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Determining the composition, particle size distribution and concentration

changes of suspended particulate matter in the atmosphere is important for

evaluating the quality of air and its impact on public health. The scattering and

absorption of light by suspended particulate matter can change the polarization

state of light, which can be used to extract characteristic information of

measured particles. Firstly, we use our previously developed multi-angle

simultaneous polarization measurement device to monitor the particulate

matter around Dianshan Lake, Shanghai, and obtain high-throughput, high-

dimensional Stokes data for nearly 1 month. The correlation between the Stokes

data measured and the reference concentrations of five suspended particulate

matter (Si, K, Fe, Ca, and Zn) was analyzed using the Periodical canonical

correlation analysis (PCCA) method. The study shows a strong correlation

between the three Stokes vectors and the concentrations of two types of

suspended particulate matter in the atmosphere. Moreover, a prediction model

for the concentration change of suspended particles was proposed by

combining the locally weighted linear regression (LWLR) and the auto

regressive moving average (ARMA) model. The prediction results on the

concentration change of K and Fe in the atmosphere verified the validity of

our method. The research in this work offers the possibility of continuous

analysis and prediction of atmospheric suspended particulate matter in real

environments.
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1 Introduction

Aerosols are solid or liquid suspended particulate matter

dispersed uniformly in the air. It is important to determine the

composition, source and concentration variation of aerosols to

evaluate the quality of the atmosphere. The main types of

aerosols are carbonaceous aerosols, secondary inorganic water-

soluble aerosols, sea salt aerosols, biomass aerosols and mineral

dust aerosols. The aerosols have an important impact on climate,

visibility, radiative forcing, photochemical smog production, and

ecosystem damage (Haywood and Boucher, 2000; Mauderly and

Chow, 2008). Secondary inorganic water-soluble aerosols mainly

include sulfate and nitrate, which are important contributors to

haze production (Fowler et al., 2013; Shang et al., 2020). The

main components of sea salt aerosols include NaCl and NaBr, in

which halide ions are photolyzed to produce halogen atoms,

which in turn have the potential to affect ozone levels in the

troposphere (Thomas et al., 2007). Bioaerosols may consist of

bacteria, fungi, viruses, pollen, plant fibers, etc. Bioaerosol

exposure may produce infectious diseases, acute poisoning,

allergies, or cancers with public health implications (Douwes

et al., 2003). Mineral dust aerosols are chemically stable and

consist mainly of oxides of elements such as silicon (Si),

potassium(K), iron (Fe), aluminum (Al), magnesium (Mg),

sodium (Na), calcium (Ca) and zinc (Zn), and can be

generated by natural means such as soil dust, sandstorms,

volcanic eruptions or by anthropogenic means such as

bituminous coal dust or construction cement dust (Wang

et al., 2008; Miffre et al., 2012). Airborne particulate matter

(PM), which is often complex in composition and varies over

time and space, is a major cause of environmental pollution and

has many health risks. For example, PM2.5 (particulate matter

with an aerodynamic diameter of less than 2.5 microns) can

cause respiratory illnesses such as shortness of breath, chest

discomfort, coughing and wheezing (Guaita et al., 2011), as

well as cardiovascular diseases such as congestive heart failure

(Wellenius et al., 2005), atherosclerosis (Suwa et al., 2002), and

leads to decreased vagal tone with reduced heart rate variability

(Gold et al., 2000). Therefore, testing the composition,

concentration and particle size distribution of suspended

particulate matter in the atmosphere can help to assess the

impact of suspended particulate matter on human health and

thus provide advice to environmental regulators on policy

development.

The two main types of methods commonly used to carry out

suspended particulate matter testing are sampling and non-

sampling methods. Common sampling methods include filter

membrane methods, piezoelectric crystal methods, β -ray

absorption methods and micro-oscillation balance methods

(Olin and Sem, 1971; Patashnick and Rupprecht, 2012; Gao

et al., 2017), whose detection accuracy of sampling methods is

generally high, but the process is cumbersome and the

monitoring is poor in real time. For non-sampling detection,

optical techniques provide a good way to achieve non-invasive

and high-throughput analysis, such as extinction spectroscopy,

photoacoustic spectroscopy, flow cytometry, and light scattering

(Berthet et al., 2002; Green et al., 2003; Xue et al., 2016; Woźniak

et al., 2018). Recently, polarization measurement shows great

potential in particle analysis due to its advantages of no tagging,

high information dimensionality, and easy retrofitting from the

original light scattering detection device. In our previous research

work, we develop a measurement system based on multi-angle

optical scattering and multidimensional polarization analyzing

technique (Li et al., 2019). Based on this, Guo et al. (2022)

simultaneously inverted the complex refractive index and particle

size distribution of suspended particulate matter by multi-angle

polarization scattering measurements. And Xu et al. (2021) used

machine learning methods to process high-throughput multi-

angle single particle polarization scattering signals to achieve

real-time online identification of individual suspended

particulate matter.

