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Cities are frontlines to tackle climate change challenges including the urban heat

island (UHI) effect. The classification andmapping of local climate zones (LCZs) can

effectively and consistently describe the urban surface structure across urban

regions. This study pays attention to two mainstreammethods in classifying LCZs,

namely, by using geographic information system (GIS) data such as building

footprints or remote sensing (RS) satellite images. Little has been done to

compare the divergence and coherence of the abovementioned two methods

in modeling UHI. Thus, by comparing pairwise LCZ classes of different urban form

characteristics in Guangzhou, this study investigated how GIS- and RS-based

approaches complement or conflict with each other in explaining the variance

of UHImeasured by land surface temperature (LST). First, while bothGIS-based (R2

0.724) and RS-based (R2 0.729) approaches can effectively explain heat risks

measured by LST, the RS-based method slightly outperforms the GIS

counterpart. Second, the sizes of LCZs classified by two methods in urban core

districts tend to converge but diverge in urban outskirts with disparities in low-rise

urban forms. Both approaches found that LCZs with higher heights are all cooler

among compact forms. LCZ E is always related to the highest average LST, and LCZ

7, 8, and 10contribute significantly to heat islands frombothGIS andRS results. This

study has developed a comparable framework that is evident based for city

planners, architects, and urban policy makers to evaluate which approaches can

more accurately reveal relations betweenUHI andurban geometrywith land cover.
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1 Introduction

1.1 Urban heat island and local climate
zone classification

While our planet is threatened by the crisis of climate

change, cities are particularly at high risk from excess heat

which poses socio-economic impacts (Ebi et al., 2021; Jay et al.,

2021) and endangered health (Oke 1982; UNEP 2021). For

instance, heat waves are one of the climate disasters that caused

the largest death toll in Europe this century (UNEP 2020).

Within this context, the Urban Heat Island (UHI) effect, which

describes the difference of Land Surface Temperature (LST)

observed between urban and rural areas (Oke 1982; Jay et al.,

2021), has been discussed by a series of pieces of literature (Oke

1982; X. Liu et al., 2022; Stewart and Oke 2012) to make urban

planning and design environmentally sustainable and climate

resilient. Prior studies have found areas featured by complex

urban forms tend to have higher temperatures compared to the

natural environment due to heat retention by urban geometry,

anthropogenic heat generated by cars, and the low albedo and

high solar absorption of materials used for constructions (Li

and Wang 2021).

The current practices of UHI analysis have primarily relied

on RS and GIS data to examine how the UHI and urban geometry

with land cover properties (Ebi et al., 2021; Jay et al., 2021; Oke

1982; X. Liu et al., 2022) are correlated. To address the dichotomy

for defining UHI, the local climate zone (LCZ) was proposed for

characterizing the landscape and physical structure (Stewart and

Oke 2012). A group of studies used satellite images and LCZ

frameworks to represent the comprehensive built environment

features of various types of urban developments and established

the relationship between physical factors and UHI (Han et al.,

2022; Khamchiangta and Dhakal 2019; Yang J et al., 2021; Y.

Zhou et al., 2021). Prior studies have utilized GIS data with the

accurate delineation between urban and rural areas to estimate

the relationship between LST and other influencing factors (Yang

J et al., 2021; Y. Zheng et al., 2018). Increasingly studies have

shown the great potential to enhance GIS-based means by

integrating innovative methods to address insufficient local

knowledge using fuzzification and cellular automata to classify

LCZs (Estacio et al., 2019). GIS data may have better coverage

and resolution in the core urban area compared to RS data which

resulted in more precise LCZ classification (Hidalgo et al., 2019).

LCZ classification can be divided into three categories

including sampling with survey manually, RS, and GIS (Y.

Zheng et al., 2018). This study focused on the latter two since

they are more widely applied. The RS method can rapidly classify

LCZs based on supervised pixel-based measures to sort out freely

available data from satellite images (Bechtel et al., 2019). The GIS

method is relatively more data driven and relies on

comprehensive land use and building footprint data (Deilami,

Kamruzzaman, and Liu 2018).

The built environment characteristics including sky view

factor, building height–width ratio (H/W ratio), pervious

surface ratio, and vegetation coverage are often used to

construct the LCZ as one of the exogenous variables to

explain/predict the UHI effect regarding the urban–rural LST

differences. Specifically, RS data of the Landsat (USGS 2022) are

useful to classify surface area with higher temperatures to reflect

the UHI effect as the dependent variable (Oke 1982; N. H. Wong

et al., 2021). GIS data which provide comprehensive and geo-

referenced information to categorize urban surfaces with various

land use functions can lay the foundation for simulating heat

risks and outdoor thermal comfort affected by the built

environment (Y. Zhou et al., 2021; Oliveira, Lopes, and Niza

2020; Y. Zheng et al., 2018).

1.2 Quantitative studies for urban heat
island, urban geometry, and other factors

Among many urban factors, UHI and LST variation can be

impacted mainly by the joined effects of urban form (X. Liu et al.,

2022), land use and cover (ChenH et al., 2022), air pollutants and

anthropogenic heat (Raj et al., 2020). Previous studies have shed

light on measures for UHI mitigation, including the increase in

vegetation fraction, floor area ratio (Yang J et al., 2021), sky view

factor (Ge et al., 2022), water area proportion (Xue et al., 2019)

and the decrease of percent for impervious surface area and built-

up height (L. Zhou et al., 2022). These influential determinants

have been quantitatively examined by a number of studies

applying statistical models, among which ordinary least-

squares (OLS) regression and Pearson correlation analysis

were one of the most frequently applied methods (Deilami,

Kamruzzaman, and Liu 2018).

In addition to urban geometry, UHI can be associated with

human activities. Previous studies have revealed the linkages

between LST and PM2.5 (Song et al., 2018; Ngarambe and Jeong

Joen. 2021) globally as well as locally in Guangzhou, China (Lin

et al., 2015; Z. Zheng et al., 2016). Gross Domestic Product

(GDP) and population density have been widely used as

indicators representing the intensity of human activities and

urbanization which have been reported to be relevant to

generating anthropogenic heat and the strength to change

urban surfaces (Peng et al., 2018; M. Wong, Shaker, and Lee

2010).

