causative factors of landslides

in the current study area.

In the current paper, lithology was proven to have a crucial

role in landslide occurrence. The literature indicates that bare

ground is more susceptible to landslide occurrence (Khan et al.,

2019). This paper also showed that barren land is the most

susceptible class to landslides, with values of 1.48, 3.05, and

1.12 forWOE, FR, and IV. The drainage network is an influential

factor in a landslide (Pradhan et al., 2012), and in this study,

drainage is strongly associated with landslide events.

The outcomes demonstrated that the findings of success rate

curve (SRC) of the WOE, FR, and IV models were 67%, 93%, and

64%, respectively, while the prediction rate curve (PRC) of the

three models were 87%, 95%, and 73%, respectively. In the

current research, the FR model has 93% and 95% values for

SRC and PRC, respectively, and produces the best prediction

mapping of the landslide, as shown in Figure 6B. The WOE

model also made a good prediction map for the study area. In

contrast, the IV model has not produced satisfactory results.

Geoscientists have adopted various statistical models in

numerous regions and attained different findings. This type of

discrepancy is mostly due to weight differences, along with the

selection of models and causative factors. Therefore, landslide

detection, the selection of landslide-affecting factors, and

appropriate models for the study area is very important for

reducing uncertainty in model processing and prediction

(Pham et al., 2019). This is because GIS-based models depend

upon the reliability and quality of input data. In this research, we

used quantitative models and achieved superior accuracy to

qualitative and semi-quantitative methods.

6 Conclusion

This research was designed to generate an LSM of the study area

using geospatial techniques to mitigate the consequences of hazards.

Three GIS-based statistical models, i.e., WOE, FR, and IV, were

applied in the current research to compute the association of

dependent variables (landslide causative factors) and dependent

variables (landslide events/inventory). The study results delivered

significant evidence concerning landslide existence in the study area.

The results explained landslides instigated by various causative

factors in the study area. This study was executed to identify

regions susceptible to landslides and classify them into deficient,

low, medium, high, and very high zones to alleviate their

consequences, using geospatial techniques. This research was

conducted to evaluate the association of causative factors with

landslide occurrence. These parameters were topographic,

geologic, hydrologic, climatic, and geomorphic. The three GIS-

based statistical models were used to investigate the association

of landslide occurrence with causative factors to produce LSM.

From the above discussion and due to the results of analysis,

we concluded that the highest value for LSM in the current

research area by bivariate analysis was the value of curvature,

lithology, barren ground, stream network, and elevation. The

most susceptible class of curvature was a concave structure

having values of 3.12, 6.50, and 3.12 values for the WOE, FR

and IV models, respectively. The WOE, FR, and IV models for

flat class were −3.17, 0.20, and −1.59, respectively, which shows

that it is the most less susceptible class. The results revealed that

the EC is the most susceptible formation in the current study,
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having association values of 2.11, 3.39, and 1.83 for theWOE, FR,

and IV models, respectively. The results concluded that barren

land the association values were WOE, FR, and IV are 1.48, 3.05,

and 1.12. The tabulated analysis revealed that <100 m buffer zone

of the stream network was most susceptible to landslide

occurrence. The analytical results for this buffer zone of

WOE, FR, and IV were 0.98, 2.71, and 0.93, respectively.

The validation results, i.e., SRC and PRC for the WOE, FR,

and IV models, were 0.67, 0.87, 0.93, 0.95, 0.64, and 0.73,

respectively. The validation results revealed that FR model is a

credible method for the LSM, as this model showed accuracies of

0.93 and 0.95 for SRC and PRC, respectively. It can be concluded

that GIS-based statistical modeling is the most reliable, flexible,

and authentic method for generating LSM. Various organizations

can use the final LSM of the bivariate models to reduce the effects

of landslide hazards in the study area.

Data availability statement

The original contributions presented in the study are

included in the article/Supplementary Material. Further

inquiries can be directed to the corresponding authors.

Author contributions

Fl: Conceptualization, Methodology, Validation, Formal

analysis, Investigation, Data curation, Writing – original draft,

Visualization. SR: Writing – review and editing, Visualization.

BG: Writing – review and editing, Visualization. AT:

Conceptualization, Methodology, Validation, Formal analysis,

Investigation, Data curation, Writing – original draft,

Visualization, Supervision, Project administration. SUS:

Writing – review and editing, Visualization. MN: Writing –

review and editing, Visualization. MLH: Writing – review and

editing, Visualization. NUA: Writing – review and editing,

Visualization. QL: Writing – review and editing, Visualization,

Project administration, Funding. LL: Writing – review and

editing, Visualization, Project administration, Funding. MS:

Writing – review and editing, Visualization. MA: Writing –

review and editing, Visualization.

Funding

This work is supported by the National Natural Science

Foundation of China (grant no. 41901292 and grant no.

42071321).

