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Air temperature is the primary indicator of climate change. Reanalysis

temperature products are important datasets for temperature estimates over

high-elevation areas with few meteorological stations. However, they contain

biases in observations, so a bias correction is required to enhance the accuracy

of modeling predictions. In this study, we used the temperature lapse-rate

method to correct ERA-Interim reanalysis-temperature data in the Qilian

Mountains of China from 1979 to 2017. These temperature lapse rates were

based on observations (ΓObs) and on model internal vertical lapse rates derived

from different ERA-Interim pressure levels (ΓERA). The results showed that the

temperature lapse rates in warm periods were larger than those in cold periods.

Both the original and corrected ERA-Interim temperature can significantly

capture the warming trend exhibited by observations. In general, the

temperature lapse rate method was reliable for correcting ERA-interim

reanalysis-temperature data. Although ΓObs performed best in bias

correction, it depends heavily on the density of ground observation stations

and is not appropriate for remote areas with a low data coverage. Correction

methods based on ΓERAwere shown to be reliable for bias correction, andwill be

especially applicable to mountainous areas with few observation stations. Our

results contribute to the improvement of quality of data products and enhance

the accuracy of modeling of climate change effects and risks to the

environment and human health.
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1 Introduction

The Qilian Mountains (QLM), located on the northeast margin of the Tibetan Plateau

(TP), serve as an important ecological security barrier for northwestern China and an

important water source for the Heihe River basin (Sun and Liu, 2013; Yang et al., 2020).

However, the ecological environment of the QLM has been impacted by human activities,
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including deforestation, overgrazing, overexploitation of water

and energy resources (Yang et al., 2017; Wang X. et al., 2019;

Zhou et al., 2019). Ground observations are the most widely used

source of data for climate change studies in the QLM. However,

surface meteorological stations are sparse in the QLM, especially

in high-elevation areas (>2500 m) with complex terrain (Lv et al.,

2019), decreasing the prediction value of data (Lin et al., 2017;

Wang et al., 2018; Liu et al., 2020a; Liu et al., 2020b; Cheng et al.,

2020). Moreover, observation data acquired by surface

meteorological stations are inherently limited due to uneven

spatiotemporal distribution, especially in mountain areas, and

such data may not be sufficient to replicate true variability in the

climatic characteristics in the QLM.

Spatial interpolation methods, such as inverse distance

weights (IDW) and Kriging interpolation, are generally

applied to obtain data in areas lacking observational data

(Gao et al., 2018). However, interpolation methods often lead

to large errors resulting from inadequate density and uneven

spatial distribution of observational stations. Reanalysis data

have been widely verified and used because they have higher

temporal resolution and longer time series than observation data,

and they can substitute for observation data (Gao et al., 2016;

Zhang et al., 2019; Zhao et al., 2019; Makama and Lim, 2020;

Demchev et al., 2021; Politi et al., 2021; Rakhmatova et al., 2021;

Xu et al., 2021; Zhao and He, 2022b). However, some systematic

biases exist between reanalysis and observations (Dyakonov et al.,

2020; Rakhmatova et al., 2021), necessitating a bias correction of

reanalysis.

Bias corrections of ERA-Interim reanalysis data have been

studied in previous studies (Di Giuseppe et al., 2013; Kryza et al.,

2016; Jones et al., 2017). For example, Bieniek et al. (2016)

constructed a downscaling method that effectively reduced

biases between reanalysis and observation data, especially for

those errors that were caused by elevation differences. Szczypta

et al. (2011) constructed a GPCP (product of the Global

Precipitation Climatology Project) correction method to

correct ERA-Interim data and showed that this method can

reduce biases between ERA-Interim and observation data. Gao

et al. (2014) constructed a LASSO (least absolute shrinkage and

selection operator) algorithm and found that this method

performed well in predicting the occurrence of a precipitation

event, and reduced biases for some observational stations more

than other downscaling methods. Paredes et al. (2018) used a

regression correction method to correct ERA-Interim data and

showed that it could significantly reduce root-mean-square-error

(RMSE) between ERA-Interim and observations.

Previous studies have shown that this bias can be significantly

corrected and reduced by an elevation correction method.

Temperature lapse rates, representing the empirical

relationship between elevation and temperature, are often

applied to interpolate observations or to scale model results of

near surface air temperature with respect to elevation as well as

for generating the required small-scale information of near

surface air temperature (Gao et al., 2012; Gao et al., 2017).