1.3 Research gap

While estimating UHI through satellite RS images or land use

GIS data has been proved to be effective for generating an

overview of urban climate conditions, the discussion for

accuracy and implications between these two approaches

remain limited since these approaches require intensive GIS
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data acquisition across a comprehensive set of planning sectors

and city authorities, which could become difficult for many

studies (Y. Zheng et al., 2018).

First, little has been done to comprehensively measure the

difference in results generated between GIS and RS-based

approaches through open data sources in the unique context

of urban landscapes in China, especially for the aim to identify

which measures can enhance the LCZ classification to better

model UHI by assessing LST. Second, although some studies

(Tamás Gál, Bechtel, et al., 2019; Hidalgo et al., 2019) have

compared the two methods to classify LCZ, few have linked

these comparisons with estimations for UHI. Previous studies

tend to compare the result of two measures by qualitatively

analyzing the delineation of LCZs within selected areas of

cities. This is because up-to-date and accessible land-use-

related GIS data may not exist in every city. Studies that can

quantify the difference between results and measure the

effectiveness to explain the links between UHI and LCZs

remained constrained. Assessing both approaches with open

data sources is desirable to evaluate the advantages and

disadvantages of the two means in terms of illustrating

LCZs and analyzing UHI. Third, while megacities are

studied in pieces of literature (Yang Z et al., 2021; M. Cai

et al., 2016), the comparison to evaluate LCZ classification

results based on urban core and outskirt in megacities remains

insufficient.

2 Research questions and
contribution

2.1 Research questions

As indicated by prior studies, this study hypothesizes that the

GIS and RS data are both important sources to assess the impacts

of the urban environment on the UHI, which in turn will

improve the UHI modeling accuracy. By analyzing both GIS

and RS data, this study asks: how do pixel-based and object-based

information complement or conflict with other approaches in

revealing the association between UHI and urban physical

factors? What are the differences between LCZs classified by

pixel-based data and LCZs classified by object-based data at the

city level? Which approach is more effective to estimate the

relationship between UHI and urban geometric and land cover

properties quantitively? To answer this question, we set to 1)

generate more subtle and quantitative comparisons between

urban geometric properties and RS- and GIS-based LCZ

categorical attributes; 2) Compare the results from the two

models to better LST estimation using LCZs. These questions

are valuable in the unique context of the urban landscape in

China where urbanization has shifted towards high-quality

growth calling for better environmental management (S.

Wang, Liu, and Qin 2022).

2.2 Outcome and contribution

We analyzed surface cover properties by integrating RS and

GIS datasets that can be freely accessible for cities around the

globe and by approaches that are streamlined and feasible. This

research helped clarify the relationship between RS and GIS with

excessive urban heat and their attributions to UHI. Applying

supervised classification on RS imageries to generate urban form

factors that can subtly reflect the characteristics of built

environments (Khamchiangta and Dhakal 2019) with fine

resolution. More specifically, we set to contribute to the

following three areas.

First, with a scalable framework using open-source GIS and RS,

we enriched the literature by comparing measures to classify LCZs.

The comparison is based on frameworks that could be efficient and

accurate in measuring urban geometry and surface cover properties

for classifying urban form features. Second, we filled the gap by

analyzing the associate between UHI estimations based on RS and

GIS data with a city-level dataset from a megacity endowed by a

variety of landscapes and urban forms. The classification results

from urban cores and peripheral areas could vary significantly and

will shed light on adjustments for approaches tailored to capture

these differences. Third, with an in-depth investigation into the

relationship between urban form elements by RS and GIS data with

UHI estimations, this study provides a comparable framework that

is evident based for city planners, architects, and urban policy

makers to evaluate approaches that can more accurately reveal

the relations between UHI and urban geometry with land cover.

3 Materials and methods

3.1 Study area

Guangzhou is one of the most urbanized megacities in China,

located in a subtropical coastal area (Figure 1), with a total surface

area of 7,434 km2 and a population of 18.74 million in 2020

(Guangzhou Statistic Bureau 2021). The samples from

Guangzhou can potentially provide important lessons learned for

other cities in the Southeast Asia region undergoing rapid urban

expansion with similar climate conditions. Following the trend of

increasing LST in other cities of Pearl River Delta (Hu et al., 2020),

Guangzhou is facing the typical environmental challenges including

UHI as a rapidly growing megacity. The city plans to limit land

expansion and protect its ecological assets to mitigate UHI while

accommodating sustained population growth and maintaining

vibrant economic growth. Prior studies (Chen F et al., 2022)

have found an increasing tendency of the annual temperature in

Guangzhou which calls for building a climate-resilient and healthy

city. The vast administrative area of Guangzhou has made this study

unique since the select city covers a wide variety of urban forms and

land cover features ranging from compact high rises in city centers to

mountainous areas in the north and waterfronts in the south. An in-
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depth analysis of the urban area of Guangzhou would shed light on

planning and policy implications to promote sustainable urban

growth that is climate responsive.

3.2 Model architecture

While UHI can be measured by indicators including air

temperature and LST, increasing studies that focus on spatial

factors are using LST as a proxy of UHI (Deilami, Kamruzzaman,

and Liu 2018) given its high accessibility and wide coverage for

cities with large areas. We assumed that for each urban region, its

degree of UHI measured by LST is a dependent variable whose

determinants can be investigated by regressing the LST variations

on three main groups of explanatory variables capturing the

region’s socioeconomic status, generic land use, and built

environment features in the form of categorical variables by

LCZs (Figure 2). Although LCZ classification is associated with

urban geometric properties, the generation of LCZs is based on

different data sources. For RS-based LCZs, the classification is

pixel-based and RS materials are not directly linked to urban

geometric characters GIS-based LCZs incorporate land cover

properties from land use data. Conducting regression analysis to

evaluate the influencing factors processed from different data

sources and approaches is consistent with the goal of this study.

The ordinary least squares (OLS) regressions will be utilized

to quantify the parameter estimates. Table 1 provides the

summary of data sources for each group of variables.