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors, and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

References

Pham, B. T., Bui, D. T., Prakash, I., and Dholakia, M. B. (2015). Landslide
susceptibility assessment at a part of uttarakhand Himalaya, India using GIS – based
statistical approach of frequency ratio method. Int. J. Eng. Res. 4. doi:10.17577/
ijertv4is110285

Abbas, I., Liu, J., Amin, M., Tariq, A., and Tunio, M. H. (2021). Strawberry fungal
leaf scorch disease identification in real-time strawberry field using deep learning
architectures. Plants 10, 2643. doi:10.3390/plants10122643

Abdollahi, S., Pourghasemi, H. R., Ghanbarian, G. A., and Safaeian, R. (2019).
Prioritization of effective factors in the occurrence of land subsidence and its
susceptibility mapping using an SVM model and their different kernel functions.
Bull. Eng. Geol. Environ. 78, 4017–4034. doi:10.1007/s10064-018-1403-6

Alkhasawneh, M. S., Ngah, U. K., Tay, L. T., Mat Isa, N. A., and Al-Batah, M. S.
(2013). Determination of important topographic factors for landslide mapping
analysis using MLP network. Sci. World J. 2013, 1–12. doi:10.1155/2013/415023

Aslam, B., Maqsoom, A., Khalil, U., Ghorbanzadeh, O., Blaschke, T., Farooq, D.,
et al. (2022a). Evaluation of different landslide susceptibility models for a local scale
in the chitral district, northern Pakistan. Sensors 22, 3107. doi:10.3390/s22093107

Aslam, B., Zafar, A., and Khalil, U. (2022b). Comparative analysis of multiple
conventional neural networks for landslide susceptibility mapping. Netherlands:
Springer. doi:10.1007/s11069-022-05570-x

Atta-ur-Rahman, A., and Khan, A. N. (2011). Analysis of flood causes and
associated socio-economic damages in the Hindukush region. Nat. Hazards 59,
1239–1260. doi:10.1007/s11069-011-9830-8

Bahadar, I., Shafique, M., Khan, T., Tabassum, I., and Ali, M. Z. (2015). Flood
hazard assessment using hydro-dynamic model and GIS/RS tools: A case study of
babuzai-kabal tehsil swat basin, Pakistan. J. Himal. Earth Sci. 48, 129–138.

Baloch, M. Y. J., Zhang, W., Chai, J., Li, S., Alqurashi, M., Rehman, G., et al. (2021).
Shallow groundwater quality assessment and its suitability analysis for drinking and
irrigation purposes. WaterSwitzerl. 13, 3361–3425. doi:10.3390/w13233361

Baqa, M. F., Chen, F., Lu, L., Qureshi, S., Tariq, A., Wang, S., et al. (2021).
Monitoring and modeling the patterns and trends of urban growth using urban
sprawl matrix and CA-markov model: A case study of karachi, Pakistan. Land 10
(7), 700. doi:10.3390/land10070700

Barredo, J. I., Benavides, A., Hervás, J., and Van Westen, C. J. (2000). Comparing
heuristic landslide hazard assessment techniques using GIS in the Tirajana basin,
Gran Canaria Island, Spain. Int. J. Appl. Earth Obs. Geoinf. 2000, 9–23. doi:10.1016/
s0303-2434(00)85022-9

Cao, Y., Wei, X., Fan, W., Nan, Y., Xiong, W., and Zhang, S. (2021). Landslide
susceptibility assessment using the weight of evidence method: A case study in xunyang
area, China. PLoS One 16, 02456688–e245718. doi:10.1371/journal.pone.0245668

Frontiers in Environmental Science frontiersin.org15

Islam et al. 10.3389/fenvs.2022.1027423

https://doi.org/10.17577/ijertv4is110285
https://doi.org/10.17577/ijertv4is110285
https://doi.org/10.3390/plants10122643
https://doi.org/10.1007/s10064-018-1403-6
https://doi.org/10.1155/2013/415023
https://doi.org/10.3390/s22093107
https://doi.org/10.1007/s11069-022-05570-x
https://doi.org/10.1007/s11069-011-9830-8
https://doi.org/10.3390/w13233361
https://doi.org/10.3390/land10070700
https://doi.org/10.1016/s0303-2434(00)85022-9
https://doi.org/10.1016/s0303-2434(00)85022-9
https://doi.org/10.1371/journal.pone.0245668
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2022.1027423


Chalkias, C., Ferentinou, M., and Polykretis, C. (2014). GIS-based landslide
susceptibility mapping on the Peloponnese Peninsula, Greece. Geosci. (Basel). 4,
176–190. doi:10.3390/geosciences4030176

Chen, J., Du, L., and Guo, Y. (2021). Label constrained convolutional factor
analysis for classification with limited training samples. Inf. Sci. (N. Y). 544,
372–394. doi:10.1016/j.ins.2020.08.048

Chen, W., Panahi, M., Tsangaratos, P., Shahabi, H., Ilia, I., Panahi, S., et al. (2019).
Applying population-based evolutionary algorithms and a neuro-fuzzy system for
modeling landslide susceptibility. Catena 172, 212–231. doi:10.1016/j.catena.2018.08.025

Chen, Z., Liu, Z., Yin, L., and Zheng, W. (2022). Statistical analysis of regional air
temperature characteristics before and after dam construction. Urban Clim. 41,
101085. doi:10.1016/j.uclim.2022.101085

Chimidi, G., Raghuvanshi, T. K., and Suryabhagavan, K. V. (2017). Landslide
hazard evaluation and zonation in and around gimbi town, Western Ethiopia—A
GIS-based statistical approach. Appl. Geomat. 9, 219–236. doi:10.1007/s12518-017-
0195-x

Choi, J., Oh, H. J., Lee, H. J., Lee, C., and Lee, S. (2012). Combining landslide
susceptibility maps obtained from frequency ratio, logistic regression, and artificial
neural network models using ASTER images and GIS. Eng. Geol. 124, 12–23. doi:10.
1016/j.enggeo.2011.09.011

Costanzo, D., Rotigliano, E., Irigaray, C., Jiménez-Perálvarez, J. D., and
Chacón, J. (2012). Factors selection in landslide susceptibility modelling on
large scale following the gis matrix method: Application to the river Beiro basin
(Spain). Nat. Hazards Earth Syst. Sci. 12, 327–340. doi:10.5194/nhess-12-327-
2012

Dahal, R. K., Hasegawa, S., Nonomura, A., Yamanaka, M., Dhakal, S., and
Paudyal, P. (2008). Predictive modelling of rainfall-induced landslide hazard in
the Lesser Himalaya of Nepal based on weights-of-evidence. Geomorphology 102,
496–510. doi:10.1016/j.geomorph.2008.05.041

De Vallejo, L. G., and Ferrer, M. (2011). Geological engineering. London:
Geological Engineering. CRC Press.