In this paper, the detection of suspended particulate matter in

the outdoor atmosphere around Dianshan Lake in Shanghai was

carried out using our developed device. To obtain 8-dimensional

high-throughput Stokes data. A new method to analyze the

correlation between high-throughput and high-dimensional

variables is proposed using five types of airborne suspended

particulate matter concentration data given by local particle

monitoring superstation as reference data. We obtained a high

correlation between certain Stokes data and particulate matter

reference concentration data. Finally, Based on the Stokes data

measured by our equipment, we made preliminary predictions of

the changes in the concentration of two suspended particulate

matter (K, Fe) in the outdoor atmosphere, demonstrating the

feasibility of our suspended particulate matter measurements for

real environment monitoring and prediction.

2 Methods

2.1 Periodical canonical correlation
analysis method

The data set used in this experiment is the polarized light data

of outdoor airborne suspended particulate matter measured by

our device and the data of airborne suspended particulate matter

(Si, K, Fe, Ca, and Zn) provided by the Shanghai Environmental

Monitoring Center. The concentrations of Si, K, Fe, Ca, and Zn

were measured by the Shanghai Environmental Monitoring

Center using an airborne elemental analysis monitoring device

(Xact625, Cooper Environmental Services LLC, United States),

which main measurement principle is based on the X-Ray

Fluorescence (XRF) method. The data given by the Shanghai

Environmental Monitoring Center are the concentration data of

suspended particulate matter in the outdoor atmosphere. The

polarized light data contain 8 polarization parameters for the
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H-polarized state incidence and 8 polarization parameters for the

P-polarized state incidence, respectively.

The Schematic diagram of the single particle measurement

method for suspended particulate matter in the atmosphere is

shown in Figure 1. First, the light from the laser (532 nm,

100 mW, MSL-III-532, CNI) passes through the PSG, C and

detection area, and is then collected by the light trap. When a

single particle passes through the detection zone, the light

intensity channel will be triggered, and then P1-P4 start to

collect the polarized light. Combining the incident polarized

light and the collected exiting polarized light, we can obtain

information about the suspended particulate matter in the

atmosphere. The properties of polarized light can usually be

expressed by a Stokes vector, which is calculated by adding and

subtracting the light intensities of different components, which is

described by Eq. 1. The index represents the polarization state of

the polarization state analyzer, where 0°, 45°, 90° and 135°

represent the linear polarization state; R and L represent the

right-handed and the left-handed circular polarization state.

S �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
s0
s1
s2
s3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
I0 + I90
I0 − I90
I45 − I135
IR − IL

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (1)

In this work, for comparison with the reference data provided

by the monitoring station, we averaged the measured multiple-

scattering angle Stokes vectors s1 and s2 by hour.

Before using the polarized light data to predict airborne

particulate matter concentrations, it is necessary to analyze

the correlation between the polarized light data and the

reference data given by the Shanghai Environmental

Monitoring Center which will help to improve the accuracy of

the prediction. The simplest way to analyze the correlation

between data is the Pearson correlation method, but the

Pearson correlation can only analyze the correlation between

two columns of data, but not the correlation between two

multidimensional data sets as a whole. Hotelling first

proposed the canonical correlation analysis (CCA) method

(Hotelling, 1936), which is similar to the PCA downscaling

technique and can explore the correlation between two sets of

variables. The CCA method is a multivariate statistical technique

that allows the study of relationships between multiple

dependent variables and multiple independent variables. The

CCAmethod can find linear combinations of two sets of variables

with maximum Pearson correlation (Ahmadianfar et al., 2020).

CCA constructs linear combinations from two sets to maximize

the correlation between the two sets. The linear combinations in

the two sets are ranked according to the magnitude of the

correlation, and the linear combination pair with the greatest

correlation is obtained, called the typical variable pair (U1, V1;

U2, V2; U3, V3 ...).