The most common used value for temperature lapse rate

is −6.0 and −6.5°C to more complex approaches, which use

varied numbers for the month of the year or at least different

values for different seasons. However, a fixed lapse rate can be

problematic because temperature gradients can vary significantly

over short time periods and short distances, especially in complex

terrain. The variability of lapse rate may be affected by many

factors (Jiang et al., 2016; Qing et al., 2018). This lapse rate

variability can just be monitored by dense meteorological station

networks or by using alternative methods that can cover the

temporal and spatial change of air temperature.

A solution is to use reanalysis data for different pressure

levels that can also be used for a characterization of lapse rates

and a subsequent downscaling of modeled temperatures that are

independent with observations (Gao et al., 2012; Gao et al., 2017).

For example, Gao et al. (2017) used the temperature lapse rate

method to correct ERA-Interim reanalysis temperature data and

showed that this method could correct ERA-Interim temperature

data and improve the quality of downscaling. Gao et al. (2012)

constructed a temperature-correction model by using ERA-

Interim temperature and geopotential height at 925 hPa,

850 hPa and 700 hPa levels, independent of meteorological

stations; subsequent tests showed that the model could

successfully correct ERA-Interim. Previous studies about the

correction of reanalysis temperature in the Chinese Qilian

Mountains remained unclear. Our studies can provide a

reference when using and correcting reanalysis temperature in

the Qilian Mountains.

Here, we used ERA-Interim temperature and geopotential

height at 600 hPa, 700 hPa, 850 hPa, and 925 hPa to calculate

temperature lapse rates and combine lapse rates derived from

observations to correct ERA-Interim reanalysis temperature

data, with the purpose of revealing climatic trends based on

optimally corrected ERA-Interim data. The ERA-Interim

reanalysis data, observational temperature data and correction

methods are introduced in Section 2. The correction results were

shown in Section 3. The discussion is analyzed in Section 4.

Finally, the conclusions in this study are summarized in

Section 5.

2 Data and methods

2.1 ERA-Interim data (Te)

ERA-Interim reanalysis data were downloaded from the

European Centre for Medium Range Weather Forecasts

(ECMWF); the data had a time step of 6 h (00.00, 06.00,

12.00, and 18.00 UTC), spatial resolution of 0.25 × 0.25°, and

covered a time period from 1 January 1979 to 31 December 2017.

Geographical locations of the ERA-Interim grid points spanned

35.5–40.75°N and 93.0–104.5°E, sufficient to cover the entire
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QLM (Figure 1). A time difference conversion method was

applied to match the ERA-Interim temperature data in UTC

time zone and observation data in local time. The used output

variables are 2 m temperature, surface geopotential as well as

temperature and geopotential height at 600, 700, 850, and

925 hPa levels. The ERA-Interim surface geopotential height

(HERA) was obtained by dividing geopotential by gravity at

each grid point. Altitudes corresponding to the four

pressure layers (600, 700, 850, and 925 hPa) were

approximately 4,000, 3,000, 1,500, and 500 m, respectively.

It should be noted that the main reason for the selection of

these pressure layers was that the geopotential heights of these

pressure layers can reflect true characteristics of mountain

climate (Gao et al., 2018), and can cover the altitude range of

most stations in the QLM, which is convenient for subsequent

correction and comparison.

2.2 Observations (To)

Observational temperature data and altitude information

recorded by meteorological stations were downloaded from

the China Meteorological Data Sharing Service System of the

National Meteorological Information Center (http://cdc.cma.

gov.cn/index.jsp). The quality of observed temperature data

was strictly controlled and verified by the data provider. The

quality and completeness of observed temperature data are

significantly improved after controlling, so it can be applied

directly in climate change research. Twenty-four

meteorological stations located in the QLM were selected.

Observations from these stations included altitude, latitude,

longitude, daily mean temperature, daily maximum

temperature, and daily minimum temperature. Detailed

information on the 24 meteorological stations can be found

in Table 1. Briefly, these stations are located at different

altitudes ranging from approximately 1,000–3,500 m. The

highest station is Station No.15 with an altitude of 3,460 m,

and the lowest station is Station No.1 with an altitude of

1,100 m. The geographical distribution of the

24 meteorological stations and ERA-Interim grid points are

shown in Figure 1 and Table 1. There are positive elevation

differences at 23 stations, only Station No.11 has a negative

elevation difference between Te and To. ERA-Interim grid

points nearest to each meteorological station were selected for

comparison based on the longitude and latitude coordinates of

24 meteorological stations, which can avoid the error caused

by multigrid spatial interpolation (Zhao et al., 2020). Four

seasons were defined as: spring (March to May), summer

FIGURE 1
Distribution of the ERA-Interim grid points and meteorological stations in the QLM.
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(June to August), autumn (September to November), and

winter (December to February).