Dou, J., Bui, D. T., Yunus, A. P., Jia, K., Song, X., Revhaug, I., et al. (2015).
Optimization of causative factors for landslide susceptibility evaluation using
remote sensing and GIS data in parts of Niigata, Japan. PLoS One 10, e0133262.
doi:10.1371/journal.pone.0133262

Elmoulat, M., Ait Brahim, L., Mastere, M., and Ilham Jemmah, A. (2015).
Mapping of mass movements susceptibility in the zoumi region using satellite
image and GIS technology (Moroccan rif). Int. J. Sci. Eng. Res. 6.

Farhan, M., Moazzam, U., Rahman, G., Munawar, S., Tariq, A., Safdar, Q., et al.
(2022). Trends of rainfall variability and drought monitoring using standardized
precipitation index in a scarcely gauged basin of northern Pakistan.Water 14, 1132.
doi:10.3390/w14071132

Fayez, L., Pazhman, D., Pham, B. T., Dholakia, M. B., Solanki, H. A., Khalid, M.,
et al. (2018). Application of frequency ratio model for the development of landslide
susceptibility mapping at part of uttarakhand state, India. Int. J. Appl. Eng. Res. 13,
6846–6854.

Fu, C., Cheng, L., Qin, S., Tariq, A., Liu, P., Zou, K., et al. (2022). Timely plastic-
mulched cropland extraction method from complex mixed surfaces in arid regions.
Remote Sens. (Basel). 14, 4051. doi:10.3390/rs14164051

Ghaderizadeh, S., Abbasi-Moghadam, D., Sharifi, A., Zhao, N., and Tariq, A.
(2021). Hyperspectral image classification using a hybrid 3D-2D convolutional
neural networks. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 14, 7570–7588.
doi:10.1109/JSTARS.2021.3099118

Girma, F., Raghuvanshi, T. K., Ayenew, T., and Hailemariam, T. (2015).
Landslide hazard zonation in Ada Berga District, Central Ethiopia–a GIS based
statistical approach. J. Geom. 9, 25–38.

Guo, Y., Yang, Y., Kong, Z., and He, J. (2022). Development of similar
materials for liquid-solid coupling and its application in water outburst and
mud outburst model test of deep tunnel. Geofluids 2022, 1–12. doi:10.1155/
2022/8784398

Guzzetti, F., Carrara, A., Cardinali, M., and Reichenbach, P. (1995). Stern, 1991]
and one of the NAVZ (Northern Austral Vol- canic Zone) volcanic events [3010 yr.
Geomorphology 13, 1995.

Hong, H., Chen, W., Xu, C., Youssef, A. M., Pradhan, B., and Tien Bui, D. (2017).
Rainfall-induced landslide susceptibility assessment at the Chongren area (China)
using frequency ratio, certainty factor, and index of entropy. Geocarto Int. 32, 1–16.
doi:10.1080/10106049.2015.1130086

Hu, P., Sharifi, A., Tahir, M. N., Tariq, A., Zhang, L., Mumtaz, F., et al. (2021).
Evaluation of vegetation indices and phenological metrics using time-series modis
data for monitoring vegetation change in Punjab, Pakistan. WaterSwitzerl. 13,
2550–2615. doi:10.3390/w13182550

Hussain, S., Lu, L., Mubeen, M., Nasim, W., Karuppannan, S., Fahad, S., et al.
(2022). Spatiotemporal variation in land use land cover in the response to local
climate change using multispectral remote sensing data. Land 11, 595. doi:10.3390/
land11050595

Imran, M., Ahmad, S., Sattar, A., and Tariq, A. (2022). Mapping sequences and
mineral deposits in poorly exposed lithologies of inaccessible regions in Azad
Jammu and Kashmir using SVM with ASTER satellite data. Arab. J. Geosci. 15, 538.
doi:10.1007/s12517-022-09806-9

Khan, H., Shafique, M., Khan, M. A., Bacha, M. A., Shah, S. U., and Calligaris, C.
(2019). Landslide susceptibility assessment using Frequency Ratio, a case study of
northern Pakistan. Egypt. J. Remote Sens. Space Sci. 22, 11–24. doi:10.1016/j.ejrs.
2018.03.004

Khanchoul, K., Balla, F., and Othmani, O. (2020). Assessment of soil erosion by
rusle model using gis: A case study of chemorah basin, Algeria.Malays. J. Geosci. 4,
70–78. doi:10.26480/mjg.02.2020.70.78

Lee, S., and Pradhan, B. (2007). Landslide hazard mapping at Selangor, Malaysia
using frequency ratio and logistic regression models. Landslides 4, 33–41. doi:10.
1007/s10346-006-0047-y

Li, B., Wang, N., and Chen, J. (2021). GIS-based landslide susceptibility mapping
using information, frequency ratio, and artificial neural networkmethods in qinghai
province, northwestern China. Adv. Civ. Eng. 2021, 1–14. doi:10.1155/2021/
4758062