The two most important parameters in the canonical

correlation analysis are the typical load factor and the

explanatory factor. The typical load factor (Tlf) is used to

specify the correlation between the typical variables and the

input indicators, and Tlf is calculated as Eq. 2 The larger the

absolute value of the Tlf, the stronger the correlation between this

item and the typical variables. The explanatory factor (Ef) is used

to measure the ability of the typical variable to explain the

information contained in all the input indicators, the larger

the Ef the stronger the typical variable’s ability to explain the

information contained in the input indicators. The explanatory

FIGURE 1
Schematic diagram of the single particle measurement method for suspended particulate matter in the atmosphere. PSG, polarization state
generator; C, cylindrical lens; I, light intensity channel (10°); L, biconvex lens; A, aperture; P1-P4, polarization state analysis channel for 30°, 60°, 85°,
115°, respectively; PSA, polarization state analyzer; FP, polarizer film; FC, fiber core; H, horizontal polarizer film; V, vertical polarizer film; P, 45°

polarizer film; Q, 135° polarizer film; SiPMT, silicon photomultiplier tube; OPS, optical particle sizer.

Frontiers in Environmental Science frontiersin.org03

Yuan et al. 10.3389/fenvs.2022.1031863

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2022.1031863


factor is also known as the variance explained ratio and is

calculated as shown in Eq. 3.

Tlf XU � 1
n
∑n

i�1
(Xi − E(X))

σX
· (Ui − E(U))

σU
(2)

Ef k �
1
n
∑n

i�1Tlf XiUk
(3)

σX and σY are the variances of the X and Y vectors

respectively, and X and U are column vectors. Combining Eqs

2, 3, the typical load interpretation factor (Tlif) is defined in this

paper, as shown in Eq. 4.

Tlif XUk
� (Ef k) · (Tlf XUk

)2 (4)

The typical load interpretation factor is obtained by

multiplying the explanatory factor and the square of the

typical load factor, so that it not only reflects the high

correlation between the typical variable and the original data,

but also the degree of trustworthiness of this correlation. If the

typical load factor is large, but the explanatory factor is small, it

means that the typical variable is highly correlated with the

original data, but the typical variable contains less information

about the original data, indicating that this correlation is not

reliable. Similarly, if the typical load factor is small, but the

explanatory factor is large, which means the correlation between

the typical variable and the original data is low, but the typical

variable contains more information about the original data,

indicating that the correlation is not very reliable. In contrast,

the typical load interpretation factor combines the characteristics

of the typical load factor and the explanatory factor, and can

better characterize the correlation between the typical variables

and the original data.

In this paper, periodical canonical correlation analysis

(PCCA) is proposed based on the CCA method. PCCA is

used to obtain typical load interpretation factors by

calculating typical load factors and explanatory factors for

multiple periods obtained from CCA analysis. By analyzing

the statistical patterns of the typical load interpretation

factors, the correlations between the two groups of variables

analyzed are then obtained. In contrast to CCA, PCCA uses the

statistics of multiple local correlations to analyze the correlation

between two sets of variables, allowing more detailed correlation

information to be uncovered within the data set. A schematic

diagram of the whole PCCA calculation process is shown in

Figure 2.

As shown in Figure 2, PCCAworks by first calculating typical

load interpretation factors, Tlif1XU, Tlif2XU, . . . , TlifpXU, Tlif1YV,

Tlif2YV, . . . , TlifpYV for each Stokes vector and suspended

particulate matter, using the four Stokes vectors and the

concentration data of suspended particulate matter for the

first day of H incidence or P incidence, where p is the

number of typical variable pairs, X is the name of the Stokes

FIGURE 2
Schematic diagram of PCCA. CCA, canonical correlation analysis; KD, kernel density; Tlf, typical load factor; Ef, explanatory factor; TLIF, typical
load interpretation factor.
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vector, Y is the name of the suspended particulate matter, U

represents the typical variable corresponding to the Stokes vector,

and V represents the typical variable corresponding to the

concentration of the suspended particulate matter, and 1, 2, ...

represents the ordinal number of the typical variable pair. This is

done in turn until a typical load interpretation factor of each

Stokes vector and suspended particulate matter is calculated for

day n. Considering the effect of the explanatory factors, define:

Tlif X � ∑m

k�1Tlif kXU (5)
Tlif Y � ∑m

k�1Tlif kYV (6)

In Eqs 5, 6, m indicates that the first m typical variable pairs

with the largest correlation coefficients are selected to be counted

as the typical load interpretation factor for each Stokes vector or

suspended particulate matter. m can be selected based on the

explanatory factor to ensure that the firstm typical variable pairs

explain enough information about the Stokes vector or

suspended particulate matter concentration.

