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Editorial on the Research Topic

Emerging Technologies and Techniques for Remote Sensing of Coastal

and Inland Waters

Coastal and inland waters are critical resources of immense economic and

environmental value (e.g., Ledoux and Turner, 2002; Revenga and Kura, 2003).

However, due to natural and anthropogenic factors, coastal and inland waters around

the globe are under increasing stress. The health and biophysical status of these

ecosystems need to be regularly monitored in order to ensure that they maintain their

ecological functionality and services. This includes estimating concentrations of organic

and inorganic constituents in water (Hernes and Benner 2003; Spencer et al., 2012),

monitoring the health and distribution of submerged aquatic vegetation (Maxwell et al.,

2017) and corals (Hedley et al., 2016a, and references therein), characterizing the

biodiversity of phytoplankton (Mouw et al., 2017), and tracking spatio-temporal

dynamics of complex biophysical and biogeochemical processes occurring in the

water and adjoining wetlands (Howarth et al., 2011).

Remote sensing has become an indispensable tool for monitoring coastal and inland

waters (Turpie et al., 2021, and references therein), and hyperspectral remote sensing has

gained increased use in the last decade (Dierssen et al., 2015). The optical complexity

typically encountered in coastal and inland waters necessitates hyperspectral sensors with

a fine spectral resolution. Hyperspectral capability enables species discrimination of

aquatic vegetation (Dierssen et al., 2015; Hedley J. et al., 2016) and detection of fine

reflectance features of biogenic and inorganic substances in water (Mouw et al., 2016) and

accessory pigments such as phycocyanin and phycoerythrin that occur in significant

amounts during bloom conditions (Kudela et al., 2015). In addition to hyperspectral

capability, a fine spatial resolution is needed to capture spatial heterogeneity of bio-optical
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features in waters where spatial variability may occur in scales as

fine as a few meters (Moses et al., 2016). Sensors with

hyperspectral capability and/or high spatial resolution are

being used for coastal and inland water applications from a

variety of platforms such as moorings, shipboard platforms,

unmanned aerial vehicles (UAVs); Figure 1, and airborne and

spaceborne systems.

Several spaceborne sensors, including CubeSats, with

high resolution in the spatial and/or spectral domains that

are suitable for coastal and inland water remote sensing have

been launched recently or are scheduled to be launched in the

near future (e.g., the Plankton, Aerosol, Cloud, ocean

Ecosystem (PACE) mission; HawkEye). Current

spaceborne assets have either the required spectral

resolution (e.g., Hyperion; the Italian mission PRISMA -

PRecursore IperSpettrale della Missione Applicativa) or

spatial resolution (e.g., WorldView-3, Planet SkySat) but

not both, thereby limiting their use for monitoring coastal

and inland waters. This limitation is addressed through a

number of software and hardware options. Advanced image

processing algorithms can combine data from coarse-spatial-

resolution hyperspectral data with fine-spatial-resolution

multispectral data (e.g., Yokoya et al., 2017). Advanced

algorithms based on radiative transfer modeling and

machine learning concepts are being developed to retrieve

multiple water quality parameters from airborne and

spaceborne multispectral and hyperspectral data (Pahlevan

et al., 2022). Hyperspectral sensors on UAVs are used to

collect data at fine spatial and spectral resolutions (Joyce

et al., 2018).

A special Research Topic has been dedicated to address

achievements and challenges in the research, development,

and application of innovative measurement technologies and

water quality parameter retrieval algorithms for remote

sensing of coastal and inland waters and wetlands. The

following is a summary of the articles published in this

Research Topic.

Submerged aquatic vegetation play a crucial ecological

role primary producers and food source for marine life.

Detecting their presence and estimating their biomass

abundance are crucial for monitoring global biodiversity.

McPherson et al. (2022) developed a rapid survey system

based on UAV and diver imagery to estimate kelp canopy

biomass. They successfully estimated canopy biomass in a

third of their survey sites but encountered challenges due to

differences in kelp patch-specific spatial characteristics

across the survey sites and limitations of the survey design.

They recommend optimal survey design strategies for

successful retrieval of kelp canopy biomass from a UAV

platform. Cavanaugh et al. (2021) developed an automated

method to map kelp canopy using data from a five-channel

multispectral sensor on a UAV. They reported 93% accuracy

and noted that canopy cover estimates are affected by tides

and currents. Wilson et al. (2020) used a combination of

spectral indices and supervised image classifiers to map the

presence of submerged seagrass and surface-canopy forming

seaweed habitats in various water types in Atlantic Canada

using data from the Multispectral Imager (MSI) onboard the

Sentinel-2 satellite. The benthic habitat map had an overall

accuracy of 79%.