Li, Q., Song, D., Yuan, C., and Nie, W. (2022a). An image recognition method for
the deformation area of open-pit rock slopes under variable rainfall. Meas.
(Mahwah. N. J). 188, 110544. doi:10.1016/j.measurement.2021.110544

Li, Y., Du, L., and Wei, D. (2022b). Multiscale CNN based on component analysis for
SAR ATR. IEEE Trans. Geosci. Remote Sens. 60, 1–12. doi:10.1109/TGRS.2021.3100137

Majeed, M., Lu, L., Haq, S. M., Waheed, M., Sahito, H. A., Fatima, S., et al. (2022).
Spatiotemporal distribution patterns of climbers along an abiotic gradient in jhelum
district, Punjab, Pakistan. Forests 13, 1244. doi:10.3390/f13081244

Marchesini, I., Mergili, M., Rossi, M., Santangelo, M., Cardinali, M., Ardizzone,
F., et al. (2014). “A GIS approach to analysis of deep-seated slope stability in
complex geology,” in Landslide science for a safer geoenvironment (Springer),
483–489.

Milevski, I., Dragićević, S., and Zorn, M. (2019). Statistical and expert-based
landslide susceptibility modeling on a national scale applied to North Macedonia.
Open Geosci. 11, 750–764. doi:10.1515/geo-2019-0059

Miller, S., Brewer, T., and Harris, N. (2009). Rainfall thresholding and
susceptibility assessment of rainfall-induced landslides: Application to landslide
management in St Thomas, Jamaica. Bull. Eng. Geol. Environ. 68, 539–550. doi:10.
1007/s10064-009-0232-z

Narimah Samat, M. S. S., and Ismail, M. H. (2020). The integration of gis, ahp,
and remote sensing methods for potential areas groundwater: Case study for
pontian district, johor, Malaysia. Malays. J. Geosci. 5, 06–11. doi:10.26480/mjg.
01.2021.06.11

Nolasco-Javier, D., Kumar, L., and Tengonciang, A. M. P. (2015). Rapid appraisal
of rainfall threshold and selected landslides in Baguio, Philippines. Nat. Hazards 78,
1587–1607. doi:10.1007/s11069-015-1790-y

Oh, H. J., Lee, S., and Hong, S. M. (2017). Landslide susceptibility assessment
using frequency ratio technique with iterative random sampling. J. Sens. 2017, 1–21.
doi:10.1155/2017/3730913

Park, S., Choi, C., Kim, B., and Kim, J. (2013). Landslide susceptibility mapping
using frequency ratio, analytic hierarchy process, logistic regression, and artificial
neural network methods at the Inje area, Korea. Environ. Earth Sci. 68, 1443–1464.
doi:10.1007/s12665-012-1842-5

Pham, B. T., Prakash, I., Khosravi, K., Chapi, K., Trinh, P. T., Ngo, T. Q., et al.
(2019). A comparison of Support Vector Machines and Bayesian algorithms for
landslide susceptibility modelling. Geocarto Int. 34, 1385–1407. doi:10.1080/
10106049.2018.1489422

Pourghasemi, H. R., Moradi, H. R., and Fatemi Aghda, S. M. (2013). Landslide
susceptibility mapping by binary logistic regression, analytical hierarchy process,
and statistical index models and assessment of their performances.Nat. Hazards 69,
749–779. doi:10.1007/s11069-013-0728-5

Pourghasemi, H. R., Yansari, T., Panagos, P., and Pradhan, B. (2005). Analysis
and evaluation of landslide susceptibility: A review on articlespublished during
2005–2016 (periods of 2005–2012 and 2013–2016). Arab. J. Geosci. 11, 193. doi:10.
1007/s12517-018-3531-5

Pradhan, B., Chaudhari, A., Adinarayana, J., and Buchroithner, M. F. (2012). Soil
erosion assessment and its correlation with landslide events using remote sensing
data and GIS: A case study at penang Island, Malaysia. Environ. Monit. Assess. 184,
715–727. doi:10.1007/s10661-011-1996-8

Frontiers in Environmental Science frontiersin.org16

Islam et al. 10.3389/fenvs.2022.1027423

https://doi.org/10.3390/geosciences4030176
https://doi.org/10.1016/j.ins.2020.08.048
https://doi.org/10.1016/j.catena.2018.08.025
https://doi.org/10.1016/j.uclim.2022.101085
https://doi.org/10.1007/s12518-017-0195-x
https://doi.org/10.1007/s12518-017-0195-x
https://doi.org/10.1016/j.enggeo.2011.09.011
https://doi.org/10.1016/j.enggeo.2011.09.011
https://doi.org/10.5194/nhess-12-327-2012
https://doi.org/10.5194/nhess-12-327-2012
https://doi.org/10.1016/j.geomorph.2008.05.041
https://doi.org/10.1371/journal.pone.0133262
https://doi.org/10.3390/w14071132
https://doi.org/10.3390/rs14164051
https://doi.org/10.1109/JSTARS.2021.3099118
https://doi.org/10.1155/2022/8784398
https://doi.org/10.1155/2022/8784398
https://doi.org/10.1080/10106049.2015.1130086
https://doi.org/10.3390/w13182550
https://doi.org/10.3390/land11050595
https://doi.org/10.3390/land11050595
https://doi.org/10.1007/s12517-022-09806-9
https://doi.org/10.1016/j.ejrs.2018.03.004
https://doi.org/10.1016/j.ejrs.2018.03.004
https://doi.org/10.26480/mjg.02.2020.70.78
https://doi.org/10.1007/s10346-006-0047-y
https://doi.org/10.1007/s10346-006-0047-y
https://doi.org/10.1155/2021/4758062
https://doi.org/10.1155/2021/4758062
https://doi.org/10.1016/j.measurement.2021.110544
https://doi.org/10.1109/TGRS.2021.3100137
https://doi.org/10.3390/f13081244
https://doi.org/10.1515/geo-2019-0059
https://doi.org/10.1007/s10064-009-0232-z
https://doi.org/10.1007/s10064-009-0232-z
https://doi.org/10.26480/mjg.01.2021.06.11
https://doi.org/10.26480/mjg.01.2021.06.11
https://doi.org/10.1007/s11069-015-1790-y
https://doi.org/10.1155/2017/3730913
https://doi.org/10.1007/s12665-012-1842-5
https://doi.org/10.1080/10106049.2018.1489422
https://doi.org/10.1080/10106049.2018.1489422
https://doi.org/10.1007/s11069-013-0728-5
https://doi.org/10.1007/s12517-018-3531-5
https://doi.org/10.1007/s12517-018-3531-5
https://doi.org/10.1007/s10661-011-1996-8
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2022.1027423