We developed the following models:

Model 0. (Basic):

y � α + β1 Basic + ε. (1)

Model 1. (Basic and Urban Geometric):

y � α + β1 Basic + β2Geomtric + ε. (2)

Model 2. (Basic and Urban Geometric and GIS-based LCZ):

y � α + β1 Basic + β2Geomtric + β3LCZ(GIS) + ε. (3)

Model 3. (Basic and Urban Geometric and RS-based LCZ):

y � α + β1 Basic + β2Geomtric + β3LCZ(RS) + ε, (4)
where y is the LST in °C as the dependent variable, α is the

constant, β1 to β3 are the coefficients for basic, urban geometric,

and LCZ categorical attributes, and ε is the error term.

3.3 Variables and data

POP stands for population density data of 2015 and

PM25 stands for 2019 particulate matter 2.5 data which were

both downloaded from the socioeconomic data and applications

center (SEDAC). Gross domestic product (GDP) data for

TABLE 1 Descriptive summary of variables and data source.

Variables Mean Std.
dev

Data source

Dependent

Land surface temperature (LST) 25.74 2.92 Extracted from Landsat 8

Independent

Basic factors Population (POP) 2399.14 7354.94 GPW (Gridded Population of the World, v4 | SEDAC)

Particulate matter (PM25) 31.74 5.12 PM2.5 Grids Center For International Earth Science Information
Network-Columbia University (2022)

Gross domestic product (GDP) 24756.00 70440.97 Chinese Academy of Science Resource (CAS) and Environment Science and Data
Center

Digital elevation model (DEM) 81.53 91.90 ASTER Global DEM

Urban geometric
factors

Pervious surface fraction (PSF) 0.58 0.17 Calculated by data extracted from Landsat 8

Normalized difference built-up index
(NDBI)

−0.09 0.09 Calculated by data extracted from Landsat 8

Sky view factor (SVF) 0.96 0.13 Calculated by data extracted from Baidu Map

Building surface fraction (BSF) 0.10 0.45 Calculated by data extracted from Baidu Map

Mean height 3.59 14.34 Calculated by data extracted from Baidu Map

Aspect ratio 0.09 0.50 Calculated by data extracted from Baidu Map

LCZ categorial RS-LCZ Developed by supervised classification

GIS-LCZ Synthesized by data extracted from Baidu Map and GlobeLand30
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2015 was downloaded from the RESDC website supported CAS.

Digital elevation map (DEM) data were downloaded from the

USGS website. Pervious surface fraction (PSF), normalized

difference building index (NDBI), sky view factor (SVF), and

building surface fraction (BSF) are calculated based on building

footprint data which was downloaded by Baidu Map (Baidu,

2022), one of the largest web map service providers in China.

Land cover and urban geometry variables that will affect the built

environment’s thermal performance will be measured from RS

data using supervised classification as well as GIS data to develop

aggregated urban form maps.

3.3.1 Extracting land surface temperature
The study uses LST as a dependent variable. LST estimation,

using Landsat 8 satellites data (USGS 2022) which featured

continuous coverage and high data accessibility over large

areas, was conducted to calculate the LST through the

following radiative transfer equation (RTE) method (Lu et al.,

2004):

Lλ � [εB(Ts) + (1 − ε)Ld]τ + Lu. (5)

With Lλ as the thermal infrared radiation value, B(Ts) as the

black body thermal radiance, Lu as the atmospheric upward

radiance, Ld as the downward radiance, and τ as the

transmissivity calculated by the online calculating platform

(“Atmospheric Correction Parameter Calculator” 2022). ε as

the surface emissivity was estimated following approaches

based on normalized difference vegetation index (NDVI)

(Sobrino, Jimenez-Munoz, and Paolini 2004, 200). After

preprocessing including radiometric calibration and

atmospheric correction, LSTs were calculated and transferred

from degree Kelvin to degree Celsius.

TABLE 2 LCZ classification definitions (Stewart and Oke 2012) with samples from Guangzhou.

Built types Land cover types

1. Compact high-rise 2. Compact mid-rise 3. Compact low-rise A. Dense trees B. Scattered trees

4. Open high-rise 5. Open mid-rise 6. Open low-rise C. Bush, scrub D. Low plants

7. Lightweight low-rise 8. Large low-rise 9. sparsely built E. Bare rock or paved F. Bare soil or sand paved

10. Heavy industry G. Water
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The study has identified suitable imageries captured on

October 29th and November 14th of 2019, which are dates

from the season with the highest intensity of UHI according

to the meteorological report in 2019 (Guangzhou Climate and

Agricultural Meteorology Center 2019). The Landsat 8 imageries

are selected following the requirements of previous pieces of

literature (M. Cai et al., 2016; Windahl and de Beurs, 2016) to

ensure minimized cloud cover (about 5% or less) based on

meteorological conditions. The RTE-based LST retrieval is

among the most accurate approaches examined by prior

studies in other Chinese megacities (Wan, Zhu, and Ding

2021) and the RTE method is proven to be an effective

method for assessing LST (Sekertekin 2019).

3.3.2 Variables of interest
Based on pieces of literature and data availability, the study has

identified three sets of independent variables. First, the model has

considered several basic factors, including population density (Y.

Zhou et al., 2021), GDP (Wang Yanan et al., 2021), elevation

generated by DEM (Wu et al., 2022), and PM2.5 (Khamchiangta

and Dhakal 2019) that are considered as relevant factors for

influencing LST. Second, geometric variables have covered

factors for LCZ classification such as average building heights,

surface fraction occupied by buildings, skyline, street canyon

height-width ratio, and pervious surface. Third, LCZ categorical

variables including built-up and land cover types are transformed

into dummies and LCZ1 (compact high-rise) is used as a reference

category for comparison. Whether and to what extent they will

exhibit complementary or divergent effects to the LCZ categorial

variables in explaining UHI is the interest of this study.

3.3.3 Local climate zone classifications using
remote sensing data

The widely-accepted RS-based LCZ classification (Stewart

and Oke 2012) was carried out (Table 2) based on the guidelines

of the World Urban Database and Access Portal Tools Project

(Ching et al., 2018). The mapping process for LCZ classification

can be divided into the following three steps. First, RS

information acquisition was extracted by data processing on

Landsat 8 RS imagery captured in November of 2019 with

0.23% of cloud cover, through radiometric calibration and

inversion mentioned in 3.3.1. Second, the input training

samples for classification are selected based on the local

knowledge related to compounds and neighborhoods that

shared similar features of urban forms. Following the

procedure to classify LCZs in Guangzhou (M. Cai et al.,

2016), about 50 representative samples categorized in each

LCZ were digitized by polygons in Google Earth software and

compared with Google Street View images and other photo

sources based on local knowledge. Third, a Landsat 8-based

supervised classification was conducted to classify LCZs

through a maximum likelihood approach (Khamchiangta and

Dhakal 2019).