FIGURE 1
Data acquisition using a UAV over the Choptank River, a tributary of the Chesapeake Bay, Maryland. The multispectral imagery acquired were
used to estimate water quality parameters such as the concentrations of chlorophyll-a and suspended particulate matter.
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Harmful algal blooms (HABs) in coastal and inland waters

are a major environmental and health concern (e.g., Carmichael,

1997). Detecting the presence of HABs and monitoring their

spread, especially in recreational areas and near drinking water

intakes are critically important. Myer et al. (2020) developed a

spatio-temporal model based on a hierarchical Bayesian

approach to forecast the occurrence of cyanobacterial HABs

in lakes across Florida. The model used data from the Ocean

and Land Colour Instrument (OLCI) onboard the satellite

Sentinel-3 and a number of environmental parameters. Sharp

et al. (2021) investigated spatial scales of variability of the

distribution of cyanobacteria in Clear Lake, California using

data collected through a range of modalities including field

spectrometers, autonomous underwater vehicles, UAVs, and

spaceborne sensors, and discovered that the critical scale of

variability is in the range of 75–175 m, consistent with

previous studies.

The National Aeronautics and Space Administration

(NASA) routinely conducts technology concept

demonstrations to test technologies for future spaceborne

missions. Guild et al. (2020) summarized results from a

number of NASA-sponsored airborne experiments

conducted over Monterey Bay, California and nearby

inland waters, involving radiometers, sun photometers,

and imaging spectrometers. The experiments demonstrated

the utility and enhanced benefit from the combined use of

various measurement modalities and provided valuable data

for calibrating and validating algorithms for retrieving water

quality parameters. Harringmeyer et al. (2021) used a partial

least squares regression approach involving reflectance in the

ultraviolet, blue, and near-infrared regions to detect the

presence of colored dissolved organic matter (CDOM) and

differentiate it from phytoplankton in water. The study was

carried out in Santa Monica Bay using data from the airborne

Portable Remote Imaging SpectroMeter (PRISM). The study

illustrated the value of reflectance in the ultraviolet region for

detecting CDOM.

Coastal wetlands are a critical part of the global ecosystem

and provide valuable environmental and ecological services

including storm surge protection, coastal erosion control,

carbon sequestration, and habitat for a number of

endangered species. Haskins et al. (2021) demonstrated the

use of UAV-based techniques for monitoring restoration of a

tidal marsh site in Elkhorn Slough, California by calculating

the volume of soil moved, tracking whether elevation targets

were achieved or not, quantifying and examining the patterns

of vegetation development, and monitoring topographic

change including subsidence, erosion, and creek

development. Elmahdy et al. (2020) used three machine

learning algorithms, namely, Random Forest, kernel logistic

regression, and Naïve Bayes algorithm, to map mangrove

forests in the eastern and western coastal areas of the

United Arab Emirates using Landsat data over the period

from 1990 to 2019. They found that the Random Forest

method performed the best, and noted that there was a

significant change in mangrove extent during the

2010–2019 decade compared to 1990–2000.

Ayad et al. (2020) used data from multiple spaceborne

sensors, namely RapidEye, MSI, and the Operational Land

Imager (OLI) onboard Landsat-8 to detect discharges of

stormwater and wastewater into the coastal ocean in

Southern California and differentiate between stormwater

and wastewater plumes based on optical characteristics.

Kravitz et al. (2021) developed a tool based on synthetic

data and machine learning techniques to retrieve multiple

water quality parameters from satellite data. The tool was used

to successfully retrieve concentrations of chlorophyll-a and

phycocyanin and absorption coefficient of phytoplankton

from MSI and OLI data acquired over Hartbeespoort Dam,

South Africa.

Windle et al. (2021) investigated methods to remove the

effects of surface-reflected radiance (including sun glint) on

UAV-measured data. They recommend a pixel-based

approach that uses absorption characteristics of water in the

near-infrared region to estimate and remove surface reflectance.

Dierssen et al. (2021) provide a comprehensive review and

commentary on the past, present, and future state of

hyperspectral aquatic remote sensing, addressing advances in

sensor design, modes of deployment, algorithm development,

image analysis techniques, and open-source software, which

make data and techniques available and easily accessible to

the public.

These articles demonstrate that aquatic remote sensing is a

fast-evolving field with rapid advances in sensor technologies,

measurement modalities, and innovative algorithms. These

advances enable us to address critical environmental and

ecological questions related to coastal and inland water

ecosystems.
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