Pradhan, B. (2010). Remote sensing and GIS-based landslide hazard analysis and
cross-validation using multivariate logistic regression model on three test areas in
Malaysia. Adv. Space Res. 45, 1244–1256. doi:10.1016/j.asr.2010.01.006

Qasim, M., Hubacek, K., Termansen, M., and Fleskens, L. (2013). Modelling land
use change across elevation gradients in district Swat , Pakistan. Reg. Environ.
Change 13, 567. doi:10.1007/s10113-012-0395-1

Quan, Q., Gao, S., Shang, Y., and Wang, B. (2021). Assessment of the
sustainability of Gymnocypris eckloni habitat under river damming in the
source region of the Yellow River. Sci. Total Environ. 778, 146312. doi:10.1016/j.
scitotenv.2021.146312

Raghuvanshi, T. K. (2019). Governing factors influence on rock slope
stability – statistical analysis for plane mode of failure. J. King Saud Univ. - Sci.
31, 1254–1263. doi:10.1016/j.jksus.2019.01.002

Rahman, G., Rahman, A. U., Bacha, A. S., Mahmood, S., Moazzam, M. F. U., and
Lee, B. G. (2020). Assessment of landslide susceptibility using weight of evidence
and frequency ratio model in shahpur valley, eastern Hindu Kush. Nat. Hazards
Earth Syst. Sci., 1–19. doi:10.21203/rs.3.rs-288102/v1

Reichenbach, P., Rossi, M., Malamud, B. D., Mihir, M., and Guzzetti, F. (2018). A
review of statistically-based landslide susceptibility models. Earth. Sci. Rev. 180,
60–91. doi:10.1016/j.earscirev.2018.03.001

Ren, Y., Jiang, H., Ji, N., and Yu, H. (2022). Tbsm: A traffic burst-sensitive model
for short-term prediction under special events. Knowl. Based. Syst. 240, 108120.
doi:10.1016/j.knosys.2022.108120

Sadiq Fareed, M. M., Raza, A., Zhao, N., Tariq, A., Younas, F., Ahmed, G., et al.
(2022). Predicting divorce prospect using ensemble learning: Support vector
machine, linear model, and neural network. Comput. Intell. Neurosci. 2022,
1–15. doi:10.1155/2022/3687598

Searle, M. P., Khan, M. A., Fraser, J. E., Gough, S. J., and Jan, M. Q. (1999). The
tectonic evolution of the Kohistan-Karakoram collision belt along the Karakoram
Highway transect, north Pakistan. Tectonics 18, 929–949. doi:10.1029/
1999tc900042

Segoni, S., Pappafico, G., Luti, T., and Catani, F. (2020). Landslide susceptibility
assessment in complex geological settings: Sensitivity to geological information and
insights on its parameterization. Landslides 17, 2443–2453. doi:10.1007/s10346-
019-01340-2

Shah, S. H. I. A., Jianguo, Y., Jahangir, Z., Tariq, A., and Aslam, B. (2022).
Integrated geophysical technique for groundwater salinity delineation, an approach
to agriculture sustainability for Nankana Sahib Area, Pakistan. Geomat. Nat.
Hazards Risk 13, 1043–1064. doi:10.1080/19475705.2022.2063077

Shah, S. H. I. A., Yan, J., Ullah, I., Aslam, B., Tariq, A., Zhang, L., et al. (2021).
Classification of aquifer vulnerability by using the drastic index and geo-electrical
techniques. WaterSwitzerl. 13, 2144. doi:10.3390/w13162144

Sharifi, A., Mahdipour, H., Moradi, E., and Tariq, A. (2022). Agricultural field
extraction with deep learning algorithm and satellite imagery. J. Indian Soc. Remote
Sens. 50, 417–423. doi:10.1007/s12524-021-01475-7

Silalahi, F. E. S., PamelaArifianti, Y., and Hidayat, F. (2019). Landslide
susceptibility assessment using frequency ratio model in Bogor, West Java,
Indonesia. Geosci. Lett. 6, 10. doi:10.1186/s40562-019-0140-4

Tahirkheli, R. A. K. (1979). Geology of kohistan and adjoining eurasian and indo-
Pakistan continents, Pakistan. Geol. Bull. Univ. Peshawar 11, 1–30.