3.3.4 Geographic information system-based
local climate zone classification approach

The GIS-based approach has demonstrated its capacity to

accurately classify LCZs if high-resolution vector data are

available (Oliveira, Lopes, and Niza 2020). Here, we explore the

integration of the fine-scale GIS-based urban form data extracted

from Baidu Map’s building footprint and 30 m land use-cover map

to classify LCZs in the Guangzhou metropolitan area. A series of

urban form mapping layers has been established by consolidating

themorphological data in theGIS. Given significant heterogeneity in

urban forms across a relatively vast study area in Guangzhou, a

medium spatial resolution can efficiently reflect diverse landscapes

while providing an enabling environment for translating detailed

spatial information into urban design policies. The resolution of

thesemaps and the following analysis is 100 mwhich is the standard

grid resolution in the literature (Bechtel et al., 2019) while capturing

sufficient granularity across a large study area such as Guangzhou.

Building footprint features including average building height (BH),

and building surface fraction (BSF) are fundamental for

classification to distinguish built-up and other land cover

typologies. The GIS-based classification was conducted by screen

land areas with indicators of urban form and cover properties

composed of street layout properties such as view factors (SVF),

height width ratio (H/W), and land cover properties such as

pervious surface fraction (PSF). The land cover properties were

extracted from the Globalland30 data to identify areas covered by

water, trees, agricultural lands, and other features. The overall

accuracy of GlobeLand30 2020 data is 85.72%, with a Kappa

coefficient of 0.82 (National Geomatic Center of China 2019).

The land cover map is validated by reexamination with local

knowledge and the quality of the land cover map is verified by

street view images. Processing data such as DEM and NDVI with

grids based on GIS tools has proven to be effective in prior studies

climate studies (Valjarević et al., 2020).

3.3.5 Mapping building height
At the grid level of LCZs, building heights can be

represented by area-weighted mean building height. The

data for building height was extracted and transformed

into a high-resolution map with building surface area

available to calculate building volume. Then the average

building height weighted by area is calculated by the total

building volume in an LCZ grid divided by the total surface of

building areas. The value of mean building height will be used

as the prioritized threshold for classifying the built-up

environment covered by LCZs 1–10 in urban areas. LCZs

are divided into high (BH > 25 m), middle (BH = 10–25 m),

and low rises (BH < 10 m), which are in line with prior

criteria (Stewart and Oke 2012).

3.3.6 Mapping building surface fraction
BSF can be calculated by identifying the fraction of land

area occupied by buildings at each unit of the LCZ grid. A
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building cover map was established by summing up the total

building cover and then dividing the sum by the surface of the

grid area in the LCZ unit. Accompanied with BH, BSF will

categorize built-up LCZs into compact (BSF > 0.4), and open

(BSF < 0.4) forms.

3.3.7 Mapping sky view factor
SVF has been applied as a common element for describing

urban geometry (T. Gál, Lindberg, and Unger 2009). Based on

the building footprint, the SVF calculation was conducted

based on the literature (Zakšek, Oštir, and Kokalj 2011; Y. Liu

et al., 2016) to develop an SVF map that covers the surface area

within the administrative boundary of Guangzhou. The detail

SVF map by building footprint was aggregated to generate the

mean SVF map (100 m resolution) via GIS data management

tools.

3.3.8 Mapping aspect ratio/height–width ratio
In an urban street canyon, the aspect ratio was commonly

calculated by dividing the height by width, which is proposed

by previous studies for defining LCZs (Stewart and Oke

2012). However, calculating aspect ratio remained

challenging in Guangzhou, due to its highly diversified

street layouts and building forms. Given the similar

climate and urban development context, this study

adopted the method developed by the Hong Kong area (Y.

Zheng et al., 2018).

In each LCZ unit, the mean road width was computed by the

total surface of categories of road lengths times road widths

according to the code for transport planning on the urban road

and then divided by the total length of roads. Then, the average

aspect ratio can be obtained by dividing the mean building height

weighted by area by the mean road width.

3.3.9 Mapping pervious surface fraction
Pervious surface fraction, which can capture vegetated and

water fraction of land surface in an LCZ site, is a useful reference

to estimate UHI at the local scale since evapotranspiration by

plants is a major way for natural cooling. PSF is computed by

summing up the coverage ratio of waterbody and vegetation in an

FIGURE 1
Guangzhou location map.
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LCZ unit. The coverage ratio of the waterbody was identified

using GLOBAL30LAND data of the waterbody, while the

vegetation coverage ratio was calculated based on Landsat 8.

NDVI was computed based on the data extracted from the

Landsat 8, which was used to generate the NDVI map in

Guangzhou with NDVI values above 0.2 to be recognized as

FIGURE 2
Conceptual framework.

FIGURE 3
RS-based (left) and GIS-based (right) Guangzhou LCZ maps.
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vegetated surfaces (Weier and Herring 2000) through the

following formula (Yuan and Bauer 2007):

NDVI � (NIR − R)/(NIR + R), (6)

where NIR is the near-infrared band and R represents the red

band. Another related indicator NDBI could be generated by

dividing the difference between shortwave infrared (SWIR) and

NIR with the sum of SWIR and NIR.

4 Analysis results

4.1 Results of local climate zone
classification and correlation with
temperature

Both RS- and GIS-based LCZ 1–6 (Figure 3) can distinguish

the compact and open urban forms with building areas from high

to low heights, which are observed to be concentrated in the

urban core districts. The RS map shows a continuous

classification, from LCZ 1 to 6, between the center and

peripheries of outskirt districts, while the GIS map classifies a

significant amount of LCZ 7.

In southern districts of Guangzhou such as Nansha, the RS map

classifies more built-up types into LCZ 8 for large industrial areas that

comprise primarily the manufacturing bases and seaport facilities.