Thus, it is possible to calculate, TlifS1H(60°), . . ., TlifS2H(115°),

TlifSi, . . . , TlifZn and TlifS2P(30°), . . ., TlifS2P(115°), TlifSi, . . . , TlifZn,

respectively. The kernel density of each typical load

interpretation factor is then plotted separately to find the

ranking of the typical load interpretation factors

corresponding to the peaks of the kernel density curves. The

top groups with the largest typical load interpretation factors

corresponding to the peaks of the kernel density curves indicate

that these groups of Stokes vectors have the highest correlation

with the suspended particulate matter.

2.2 Locally weighted linear regression
methods

Linear regression is prone to underfitting because it seeks an

unbiased estimate with a minimum mean square error. If the

model is under-fitted, it will not achieve the best prediction

results. Therefore some methods allow some bias to be

introduced into the estimation, thus reducing the mean square

error of the prediction and improving the prediction accuracy

(Wang et al., 2016). Locally weighted linear regression is an

improvement on standard linear regression, which solves the

problem of under-fitting of standard linear regression and

improves the prediction accuracy. The method accomplishes

local fitting by assigning a certain weight to each point

around the point to be measured and then performing an

ordinary regression based on the minimum mean squared

error on this subset. Locally weighted linear regression uses a

moving average calculation similar to that of a time series, and a

local fit can estimate a broader class of regression curves than a

polynomial fit (Cleveland and Devlin, 1988). The basic principles

of locally weighted linear regression are as follows:

Given the input vector x, the hypothesis function of the

regression is denoted by hθ(x), defined as

y � hθ(X) � θTX (7)

where y is the vector to be regressed fitted, y = {y1,y2,...,yn}, and

X = {x1,x2,...,xm} is the matrix of input independent variables, x1 =

x11,x12,...,x1n. Thus, a vector of regression coefficients can be

found θ that minimizes the mean squared error between the

predicted and true values. Based on existing knowledge, it is

known that the vector of regression coefficients obtained by

linear regression θ is θ̂ = (XTX)−1XTy. The small marker above θ

indicates that this is the currently estimable θ of the optimal

solution. Because the estimate θ from the available data may not

be the true θ value, a “cap” symbol is used to indicate that it is

only the best estimate of θ. While the vector θ of regression

coefficients resolved using the locally weighted linear regression

algorithm is:

FIGURE 3
Relationship between parameter k and weights. The above
panel represents the scatter plot of y and x; the bottom panel
illustrates the changes in the weights of the points near the
measurement point with the parameter k.
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θ̂ � (XTWX)−1XTWy. (8)

LWLR uses a “kernel” similar to that used in support vector

machines to give higher weights to nearby points. The type of

kernel function can be freely chosen, and for regression

prediction models, the choice of a suitable kernel function can

effectively improve the prediction accuracy, with typical kernel

functions being Gaussian, Exponential, and Laplace (Huang

et al., 2020). The kernel function used in this paper is the

Gaussian kernel function, and the corresponding weights of

the Gaussian kernel function are as follows:

w(i, i) � exp(
∣∣∣∣x(i) − x

∣∣∣∣
−2k2 ) (9)

This constructs a weight matrix W with only diagonal

elements, W can assign a weight to each sample point and the

closer the point x is to the other points, the greater the value w

(i,i). Eq. 9 contains a parameter k to be formulated by the user

that determines howmuch weight to assign to nearby points, and

this is the only parameter that needs to be considered when using

LWLR (Harrington, 2012). The relationship between the

parameter k and the weights can be seen in Figure 3.

As shown in Figure 3, assuming that the point we are

predicting is x = 0.5, the top plot shows the original data set.

The bottom plot shows that when k = 0.5, most of the data is used

to train the regression model; while when k = 0.01, only a small

number of local points are used to train the regression model.