Tariq, A., Mumtaz, F., Zeng, X., Baloch, M. Y. J., and Moazzam, M. F. U. (2022a).
Spatio-temporal variation of seasonal heat islands mapping of Pakistan during
2000–2019, using day-time and night-time land surface temperatures MODIS and
meteorological stations data. Remote Sens. Appl. Soc. Environ. 27, 100779. doi:10.
1016/j.rsase.2022.100779

Tariq, A., Riaz, I., Ahmad, Z., Yang, B., Amin, M., Kausar, R., et al. (2020). Land
surface temperature relation with normalized satellite indices for the estimation of
spatio-temporal trends in temperature among various land use land cover classes of
an arid Potohar region using Landsat data. Environ. Earth Sci. 79, 40–15. doi:10.
1007/s12665-019-8766-2

Tariq, A., and Shu, H. (2020). CA-Markov chain analysis of seasonal land surface
temperature and land use landcover change using optical multi-temporal satellite
data of Faisalabad, Pakistan. Remote Sens. (Basel). 12, 3402–3423. doi:10.3390/
rs12203402

Tariq, A., Shu, H., Gagnon, A. S., Li, Q., Mumtaz, F., Hysa, A., et al. (2021a).
Assessing burned areas in wildfires and prescribed fires with spectral indices and
SAR images in the margalla hills of Pakistan. Forests 12, 1371. doi:10.3390/
f12101371

Tariq, A., Shu, H., Siddiqui, S., Imran, M., and Farhan, M. (2021b). Monitoring
land use and land cover changes using geospatial techniques, a case study of Fateh
Jang, Attock, Pakistan.Geogr. Environ. Sustain. 14, 41–52. doi:10.24057/2071-9388-
2020-117

Tariq, A., Siddiqui, S., Sharifi, A., Hassan, S., and Ahmad, I. (2022b). Impact of
spatio - temporal land surface temperature on cropping pattern and land use and
land cover changes using satellite imagery , Hafizabad District , Punjab , Province of
Pakistan. Arab. J. Geosci. 15, 1045–1116. doi:10.1007/s12517-022-10238-8

Tian, H., Huang, N., Niu, Z., Qin, Y., Pei, J., andWang, J. (2019). Mapping winter
crops in China with multi-source satellite imagery and phenology-based algorithm.
Remote Sens. (Basel). 11, 820–823. doi:10.3390/rs11070820

Tian, H., Pei, J., Huang, J., Li, X., Wang, J., Zhou, B., et al. (2020). Garlic and
winter wheat identification based on active and passive satellite imagery and the
Google Earth engine in northern China. Remote Sens. (Basel). 12, 3539–3617.
doi:10.3390/rs12213539

Tian, H., Qin, Y., Niu, Z., Wang, L., and Ge, S. (2021a). Summer maize
mapping by compositing time series sentinel-1A imagery based on crop growth
cycles. J. Indian Soc. Remote Sens. 49, 2863–2874. doi:10.1007/s12524-021-
01428-0

Tian, H., Wang, Y., Chen, T., Zhang, L., and Qin, Y. (2021b). Early-season
mapping of winter crops using sentinel-2 optical imagery. Remote Sens. (Basel). 13,
3822–3911. doi:10.3390/rs13193822

Tosic, R., Dragicevic, S., Zorn, M., and Lovric, N. (2014). Landslide susceptibility
zonation: A case study of the municipality of banja luka (Bosnia and Herzegovina).
ACTA Geogr. Slov. Zb. 54, 190–202. doi:10.3986/ags54307

Ullah, I., Aslam, B., Shah, S. H. I. A., Tariq, A., Qin, S., Majeed, M., et al. (2022).
An integrated approach of machine learning, remote sensing, and GIS data for the
landslide susceptibility mapping. Land 11, 1265. doi:10.3390/land11081265

Vakhshoori, V., and Zare, M. (2016). Landslide susceptibility mapping by
comparing weight of evidence, fuzzy logic, and frequency ratio methods.
Geomat. Nat. Hazards Risk 7, 1731–1752. doi:10.1080/19475705.2016.
1144655

Wahla, S. S., Kazmi, J. H., Sharifi, A., Shirazi, S. A., Tariq, A., and Joyell Smith, H.
(2022). Assessing spatio-temporal mapping and monitoring of climatic variability
using SPEI and RF machine learning models. Geocarto Int. 0, 1–20. doi:10.1080/
10106049.2022.2093411

Wang, P., Wang, L., Leung, H., and Zhang, G. (2021a). Super-resolution mapping
based on spatial–spectral correlation for spectral imagery. IEEE Trans. Geosci.
Remote Sens. 59, 2256–2268. doi:10.1109/tgrs.2020.3004353

Wang, Q., Zhou, G., Song, R., Xie, Y., Luo, M., and Yue, T. (2022). Continuous
space ant colony algorithm for automatic selection of orthophoto mosaic seamline
network. ISPRS J. Photogramm. Remote Sens. 186, 201–217. doi:10.1016/j.isprsjprs.
2022.02.011

Wang, S., Zhang, K., Chao, L., Li, D., Tian, X., Bao, H., et al. (2021b). Exploring
the utility of radar and satellite-sensed precipitation and their dynamic bias
correction for integrated prediction of flood and landslide hazards. J. Hydrol. X.
603, 126964. doi:10.1016/j.jhydrol.2021.126964

Waqas, H., Lu, L., Tariq, A., Li, Q., Baqa, M. F., Xing, J., et al. (2021). Flash flood
susceptibility assessment and zonation using an integrating analytic hierarchy
process and frequency ratio model for the chitral district, khyber pakhtunkhwa,
13. pakistan. doi:10.3390/w13121650WaterSwitzerl.