Both RS and GIS maps can recognize green spaces convergently in

urban coreswhileGIS is advantageous for identifying lowplants in the

outskirt districts. The overall RS-based approach classification

accuracy is 82.84%, with a kappa coefficient of 0.79.

Both approaches identify LCZ E (paved and bare rock) as

the hottest zone with the median value of the average

temperature of all LCZ E as high as 29.90°C (RS) and

31.10°C (GIS). Considering the median value of average

LST in all units, LCZ 3 (compact low-rise building areas)

and LCZ 8 (large low-rise building areas) are both among the

most heat-impacted areas. In both methods, the lowest

average LST is identified in LCZ A, which covers dense tree

areas, and other relatively lower LSTs in LCZ B and C, which

are composed of scattered trees and bush areas. The largest

temperature difference of about 8.2°C among the 17 LCZs was

reported between the paved zones and dense tree areas.

Notably, built-up urban forms, including LCZ 3, LCZ 7, LCZ

8, and LCZ 10, were still among the main LCZ drivers for

enhancing UHI. In compact forms (LCZ 1–3), both GIS and

RS-based models observe the higher temperature in low-rise

buildings while open forms (LCZ 4–6) low-rise buildings tend to

be cooler. This finding calls for developing adaptive design

strategies for enhancing cooling considering building heights

with neighborhood density and comprehensively leveraging the

advantage of shading generated by building intensity.

Compared with high-resolution satellite imageries, RS-based

result exhibits better coverage in the peripheral area of the city,

due to the better data availability than GIS-based result since the

static GIS data is limited for timely capturing urban expansion

and redevelopment, especially, in a rapidly growing city like

Guangzhou while RS data can be routinely updated by satellites’

revisits. A large portion of agricultural lands in Guangzhou is

mulberry fishponds which should be considered water areas. The

RS-based approach is less advantageous in classifying LCZ G

especially fishpond areas which are in general underrepresented

compared to the GIS-based approach. This could be caused by

the similarity of pixels between fishponds and other built-up

LCZs. The RS approach can occasionally capture those subtleties,

but that relies on the training samples selected for classification.

4.2 Correlation analysis

Pearson correlation studies have become one of the methods

that are most widely applied in UHI-related studies including

cases in cities that shared similar climate conditions and

locational proximity with Guangzhou based on a literature

review (Deilami, Kamruzzaman, and Liu 2018; Z. Cai, Tang,

and Zhan 2021; Lau, Chung, and Ren 2019). Pearson correlation

analysis results (Table 3) have demonstrated a significant

correlation between LST and its influencing factors including

BSF, BH, street aspect ratio, SVF, and PSF. Using the correlation

coefficient as a reference, the five LST influencing factors’

importance in terms of urban geometry were ranked as

follows: NDBI > PSF > SVF > BSF > Building Height >
Aspect Ratio. This result is in line with previous correlation

studies including the correlation between LST variation and

NDBI (Peng et al., 2018), PSF (Yuan and Bauer 2007), SVF,

and BSF (Shi, Xiang, and Zhang 2019; Yang J et al., 2021).

SVF and PSF are found to be negatively correlated to LST.

This negative relationship can be explained by low sky openness

and low previous fraction commonly associated with the densely

built-up area and poor vegetation coverage which are both

TABLE 3 Correlation analysis of LST and influencing factors.

Factors Correlation

Population 0.243***

PM 2.5 0.400***

GDP 0.234***

DEM −0.752***

PSF −0.562***

NDBI 0.761***

SVF −0.332***

BSF 0.301***

Mean height 0.238***

Aspect ratio 0.171***

***p < 0.01, **p < 0.05, *p < 0.1.
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known as the main contributor to high LST. Other positive

relations reveal that urban geometry properties including

building coverage and street canyons are some of the critical

indicators to distinguish major heat island areas in Guangzhou.

Earlier studies reported that LST variation and elevation are

correlated (Wang Yuanyuan et al, 2021) and this could be

attributed to topography and biophysical features (Negassa,

Mallie, and Gemeda 2020; Moisa, Merga, and Gemeda 2022).

Guangzhou is endowed with diverse geographic characteristics

including significant areas of hills (Bureau of Forestry and

Landscaping of Guangzhou Municipality 2020), which can

explain the negative relation of elevation since northern

mountainous areas are commonly observed to be cooler as

shown in Figure 4. PM 2.5 exhibits significant relation with

LST which has been reported in other Chinese cities (Fang and

Gu 2022; Yang G et al., 2021, 5) as well as Guangzhou (Z. Zheng

et al., 2016). Compared to urban geometric factors, the

correlation between population and GDP is relatively

moderate as discussed in previous studies (Buyantuyev and

Wu 2010; M. Wong, Shaker, and Lee 2010).

FIGURE 4
The average LST distribution in Guangzhou between selected days in October andNovember, which represents the autumn season that is most
impacted by UHI in 2019.
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4.3 Ordinary least square result

We added urban geometric attributes (Model 1) and LCZ

categorical attributes based on GIS (Model 2) and RS (Model 3)

to the baseline model (Model 0). After processing, models focused on

basic and geometric factors (Model 0 andModel 1) with all variables’

VIFs below 10, showing models are not affected by multicollinearity.

As Allison suggests (Allison 2012), multicollinearity can be safely

ignored when the high VIFs are found in dummy variables that

involve 16 categories in our study. The study has verified the VIFs of

numeric variables have no significant change after incorporating

dummy variables and kept all 16 dummy variables in model

2 and 3 following prior pieces of literature (Murray et al., 2012;

Yavorsky, Cohen, and Qian 2016; Jakovljevic et al., 2020).

Table 4 reports the results and diagnostic indicators of the

regression process. On one hand, R2 of 0.639 by Model 1 was

improved fromModel-2 with R2 equal to 0.724 andModel-3 with

R2 equal to 0.729, indicating the effectiveness of integrating GIS

and RS-based LCZ attributes to improve the LST estimation

capability. On the other hand, RS based approach exhibits

slightly higher explanatory power compared to GIS methods

which can be explained by the relatively continuous and more

comprehensive quality provided by raster data considering the

large size of the study area. The sheer size of outskirt districts

composed of extensive vegetation and low-rise urban forms that

are not updated in GIS data makes RS methods advantageous in

describing LCZs in peripheral areas.