When the chosen k parameter is large, the fitting result is similar

to that of the least squares method, which is prone to overfitting;

when the chosen k parameter is small, it is prone to overfitting

and introduces a large number of noisy signals. Therefore,

choosing the appropriate parameter k is beneficial to explore

the potential laws of the data itself and improve the accuracy of

the prediction results.

2.3 Auto regressive moving average
models

The auto regressive moving average (ARMA) model is one of

the typical models used to predict the trend of a time series (Hu

et al., 2020). The general form of the ARMA model is ARMA

(p,q), which is expressed as follows.

xt � (φ1xt−1 + φ2xt−2 +/ + φpxt−p) + (εt − θ1εt−1 − θ2εt−2 −/

− θqεt−q)
(10)

In Eq. 10, the model is an AR(p) model when q = 0 and an

MA(q) model when p = 0. φ1, φ2,. . ., φp are the auto regressive

coefficients, θ1, θ2,. . ., θq are the moving average coefficients. εt,

εt-1, . . . , εt-q are random disturbance sequences. xt-1, xt-2, . . . , xt-p
are the past sequence values. The algorithm flow to predict

chemical concentrations using the ARMA algorithm is shown

in Figure 4.

As shown in Figure 4, when using the ARMA algorithm for

series prediction, the smoothness of the signal is first tested using

the ADF or KPSS method. It is worth noting that if the original

signal does not pass the smoothness test, the original signal needs

to be processed using the difference method until the result is

smooth. Once the smoothness test is completed, the order of the

ARMA model needs to be determined. ARMA models are

generally of unknown order p and q and are usually derived

recursively. Common criteria for determining whether the order

is appropriate are Akaike’s information criterion (AIC), Akaike’s

final prediction error (FPE), and the Bayes information criterion

(BIC) (De Gooijer and Hyndman, 2006). In this paper, the AIC

criterion is used, and the expression for AIC is:

AIC(k) � Nln(ρk) + 2k (11)

In Eq. 11, N is the length of the data. As the order k increases

from 1, AIC(k) will obtain a minimum value at some k, at which

point k will be set to the most appropriate order. ρk is the mean

square value of the error series at order k, calculated as shown in

Eq. 12.

ρk � E{[(x(n) − x̂(n))]2} (12)

x(n) is the actual observed value, and x̂(n) is the result calculated
by a specific ARMA model. After determining the order p and q

of the AMRA model, it is also necessary to check whether the

model is a good fit. A common check method is the residual test,

which is mainly to check the normality and irrelevance of the

residuals. If the model fits adequately, the residual series follows a

zero-mean-normal distribution and is completely random and

uncorrelated. In this paper, the ARMA model is used to predict

changes in the concentration of suspended particulate matter in

the outdoor atmosphere, and its predictions are used as a

reference value to adjust the parameter k of the LWLR

prediction method.

3 Result

3.1 Correlation between Stokes vectors
and suspended particulate matter
concentrations

Using the PCCA method, it is necessary to select the first few

pairs of typical variables to calculate the typical load

interpretation factors. As shown in Figure 5, the box plots of

the explanatory factors of the Stokes vector and suspended

particulate matter concentration at H incidence and P

incidence are plotted. From Figure 5, we can see the first two

typical pairs of variables explain most of the raw data

information, so m = 2 is set in Eqs 5, 6. Therefore, the first
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two typical load interpretation factors for all data were selected

and summed as the typical load interpretation factors for the

Stokes vector and suspended particulate matters’ concentration

for each incident case, and then the kernel density curves for the

typical load interpretation factors were plotted. Figure 6 shows

how the PCCA method was applied to analyze the correlation

between the Stokes vectors and suspended particulate matter

concentrations.

Figures 6A,B indicate that the Stokes S1H (60°) and S1H
(85°) peaks correspond to larger value range of TLIF in the

case of H incidence, while the suspended particulate matter K

and Fe peaks correspond to larger value range of TLIF. From

the PCCA analysis of Section 2.1, the correlation between S1H
(60°), S1H (85°) and K, Fe is high. Figures 6C,D show that in

the case of P incidence, the Stokes S2P (60°) peak corresponds

to a larger value range of TLIF, and the suspended particulate

matter K and Fe peaks correspond to larger value range of

TLIF. Similarly, we can obtain that the correlation between

S2P (60°) and K, Fe is higher. Combining the above analysis, it

can be concluded that the Stokes vectors S1H (60°), S1H (85°)

and S2P (60°) are highly correlated with the concentration of

suspended particulate matter K and Fe in the outdoor

atmosphere.