Wu, C. H., and Chen, S. C. (2009). Determining landslide susceptibility in Central
Taiwan from rainfall and six site factors using the analytical hierarchy process
method. Geomorphology 112, 190–204. doi:10.1016/j.geomorph.2009.06.002

Xie, W., Li, X., Jian, W., Yang, Y., Liu, H., Robledo, L. F., et al. (2021a). A novel
hybrid method for landslide susceptibility mapping-based geodetector and machine
learning cluster: A case of xiaojin county, China. ISPRS Int. J. Geoinf. 10, 93. doi:10.
3390/ijgi10020093

Xie, W., Nie, W., Saffari, P., Robledo, L. F., Descote, P. Y., and Jian, W. (2021b).
Landslide hazard assessment based on Bayesian optimization–support vector
machine in Nanping City, China. Nat. Hazards 109, 931–948. doi:10.1007/
s11069-021-04862-y

Xu, C., Shyu, J. B. H., and Xu, X. (2014). Landslides triggered by the 12 january
2010 port-au-prince, Haiti, &lt;i&gt;M&lt;/i&gt;&lt;sub&gt;w&lt;/sub&gt; =
7.0 earthquake: Visual interpretation, inventory compiling, and spatial
distribution statistical analysis. Nat. Hazards Earth Syst. Sci. 14, 1789–1818.
doi:10.5194/nhess-14-1789-2014

Yin, L., Wang, L., Keim, B. D., Konsoer, K., and Zheng, W. (2022a). Wavelet
analysis of dam injection and discharge in three gorges dam and reservoir with
precipitation and river discharge. WaterSwitzerl. 14, 567. doi:10.3390/w14040567

Yin, L., Wang, L., Zheng, W., Ge, L., Tian, J., Liu, Y., et al. (2022b). Evaluation of
empirical atmospheric models using swarm-C satellite data. Atmos. (Basel) 13,
294–315. doi:10.3390/atmos13020294

Yue, Z., Zhou, W., and Li, T. (2021). Impact of the Indian ocean dipole on
evolution of the subsequent ENSO: Relative roles of dynamic and thermodynamic
processes. J. Clim. 34, 3591–3607. doi:10.1175/JCLI-D-20-0487.1

Frontiers in Environmental Science frontiersin.org17

Islam et al. 10.3389/fenvs.2022.1027423

https://doi.org/10.1016/j.asr.2010.01.006
https://doi.org/10.1007/s10113-012-0395-1
https://doi.org/10.1016/j.scitotenv.2021.146312
https://doi.org/10.1016/j.scitotenv.2021.146312
https://doi.org/10.1016/j.jksus.2019.01.002
https://doi.org/10.21203/rs.3.rs-288102/v1
https://doi.org/10.1016/j.earscirev.2018.03.001
https://doi.org/10.1016/j.knosys.2022.108120
https://doi.org/10.1155/2022/3687598
https://doi.org/10.1029/1999tc900042
https://doi.org/10.1029/1999tc900042
https://doi.org/10.1007/s10346-019-01340-2
https://doi.org/10.1007/s10346-019-01340-2
https://doi.org/10.1080/19475705.2022.2063077
https://doi.org/10.3390/w13162144
https://doi.org/10.1007/s12524-021-01475-7
https://doi.org/10.1186/s40562-019-0140-4
https://doi.org/10.1016/j.rsase.2022.100779
https://doi.org/10.1016/j.rsase.2022.100779
https://doi.org/10.1007/s12665-019-8766-2
https://doi.org/10.1007/s12665-019-8766-2
https://doi.org/10.3390/rs12203402
https://doi.org/10.3390/rs12203402
https://doi.org/10.3390/f12101371
https://doi.org/10.3390/f12101371
https://doi.org/10.24057/2071-9388-2020-117
https://doi.org/10.24057/2071-9388-2020-117
https://doi.org/10.1007/s12517-022-10238-8
https://doi.org/10.3390/rs11070820
https://doi.org/10.3390/rs12213539
https://doi.org/10.1007/s12524-021-01428-0
https://doi.org/10.1007/s12524-021-01428-0
https://doi.org/10.3390/rs13193822
https://doi.org/10.3986/ags54307
https://doi.org/10.3390/land11081265
https://doi.org/10.1080/19475705.2016.1144655
https://doi.org/10.1080/19475705.2016.1144655
https://doi.org/10.1080/10106049.2022.2093411
https://doi.org/10.1080/10106049.2022.2093411
https://doi.org/10.1109/tgrs.2020.3004353
https://doi.org/10.1016/j.isprsjprs.2022.02.011
https://doi.org/10.1016/j.isprsjprs.2022.02.011
https://doi.org/10.1016/j.jhydrol.2021.126964
https://doi.org/10.3390/w13121650
https://doi.org/10.1016/j.geomorph.2009.06.002
https://doi.org/10.3390/ijgi10020093
https://doi.org/10.3390/ijgi10020093
https://doi.org/10.1007/s11069-021-04862-y
https://doi.org/10.1007/s11069-021-04862-y
https://doi.org/10.5194/nhess-14-1789-2014
https://doi.org/10.3390/w14040567
https://doi.org/10.3390/atmos13020294
https://doi.org/10.1175/JCLI-D-20-0487.1
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2022.1027423


Zamani, A., Sharifi, A., Felegari, S., Tariq, A., and Zhao, N. (2022). Agro climatic
zoning of saffron culture in miyaneh city by usingWLCmethod and remote sensing
data. Agriculture 12, 118–215. doi:10.3390/agriculture12010118