5 Discussion

5.1 Comparing two approaches for local
climate zone classification

Both approaches have advantageous and disadvantageous

features for assessing UHI. The RS-based method is easy to use

FIGURE 5
The proportion of LCZ sorted by districts in Guangzhou using RS- (left) and GIS-(right) based approaches.

FIGURE 6
Box graphs for average LSTs extracted in LCZs classified by RS (left) andGIS (right): thewhite line in the box shows themedian; the bottom line of
the grey box indicates the first quartile; and the top line indicates the third quartile.
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TABLE 4 Regression results and diagnosis.

Variables Model 0 Model 1 Model 2 Model 3 VIF

Baseline Geometric property GIS-based measures RS-based measures

Baseline variables

Population density 1.96e−05*** −4.44e−06*** −3.25e−06*** −2.49e−06*** 1.89

(0.0494) (−0.0112) (−0.00818) (−0.00627)

PM 2.5 0.0984*** 0.0949*** 0.0801*** 0.0751*** 1.22

(0.169) (0.163) (0.137) (0.129)

GDP 1.74e−06*** 1.77e−07*** 2.86e−08 4.70e−07*** 1.75

(0.0420) (0.00426) (0.000688) (0.0113)

DEM −0.0217*** −0.0188*** −0.0162*** −0.0148*** 2.81

(−0.683) (−0.590) (−0.508) (−0.465)

Geometric variables

SVF −1.924*** −0.00248 −0.276*** 2.63

(−0.0825) (−0.000106) (−0.0118)

BSF 6.91e−05*** 4.59e−05*** 5.07e−05*** 1.53

(0.108) (0.0720) (0.0795)

PSF −2.389*** −1.407*** 1.198*** 4.77

(−0.138) (−0.0814) (0.0693)

Mean height −0.00357*** −0.00640*** −0.00402*** 2.86

(−0.0175) (−0.0314) (−0.0197)

Aspect ratio −0.0657*** −0.0335*** −0.0689*** 2.160

(−0.0113) (−0.00577) (−0.0119)

LCZ dummy variables

2.LCZ compact mid-rise 0.852*** 0.806*** 2.640

(0.0456) (0.0320)

3.LCZ compact low-rise 1.681*** 1.112*** 8.590

(0.0329) (0.0912)

4.LCZ open high-rise 0.433*** −0.590*** 9.010

(0.0249) (−0.0492)

5.LCZ open mid-rise 1.226*** −0.311*** 2.330

(0.0803) (−0.0105)

6.LCZ open low-rise 0.0165 −0.109*** 13.49

(0.00158) (−0.0110)

7.LCZ lightweight low 1.430*** 3.863*** 1.020

(0.0991) (0.0149)

8.LCZ large low-rise 1.404*** 0.735*** 8.740

(0.0385) (0.0594)

9.LCZ sparsely built −0.204*** −0.886*** 1.030

(−0.00998) (−0.00417)

10.LCZ heavy industry 1.230*** 1.111*** 1.070

(0.00545) (0.00843)

A.LCZ dense tree −1.774*** −2.719*** 38.15

(−0.287) (−0.442)

B.LCZ scattered tree −0.986*** −1.496*** 3.010

(−0.0619) (−0.0609)

C.LCZ Bush −0.189 −0.644*** 1.840

(−0.000769) (−0.0168)

D.LCZ Low plants −0.998*** −1.430*** 29.79

(Continued on following page)
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with data freely available around the globe, but the coverage of spatial

detail could be unstable due to the limited capacity of the classification

process to distinguish the subtle difference between LCZs. The GIS-

based method can provide detailed and accurate land use information,

which is advantageous for steadily classifying areas into LCZs based on

standardized definitions, but it is tremendously data intensive.

In general, considering the sizes of LCZs classified by GIS and

RS approaches, the classification results are divergent in outskirt

areas and convergent in urban cores. Table 5 indicates that built-

up type LCZ areas are estimated to be 5.86% more by the RS

approach than GIS. Compared to prior studies (Hidalgo et al.,

2019), this difference is moderate and should be attributed to the

variety of urban forms composition between core districts and

urban outskirts. The main differences appear in outskirt districts

with significant suburban areas, including Baiyun, Huangpu,

Huadu, and Nansha where there are compact low-rise and

large low-rise buildings coexist closely which contributes to

the discrepancy in classifying these zones. This is in part due

to the mixed-use layout integrating industrial warehouse and

residential buildings together in peripheral areas which can

sometimes be reflected by GIS-based data with footprint

information but difficult to be distinguished by solely RS

imageries. The classification results are highly convergent in

core districts including Liwan, Yuexiu, Haizhu, and Tianhe.

The percentages and spatial distribution of LCZs are similar

to the two approaches since most areas in core districts are

dominated by compact forms such as residential and commercial

buildings with fewer green areas or agricultural lands.

By mapping compact LCZs and lightweight low-rise

LCZs, the GIS map can more accurately reflect the

morphological characteristics in urban centers in outskirt

districts, which remain crucial for assessing micro-climatic

effects on urban peripheries. In core areas of urban outskirt

districts, the GIS map demonstrates fine-grained

classification and can capture the subtlety of polycentric

urban structures based on building height data. While the

RS map can provide continuous coverage for built-up areas in

urban peripheries, the RS method tends to merge multiple

LCZs between low-rise and sparsely built forms into one

category, large low-rise LCZ 8. The ambiguity of mixed-use

lands in urban peripheries comprising industrial and

residential units has resulted in differences between GIS

and RS-based results. LCZ 8 is less identified in the GIS

map which could be caused by prioritizing the BSF in the GIS

classification process. While warehouse and industrial

buildings by materials definition, including concretes and

steel, could fit into LCZ 8 but from a geometric perspective,

their BSFs can be well above 50% in urban areas. This makes

the GIS approach classify more areas into LCZ 7 which

resulted in LCZ 8’s underrepresentation compared with

the RS maps. Some large industrial buildings’ heights in

outskirt districts are also above three stories which exceed

the threshold of LCZ 8 and can sometimes be categorized as

LCZ 5. When large low-rise buildings located in proximity to

extensive low plant areas are occasionally classified by the GIS

method as LCZ 9, but they could also be classified in LCZ 8. In

the results of the RS approach, LCZ G is under-represented

compared to GIS since RS has the tendency to classify the

LCZ of mulberry fishponds into built-up forms.