3.2 Predicting results based on ARMA &
LWLR methods

3.2.1 Data preparation
Firstly, the data need to be preprocessed for outliers by

removing the outlier points based on quadratic polar

difference detection and then filling the data using triple

spline interpolation. The before and after preprocessed

curves are shown in Figure 7. The upper limit of

FIGURE 4
Flow chart of ARMA prediction algorithm.
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quadrature polarization for outliers is Q3+1.5Iqr, and the

lower limit is Q1-1.5Iqr. Any data that lies outside the lower

and upper limits of the determination will be considered

outliers. Q1, Q3 and Iqr are upper quartile, lower quartile,

and the distance between the upper and lower quartiles

respectively. As shown in Figure 7F, quadratic

polarization-based outlier detection and removal, followed

by triple spline interpolation, can effectively weaken the

spikes in the original data compared, and still retain the

trend and detailed information of the original data variation.

3.2.2 Predictions for the concentration of K
and Fe

From Section 3.1 we know that the Stokes vectors S1H (60°),

S1H (85°) and S2P (60°) are highly correlated with changes in the

concentrations of suspended particulate matter K and Fe. Next,

we attempt to use the measured S1H (60°), S1H (85°) and S2P (60°)

to predict the changes in the concentration of K and Fe. Firstly,

using the ARMA model combined with the past data of

suspended particle concentrations, the predicted concentration

values of suspended particles are shown in Figures 8A,D. Then

FIGURE 5
Box plots of the explanatory factors for typical variables derived for H incidence and P incidence. (A) panel shows the box plot of the explanatory
factor for the case of H incidence, and (B) panel shows the case of P incidence.

FIGURE 6
Typical load interpretation factor kernel density curves for Stokes vectors derived for H incidence and P incidence and suspended matters’
concentration. (A,B) show the results of PCCA under H incidence, (C,D) show the results of PCCA under P incidence.

Frontiers in Environmental Science frontiersin.org08

Yuan et al. 10.3389/fenvs.2022.1031863

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2022.1031863


the LWLR was used to predict the suspended particulate matter

concentration values. By combining the past particulate

concentration data with the Stokes data, the mean absolute

percentage error (MAPE) between the ARMA predictions and

the LWLR predictions can be calculated. It should be noted that

MAPE was calculated using k = 0.001 as the initial value and

incrementing parameter k with step = 0.001, the corresponding

results are shown in Figures 8B,E. The minimum point of the

MAPE curve, marked with red pentagrams in Figures 8B,E, and

the corresponding parameter k are used as the final weight

parameter for LWLR prediction to predict the concentration

value of the suspended particulate matter, and the final

prediction results can be obtained (Figures 8C,F). The formula

for calculating MAPE is shown in Eq. 13

MAPE � ∑n

t�1

∣∣∣∣∣∣∣measuredt − predictedt

measuredt

∣∣∣∣∣∣∣ × 100
n

(13)

From Figures 8B,E, the variation of MAPE with parameter k

is an overall upwardly concave curve with a unique minimum

point. Here the length of training time chosen for the predictions

was 3 days (72 h) and the time length of prediction was 1 day

(24 h). According to Figures 8A,D, the error between the

predicted trends in K and Fe concentration based on ARMA

method and the measured value is larger (MAPE of K is 36.37%,

while Fe is 48.96%). However, Figures 8C,F indicate that the

ARMA & LWLR method can realize smaller errors between the

predicted values and the measured values (MAPE of K is 11.26%,

while Fe is 18.99%). Meanwhile, the overall trend of the predicted

values is generally consistent with that of the measured data.

Therefore, the prediction results are relatively reliable.

4 Discussion

4.1 Discussion on correlation analysis

In this section, we attempt to analyse the reasons for the

relatively low correlation between Si, Ca, Zn and Stokes vector

data in terms of data structure. In this paper, the first-order

difference of the raw data is used to measure the degree and

frequency of data mutation, and the kurtosis of the first-order

difference distribution is used to quantify the analysis. Figure 9

FIGURE 7
Preprocessing of outliers from raw chemical data. (A–E) show the changes in the concentration values with time (648 h for each) of Si, K, Fe, Ca,
and Zn before and after preprocessing, respectively; the subplots of (A–E) show the concentration distribution of Si, K, Fe, Ca, and Zn, respectively; (F)
is the local zoom of (D).
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FIGURE 8
Comparison of measured concentrations and predicted concentrations based on the ARMA & LWLR method (K and Fe). (A,D) show the results
before and after prediction by arma of K and Fe, respectively; (B,E) show the process of finding the most suitable parameter k of K and Fe,
respectively; (C,F) show the results before and after prediction by lwlr + arma of K and Fe, respectively.