2.3 Correction methods

ERA-Interim reanalysis temperature data were corrected

using Equation 1:

Tt � Tref + Γ ×Δh (1)

Γ600−700 � (Τ600 − Τ700)/(H600 −H700) (2)
Γ600−850 � (Τ600 − Τ850)/(H600 −H850) (3)
Γ700−850 � (Τ700 − Τ850)/(H700 −H850) (4)
Γ700−925 � (Τ700 − Τ925)/(H700 −H925) (5)

ΓObs � ΤObs/ΗObs (6)

where Tt is the corrected temperature, and Tref is the temperature

to be corrected. △h is the elevation difference between

meteorological stations and ERA-Interim grid points. Γ
represents temperature lapse rates calculated from

observations and ERA-Interim temperatures as well as

geopotential heights at different pressures. Γ can be calculated

from Equations 2–6. These calculations were repeated to obtain

temperature lapse rates for five different sets of pressures, here

referred to as Methods I–V (Table 2). ERA-Interim internal lapse

rates are fully independent of observations (Gao et al., 2017).

Γ600-700, Γ600-850, Γ700-850, Γ700-925 represent the temperature lapse

rates at four pressure levels. T600, T700, T850 and T925 represent

the temperature at 600, 700, 850 and 925 hPa pressure level,

respectively. H600, H700, H850 and H925 represent the height at

600, 700, 850 and 925 hPa pressure level, respectively. ΓObs is the

TABLE 1 Meteorological stations information.

No Site name Latitude (°) Longitude (°) Elevation (m) HERA (m) HERA-HObs (m)

1 Dun Huang 40.13 94.78 1100 1508 408

2 An Xi 40.50 95.92 1182 1668 486

3 Yu Menzhen 40.27 97.18 1580 1869 289

4 Jin Ta 40.00 98.90 1270 1631 360

5 Jiu Quan 39.67 98.72 1470 1981 511

6 Gao Tai 39.38 99.72 1357 2225 868

7 Zhang Ye 38.92 100.58 1550 2074 524

8 Shan Dan 38.78 101.08 1760 2168 409

9 Yong Chang 38.23 101.97 1987 2277 291

10 Wu Wei 38.08 102.92 1525 1940 415

11 Wu Shaoling 37.20 102.87 3045 2604 -441

12 Jing Tai 37.23 104.18 1620 1761 141

13 Gao Lan 36.55 103.67 2032 2146 114

14 Leng Hu 38.75 93.58 2762 2941 179

15 Tuo Le 38.87 98.37 3460 3936 476

16 Ye Niugou 38.62 99.35 3200 3649 449

17 Qi Lian 38.18 100.30 2800 3346 546

18 Da Chaidan 37.83 95.28 3000 3364 364

19 De Lingha 37.25 97.13 2762 3469 708

20 Gang Cha 37.33 100.17 3100 3556 456

21 Men Yuan 37.45 101.62 2800 3309 509

22 Lin Xia 35.62 103.18 1900 2579 679

23 Xi Ning 36.58 101.92 2231 2916 685

24 Min He 36.23 102.93 1900 2412 512

Note: HERA, is the ERA-Interim grid point height (m).

TABLE 2 Summary of Γ and Tref used in five correction methods for
24 test stations.

Methods Γ Tref

Method Ⅰ Γ600-700 TERA_2m

Method Ⅱ Γ600-850 TERA_2m

Method Ⅲ Γ700-850 TERA_2m

Method Ⅳ Γ700-925 TERA_2m

Method Ⅴ ΓObs TERA_2m
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temperature lapse rate calculated from observations. TObs and

HObs are the temperature and elevation of meteorological

stations, respectively.

3 Results

3.1 Variability in temperature lapse rates

Table 3 and Figure 2 show the variability in five

temperature lapse rates over a 12-month period across the

QLM; these lapse rates are Γ600-700, Γ600-850, Γ700-850, Γ700-925,
and ΓObs. The four ERA-Interim temperature lapse rates

(ΓERA) were different from the temperature lapse rate

based on observations (ΓObs) with ΓObs was lower than

ΓERA across the whole period in general. The five

temperature lapse rates initially increased, and then

decreased across the 12-month period, with the largest

values in May and June (Figure 3). The lowest

temperature lapse rates were found in winter.