The RS-based approach can be improved by enhancing the

supervised classification process especially steps related to

digitizing LCZ training samples. Prior studies have shown the

potential to improve accuracy by addressing class incompleteness

and inconsistent labeling of training areas (Ren et al., 2019; C. Xu

et al., 2021). This study suggested the digitizing process needs to

consider collecting samples adequately from both urban core and

outskirt areas in case the research site is a megacity.

In summary, the similarities between classification results

generated by GIS and RS approaches include 1) convergent

classification in built-up areas of urban core districts where

TABLE 4 (Continued) Regression results and diagnosis.

Variables Model 0 Model 1 Model 2 Model 3 VIF

Baseline Geometric property GIS-based measures RS-based measures

(−0.153) (−0.214)

E.LCZ Paved 4.548*** 1.843*** 3.410

(0.0315) (0.0841)

F.LCZ Bare soil −1.512*** 0.689*** 2.440

(−0.00645) (0.0238)

G.LCZ Water −2.109*** −2.054*** 5.200

(−0.205) (−0.117)

Constant 24.31*** 27.45*** 26.28*** 25.40***

R-squared 0.603 0.639 0.724 0.729

Normalized beta coefficients are in parentheses. ***p < 0.01, **p < 0.05, *p < 0.1.
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TABLE 5 Difference between the percentage of LCZ surface between GIS and RS approaches.

District Liwan Yuexiu Haizhu Tianhe Baiyun Huangpu Panyu Huadu Nansha Conghua Zengcheng Total

LCZ

Location Urban core Urban outskirt

1 0 −0.08 −0.05 −0.15 −0.01 −0.08 −0.07 −0.07 −0.01 0 −0.01 −0.51

2 0.09 0.02 0.09 0.14 0.43 0.17 0.19 −0.05 −0.01 0.03 0.05 1.16

3 −0.32 −0.05 −0.22 −0.22 −1.56 −0.24 −1.17 −0.92 −0.65 0 −0.48

4 0 0.06 0.05 0.09 −0.33 −0.21 −1.05 −0.27 −1.59 0.03 −0.21 −3.43

5 0.12 0.03 0.11 0.21 0.37 0.47 0.52 0.36 0.13 0.16 0.33 2.82

6 0.1 0.01 0.04 0 0.1 −0.09 0.44 0.37 0.53 −2.23 −0.41 −1.13

7 0.04 0 0.02 0.03 0.77 0.36 0.38 0.99 0.58 0.33 0.8 4.28

8 −0.02 −0.01 −0.08 −0.11 −0.7 −0.28 −0.68 −0.96 −1.15 −0.49 −0.82 −5.3

9 0.02 0.01 0.04 0.05 0.18 0.18 0.16 0.26 0.14 0.57 0.48 2.08

10 0 0 0 0 −0.01 0 −0.01 0 0 0 0 −0.03

Built-up sum 0.03 −0.01 0 0.04 −0.76 0.28 −1.29 −0.29 −2.03 −1.6 −0.27 −5.86

A 0.03 0.05 0.04 0.15 0.54 0.72 0.67 0.54 0.54 −3.92 0.04 −0.62

B 0 −0.03 −0.08 −0.05 −0.04 0.11 −0.31 0.41 −0.06 1.75 0.37 2.06

C 0 0 0 0 −0.13 −0.01 −0.18 −0.05 −0.18 0.01 −0.03 −0.57

D 0.01 −0.02 0.11 −0.09 0.21 −0.97 0.78 −1.68 1.29 3.07 −0.94 1.78

E −0.06 0 −0.05 −0.05 −0.38 −0.15 −0.34 −0.22 −0.43 0 −0.1 −1.77

F −0.01 0 0 −0.02 −0.1 −0.19 −0.1 −0.11 −0.13 −0.1 −0.26 −1.01

G 0 0.01 −0.01 0.03 0.63 0.19 0.76 1.4 1 0.81 1.2 6.03

Land cover sum −0.03 0.01 0.01 −0.03 0.73 −0.3 1.28 0.29 2.03 1.62 0.28 5.9

Table 5 shows the difference calculated by using a percentage of LCZs surface classified by GIS minus counterpart classified by RS. The darker the color shown by the cells of the table, the greater the divergence between results generated by GIS and RS

approaches.
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LCZs 1–6 are dominant (Figure 5); 2) consistent association

between LST and LCZs 1–3 with major heat island

contributor identified as LCZ E (Figure 6). Disparities

remain in the urban outskirt districts, including 1)

inconsistent land cover LCZs classification such as LCZ G

in southern districts; 2) the built-up areas are inconsistent in

peripheral areas of outskirt districts where low-rise between

LCZs 6–8 are mixed and the different criteria between GIS

and RS have led to significant variations on associations

between classified LCZs and LST.

5.2 Effects of geographic information
system-based and remote sensing-based
attributes to model urban heat island

Few studies have quantitatively compared RS- and GIS-based

methods for LST and UHI estimations. Addressing this issue can

make the LCZ framework more evident-based and evaluate the

effectiveness and feasibility of classification methods. The

inconsistent format of urban data and lack of standardized

methods tailored to explain urban climate studies have

hampered the transfer of knowledge into urban decision-

making (Ng 2015; Hidalgo et al., 2019).

First, considering the R2 coefficient (Table 4), GIS and RS-based

approaches overall can better explain the relationships with UHI

than the model using solely urban geometric factors. This also

demonstrates the complementary effects of LCZ attributes on urban

geometric and socioeconomic factors for better UHI estimation.

This finding indicates that LCZ categorical elements can contribute

to better reflecting the subtle conditions on urban geometry and land

cover defined by LCZ classification, ultimately resulting in a stronger

capability to estimate LST.