FIGURE 9
First-order difference of suspended particulate matters’ concentration and their kernel density curves. (A–E) are the first difference of Si, K, Fe,
Ca, and Zn, respectively; (F) shows the definition of kurtosis.
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shows the first-order difference and its kernel density function

distribution for the five concentration data for suspended

particulate matter (Si, K, Fe, Ca, and Zn).

The formula for calculating kurtosis is shown in Eq. 14.

α4 �
∑(x − μ)4/N

σ4
(14)

From Eq. 14, it can be seen that the kurtosis values depend on

the peak and trailing tail of the distribution. The kurtosis values

calculated for the five chemicals are shown in Table 1.

From Table 1, it can be seen that the kurtosis of Si is the

smallest, indicating that it has a wider distribution of the

first-order differences, and the raw data show larger variation

range of adjacent data and higher frequency of data

mutation. Meanwhile, the kurtosis of Zn is the largest,

followed by that of Ca, indicating that the distribution of

the first-order differences in the raw data is narrower,

with severe trailing, large values of outliers, and a large

degree of peak-to-valley variation in some moments.

These may explain the low correlation between the

concentration data of suspended particulate matter and

the Stokes data.

4.2 Discussion of training length and
predicting length

In this section, we explored the appropriate training

length and predicting length, and found out that the

optimal training length is 3 days, while the optimal

predicting length is 1 day. As shown in Figure 10A, we

used MAPE between the predicted and measured value to

evaluate the accuracy of the prediction results.

Figure 10A shows that the MAPE values for training

lengths of 1, 3 and 6 days is smaller, around 15%, and the

MAPE values will be larger for training lengths more than

7 days. Figure 10B shows the MAPE values of

different predicting lengths. When discussing the optimal

predicting length, there needs to be a restriction on the

training length, and different training lengths may

correspond to different optimal predicting lengths.

Therefore, it is necessary to design the variation

process of training length so that the final optimal

predicting length obtained is universal. Three cases of

training length and predicting length variation processes

are designed:

Case 1: The training length is constant at 8 days, and the

prediction length starts at 0.5 day and increases with an

interval of 0.5 day;

Case 2: The training length is initially 1.5 days, and the

prediction length is initially 0.5 day, keeping the training to

prediction ratio constant at 3 and increasing the prediction

length with an interval of 0.5 day;

Case 3: The training length is initially 2 days, and the training

length is incremented with an interval of 1 day, the prediction

length is initially 0.5 day, and the prediction length is

incremented with an interval of 0.5 day

From Figure 10B, when the predicting length is 0.5 and

1 day, the MAPE is generally lower. It also can be seen that the

MAPE shows a rising trend after the predicting length

exceeds 2 days. For an appropriate training length, the

MAPE values are always less than 15%, when the

predicting length is 1 day.

TABLE 1 First order differential distribution kurtosis values for the five
substances.

Si K Fe Ca Zn

Kurtosis 1.6419 2.9523 2.2173 3.2629 8.3525

FIGURE 10
Exploring the optimal length of training and predicting. (A)shows the curve of MAPE between predicted and measured values as a function of
training length; (B) shows the curve of MAPE between predicted andmeasured values as a function of predicting length under three predicting cases.
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5 Conclusion

In this paper, for the first time we use multi-angle simultaneous

polarization measurement data to predict the concentration of

suspended particles in the outdoor atmosphere. The research

starts from a correlation analysis. This paper first proposed a

PCCA method to extract the correlation combination between the

Stokes vectors and the concentration data of suspended particulate

matter. Then, based on ARMA& LWLRmethod, we present how to

predict the future trends of the concentration of suspended

particulate matter. This paper also discussed the effect of the

degree and frequency of data mutation on the correlation

analysis, and investigated the optimal training length and

prediction length. The studies show the optimal training length of

3 days and the optimal prediction length of 1 day.
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