Zhan, C., Dai, Z., Samper, J., Yin, S., Ershadnia, R., Zhang, X., et al. (2022). An
integrated inversion framework for heterogeneous aquifer structure identification
with single-sample generative adversarial network. J. Hydrol. X. 610, 127844. doi:10.
1016/j.jhydrol.2022.127844

Zhang, K., Ali, A., Antonarakis, A., Moghaddam, M., Saatchi, S.,
Tabatabaeenejad, A., et al. (2019a). The sensitivity of north American terrestrial
carbon fluxes to spatial and temporal variation in soil moisture: An analysis using
radar-derived estimates of root-zone soil moisture. J. Geophys. Res. Biogeosci. 124,
3208–3231. doi:10.1029/2018JG004589

Zhang, K., Wang, S., Bao, H., and Zhao, X. (2019b). Characteristics and
influencing factors of rainfall-induced landslide and debris flow hazards in
Shaanxi Province, China. Nat. Hazards Earth Syst. Sci. 19, 93–105. doi:10.5194/
nhess-19-93-2019

Zhang, X., Ma, F., Yin, S., Wallace, C. D., Soltanian, M. R., Dai, Z., et al. (2021).
Application of upscaling methods for fluid flow and mass transport in multi-scale
heterogeneous media: A critical review. Appl. Energy 303, 117603. doi:10.1016/j.
apenergy.2021.117603

Zhang, Z., Luo, C., and Zhao, Z. (2020). Application of probabilistic method in
maximum tsunami height prediction considering stochastic seabed topography.
Nat. Hazards 104, 2511–2530. doi:10.1007/s11069-020-04283-3

Zhao, F., Zhang, S., Du, Q., Ding, J., Luan, G., and Xie, Z. (2021). Assessment of
the sustainable development of rural minority settlements based on
multidimensional data and geographical detector method: A case study in
dehong, China. Socioecon. Plann. Sci. 78, 101066. doi:10.1016/j.seps.2021.101066

Zhou, G., Long, S., Xu, J., Zhou, X., Song, B., Deng, R., et al. (2021a). Comparison
analysis of five waveform decomposition algorithms for the airborne LiDAR echo
signal. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 14, 7869–7880. doi:10.1109/
JSTARS.2021.3096197

Zhou, G., Zhang, R., and Huang, S. (2021b). Generalized buffering algorithm.
IEEE Access 9, 27140–27157. doi:10.1109/ACCESS.2021.3057719

Zhou, W., Lv, Y., Lei, J., and Yu, L. (2021c). Global and local-contrast guides
content-aware fusion for RGB-D saliency prediction. IEEE Trans. Syst. Man.
Cybern. Syst. 51, 3641–3649. doi:10.1109/tsmc.2019.2957386

Zhu, B., Zhong, Q., Chen, Y., Liao, S., Li, Z., Shi, K., et al. (2022a). A novel
reconstruction method for temperature distribution measurement based on
ultrasonic tomography. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 69,
2352–2370. doi:10.1109/TUFFC.2022.3177469

Zhu, Z., Wu, Y., and Liang, Z. (2022b). Mining-induced stress and ground
pressure behavior characteristics in mining a thick coal seam with hard roofs. Front.
Earth Sci. 10, 1–12. doi:10.3389/feart.2022.843191

Zuhairi, A., Nur Syahira Azlyn, A., Nur Suhaila, M. R., and . Mohd Zaini, M.
(2020). Land use classification and mapping using Landsat imagery for gis database
in langkawi Island. Sci. Herit. J. 4, 59–63. doi:10.26480/gws.02.2020.59.63

Frontiers in Environmental Science frontiersin.org18

Islam et al. 10.3389/fenvs.2022.1027423

https://doi.org/10.3390/agriculture12010118
https://doi.org/10.1016/j.jhydrol.2022.127844
https://doi.org/10.1016/j.jhydrol.2022.127844
https://doi.org/10.1029/2018JG004589
https://doi.org/10.5194/nhess-19-93-2019
https://doi.org/10.5194/nhess-19-93-2019
https://doi.org/10.1016/j.apenergy.2021.117603
https://doi.org/10.1016/j.apenergy.2021.117603
https://doi.org/10.1007/s11069-020-04283-3
https://doi.org/10.1016/j.seps.2021.101066
https://doi.org/10.1109/JSTARS.2021.3096197
https://doi.org/10.1109/JSTARS.2021.3096197
https://doi.org/10.1109/ACCESS.2021.3057719
https://doi.org/10.1109/tsmc.2019.2957386
https://doi.org/10.1109/TUFFC.2022.3177469
https://doi.org/10.3389/feart.2022.843191
https://doi.org/10.26480/gws.02.2020.59.63
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2022.1027423

	Landslide susceptibility mapping (LSM) of Swat District, Hindu Kush Himalayan region of Pakistan, using GIS-based bivariate ...
	1 Introduction
	2 Materials and methods
	2.1 Study area
	2.2 Datasets

	3 Methodology
	3.1 Landslide inventory map
	3.2 Causative parameters
	3.2.1 Elevation
	3.2.2 Slope
	3.2.3 Aspect
	3.2.4 Curvature
	3.2.5 Rainfall
	3.2.6 Land use land cover
	3.2.7 Distance from fault
	3.2.8 Lithology
	3.2.9 Distance from the road
	3.2.10 Distance from drainage

	3.3 LSM techniques
	3.3.1 Weight of evidence
	3.3.2 Frequency ratio
	3.3.3 Information value


	4 Results
	5 Discussion
	6 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	References