Second, the overall performance of the two approaches is largely

equivalent in explaining the relationship between urban from and

UHI intensity but the detailed LCZ results varied between GIS and

RS means. The GIS-based measure has advantages when the study

area is composed of complex urban features, and it captures better

built-up land elements in urban areas which is consistent with the

observation for GIS-based measures can capture finer resolution

spatial details in previous studies (Hidalgo et al., 2019). By checking

results with site photos, the GIS-based model for built-up area

classification is less accurate in peripheral areas such as the northern

outskirts due to the limitation of data availability or timely updates.

Consideringmegacities such asGuangzhou or other rapidly growing

cities, RS-based measure is advantageous to provide a quick

overview with acceptable accuracy based on its continuous

coverage of the total area within the city boundary.

Third, the coefficient of each LCZ categorical variable can shed

light on the estimated change of LST if a parcel of land were

conceived to be changed from LCZ one to a targeted LCZ. Both RS

andGIS approaches identify LCZG andA as the cooling source if an

area was planned to be dominated by water and trees, with LST

decreasing by 2.109 (GIS), 2.054 (RS), and 1.774 (GIS), 2.719 (RS)

degrees, respectively. According to the coefficients, areas dominated

by lightweight low-rise (LCZ 7) and large low-rise (LCZ 8) aremajor

drivers for increasing LST. This difference in coefficient between

LCZ 7 and 8 could be explained by the different methods between

GIS- and RS-based models to classify LCZ 7 and 8.

6 Conclusion

6.1 Significance of comparing local
climate zone classification approaches

Built on prior studies, this research further clarifies the

complement and divergent relationship between object-based and

pixel-based information from GIS and RS images which has not

been stressed sufficiently. This study proposed a new framework to

further compare the variance of LST based on GIS and RS data and

models, with goals to address the gaps created by insufficient efforts

for comparing the effectiveness between the two types of LCZ

classifications. Built on prior LCZ classification and LST

estimation studies (M. Cai et al., 2016; G. Chen et al., 2021; R.

Wang et al., 2019), we synthesized and expanded existing

frameworks to 1) effectively evaluate the classification of LCZs

based on GIS and RS and 2) compare quantitatively the effects

of LCZ attributes on UHI with both RS-based and GIS-based

approaches taking Guangzhou as a case study.

To what extent LCZ categorical variable generated by GIS-

and RS-based measures for estimating LST diverge and converge

is discussed in this study. We quantified their impacts on UHI

with a comprehensive set of multisource data in Guangzhou.

First, the GIS- and RS-based approaches show almost equivalent

collective explanatory power on overall estimation, with RS,

explaining slightly more variance over GIS. Second, the LCZ

categorical attributes generated by both RS and GIS models can

contribute to estimating LST variation based on hypothetical

changes in LCZs.

6.2 Implications to urban planning and
design

This study has developed a framework for comparing GIS-

based and RS-based LCZ classification in Guangzhou. It has

demonstrated the workflow of synthesizing a set of planning and

RS information into standardized maps of urban form. The two

sets of LCZ classification maps are both capable to provide a

quick diagnosis of urban forms and heat-affected areas in

Guangzhou, which can serve as a base to support planners

and designers to screen prioritized areas for UHI mitigation

and adopting urban cooling strategies.

Considering the data-intensive and laborious process of the GIS-

based approach, the RS-based approach can generate more cost-
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effective results with equivalent performance, but less cost time and

high accessibility brought by freely available data. The RS-based

approach can provide useful land use data with continuity that

extends its coverage to peripheral or semi-urban areas. The RS-

based approach can be maintained with the less technical capacity

requirementwithout involving in-depthGIS techniques, which can be

a relatively feasible option for agencies in large and fast-growing cities

of developing countries due to the challenging data availability in

terms of limited coverage and poor quality.

Based on the correlation between LCZs and UHI, we suggest

urban policymakers and designers 1) compare approaches based on

the different data sources and 2) identify and prioritize the most

impacted built-up types, in Guangzhou’s case LCZ 7 and 8, to

enhance heat mitigation. Integrating LCZs into urban planning

guidelines can inform design strategies to be resilient and

sustainable (C. Qiu et al., 2018; Kwok et al., 2019). In line with

the new urbanization agenda which calls for high-quality growth and

sustainable environmental management (S. Wang, Liu, and Qin

2022), this study identified feasible measures that can provide

evidence-based policy recommendations to enhance urban

resilience and tackle UHI.

6.3 Limitation and future study

Several limitations in this study will need further studies.

First, limited by the timeframe, resources, and weather

conditions, the current LST data were collected from a group of

RS imageries captured on specific dates. Based on the lessons learned

from previous studies, representative days in autumn were identified

to study the effect of themean LST in LCZs of Guangzhou.While the

select RS data sources exhibit a low cloud rate, minor areas covered by

clouds could still affect the temperature captured in a limited number

of pixels. Expanding RS data samples with a larger spatiotemporal

consequence would possibly reveal a more subtle UHI and LST

variation pattern. This study mainly assesses influencing factors and

UHI by using the regression analysismethod tomodel the association

between LCZs and LST which only describes part of a complicated

process. Modeling UHI comprehensively will need extra effort to

consider the complex evolution process for UHI formation.

Second, given Guangzhou is a rapidly growing city, there might

be minor differences between the available GIS administrative data

and the actual land cover properties when remote sensing imageries

were captured. Urban forms might not be timely reflected in some

GIS administrative datasets which led to uncertainties. The training

samples might not cover all the most suitable areas for classification

since local knowledge of relevant neighborhoods and communities

could not always keep up with the fast pace of urban expansion and

regeneration in the city.

It could be challenging to translate the GIS- and RS-based

quantification result of the association between UHI and

LCZs into planning and policy recommendations. More

efforts are needed to streamline RS- and GIS-based means

and incorporate these approaches into feasible urban design

actions that promote sustainable urban cooling and heat-

resilient cities.

Third, many factors can affect LST estimation, including the

top-down perspective generated by satellites and GIS which

might overlook the influence posed by the vertical landscape.

Previous studies (W. Qiu et al., 2022; X. Xu et al., 2022) have

shown the streetscape-based approach has the potential to

comprehensively measure the urban environment. This could

make correlation studies between different LCZ types and LST

more human centered. Future studies can compare approaches

based on street view and RS to identify the effectiveness of

identifying heat-vulnerable areas.
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