3.2 Evaluation of correction methods

Table 4 shows the biases between observed and original ERA-

Interim temperature as well as corrected ERA-Interim

temperature for 24 meteorological stations during the period

1979–2017. The bias between observed and original ERA-Interim

temperature at Station No.11 was positive (2.83°C), which

indicated that ERA-Interim data were higher than observation

data at Station No.11. Biases at Station No.11 remained positive

after correction, but biases were smaller than the uncorrected

ERA-Interim; the smallest bias for corrected ERA-Interim was

found using Method Ⅰ (0.08°C). Biases between the original ERA-

Interim temperature and observed temperature at Stations

No.12, 13, and 15 were negative (−1.33, −1.05, and −3.86°C,

respectively), which indicated that ERA-Interim data were lower

than observation data. There were also clear biases for the five

sets of corrected ERA-Interim temperature at these stations, and

these biases were also negative. The largest reductions in bias

were obtained with Method Ⅰ, in which they were reduced

to −0.45, −0.34, and −0.90°C at Stations No.12, 13 and 15,

respectively. Biases between original ERA-Interim and

observed temperatures were also negative at Stations No.8, 20,

21 and 24 (−2.06, −2.54, −2.57 and −3.02°C, respectively), which

again indicated that ERA-Interim data were lower than

TABLE 3 Monthly lapse rates (°C/km) based on observations (ΓObs) and
ERA-Interim (Γ600_700, Γ600_850, Γ700_850, and Γ700_925) during the
period 1979–2017.

Month Γ600_700 Γ600_850 Γ700_850 Γ700_925 ΓObs

January −5.59 −5.19 −4.88 −5.32 −3.13

February −5.66 −5.64 −5.62 −5.88 −3.68

March −6.11 −6.29 −6.42 −6.43 −4.75

April −6.66 −6.76 −6.84 −6.69 −5.77

May −6.88 −6.80 −6.74 −6.53 −6.30

June −6.93 −6.67 −6.46 −6.22 −6.54

July −6.61 −6.31 −6.09 −5.87 −6.22

August −6.32 −6.15 −6.01 −5.83 −5.78

September −6.23 −6.25 −6.27 −6.14 −5.16

October −6.13 −6.23 −6.31 −6.31 −4.64

November −6.02 −5.74 −5.52 −5.79 −4.25

December −5.68 −5.16 −4.76 −5.22 −3.32

Average −6.24 −6.10 −5.99 −6.02 −4.96

FIGURE 2
Box plots of monthly mean ΓObs and ΓERA during the period
1979‒2017.

FIGURE 3
Box plots of seasonal mean ΓObs and ΓERA during the period
1979‒2017.
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observation data. The largest reductions in bias for these four

stations were found by correcting ERA-Interim using Method Ⅴ,
and biases were reduced to −0.03, −0.27, −0.05, and −0.48°C,

respectively. Biases for corrected ERA-Interim at these four

stations using Methods Ⅰ‒Ⅳ were larger and remained

negative. For all other stations, biases for uncorrected ERA-

Interim were negative, but those for corrected ERA-Interim

(using all five methods) were positive. Generally, the corrected

results obtained via Method Ⅴ were better than those obtained

with the other four methods, which was mainly because the

temperature lapse rates of Method Ⅴ were calculated using

observation data, while those of the other four methods were

calculated using ERA-Interim data. Biases for corrected ERA-

Interim using Method Ⅰ were generally smaller than when using

Methods II‒IV; this may be because the temperature lapse rates

of Method Ⅰ were calculated with ERA-Interim height and

temperature in the 600–700 hPa range, and the geopotential

height in this range is higher than that at the other three

TABLE 4 Biases (°C) between daily observed and original ERA-Interim temperature, and between observed and corrected ERA-Interim temperature
(Methods I‒V) for 24 meteorological stations during the period 1979–2017.

No Site name Original ERA-Interim Method Ⅰ Method Ⅱ Method Ⅲ Method Ⅳ Method Ⅴ

1 Dun Huang −0.40 2.14 2.08 2.04 2.05 1.62

2 An Xi −1.16 1.87 1.80 1.75 1.76 1.25

3 Yu Menzhen −0.66 1.15 1.11 1.08 1.08 0.78

4 Jin Ta −0.73 1.52 1.47 1.43 1.44 1.06

5 Jiu Quan −1.83 1.35 1.28 1.23 1.24 0.70

6 Gao Tai −3.50 1.92 1.80 1.71 1.73 0.81

7 Zhang Ye −2.31 0.96 0.89 0.83 0.84 0.29

8 Shan Dan −2.06 0.49 0.43 0.39 0.40 −0.03

9 Yong Chang −1.01 0.81 0.77 0.74 0.75 0.44

10 Wu Wei −1.78 0.81 0.75 0.71 0.72 0.28

11 Wu Shaoling 2.83 0.08 0.14 0.18 0.17 0.64

12 Jing Tai −1.33 −0.45 −0.47 −0.49 −0.48 −0.63

13 Gao Lan −1.05 −0.34 −0.36 −0.37 −0.37 −0.49

14 Leng Hu −1.05 0.07 0.04 0.02 0.03 −0.16

15 Tuo Le −3.86 −0.90 −0.96 −1.01 −1.00 −1.50

16 Ye Niugou −1.51 1.29 1.23 1.18 1.19 0.72

17 Qi Lian −3.32 0.09 0.01 −0.04 −0.03 −0.61

18 Da Chaidan −1.26 1.01 0.96 0.92 0.93 0.54

19 De Lingha −3.37 1.04 0.94 0.87 0.89 0.14

20 Gang Cha −2.54 0.31 0.25 0.20 0.21 −0.27

21 Men Yuan −2.57 0.60 0.53 0.48 0.49 −0.05

22 Lin Xia −2.93 1.30 1.21 1.14 1.15 0.44

23 Xi Ning −3.18 1.10 1.00 0.93 0.95 0.22

24 Min He −3.02 0.17 0.10 0.05 0.06 −0.48

TABLE 5 Mean seasonal bias (°C) of original ERA-Interim temperature and corrected temperature data compared with observed temperature for
24 meteorological stations during the period 1979–2017.

Seasons Original ERA-Interim Method Ⅰ Method Ⅱ Method Ⅲ Method Ⅳ Method V

Spring ‒2.29 0.42 0.45 0.47 0.42 0.03

Summer ‒2.00 0.74 0.64 0.56 0.47 0.55

Autumn ‒1.87 0.67 0.65 0.63 0.65 0.07

Winter ‒1.10 1.23 1.10 1.00 1.16 0.30

Average ‒1.82 0.77 0.71 0.67 0.68 0.24
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pressure levels used. Meteorological stations in the QLM are

mainly at elevations above 2,000 m; therefore, temperature lapse

rates may be not applicable to the correction of ERA-Interim

temperature data for those areas where elevations are below

1,500 m.

Table 5 shows seasonal biases between observed temperature

and original ERA-Interim temperature, and for the corrected

ERA-Interim temperature data for the QLM. In general, all five

correction methods showed significantly reduced biases

compared to those between observed and original ERA-

Interim temperature. Biases for corrected ERA-Interim

temperature data with four methods, and the correction result

obtained using Method Ⅳ were markedly lower. The mean

seasonal biases of the original ERA-Interim and the four

correction methods based on the ΓERA were 0.77, 0.71, 0.67,

0.68, and 0.24°C, respectively. Corrected biases for spring and

autumn were generally smaller than for summer and winter. For

example, with Method Ⅴ, biases in spring, summer, autumn, and

winter were 0.03, 0.55, 0.07, and 0.30°C, respectively. Correlation

coefficients (r) between observations and original ERA-Interim

as well as corrected ERA-Interim were all above 0.9 (Table 6).

RMSE improved (decreased) for the corrected ERA-Interim

temperature data (Table 7). RMSE for corrected ERA-Interim

temperature data decreased for Stations No. 5–24 indicating that

temperature lapse rates effectively corrected ERA-Interim

temperature at these stations. Method Ⅰ performed best at

Station 11, reducing RMSE by 91%. Methods Ⅱ, III, and Ⅳ
performed best at Station No.17, reducing RMSE by 90.3, 90.2,

and 90.3%, respectively. Method Ⅴ performed best at Station

No.19, reducing RMSE by 91.6%. However, RMSE increased for

corrected ERA-Interim temperature data at Stations No. 1-4

compared to those for non-corrected ERA-Interim temperature

data. This may be due to low elevations of these four stations,

which were below 1600 m. Therefore, temperature lapse rates

may be unsuitable for correcting ERA-Interim temperature data

at these stations. The average RMSE for corrected ERA-Interim

temperature data across the 24 meteorological stations using our

correction methods were 0.98, 0.94, 0.91, 0.92, and 0.70,

respectively for Methods I to V, representing reductions in

the mean RMSE of 50.2%, 52.2%, 53.9%, 53.5%, and 65.3%,

respectively, compared to the uncorrected ERA-Interim data. In

general, Method Ⅴ performed best. Correction Methods Ⅰ‒Ⅳ

TABLE 6 Correlation coefficients (r) between daily observed and original ERA-Interim temperature, and between observed temperature and data
obtained from five correction methods for 24 meteorological stations during the period 1979–2017.

No Site name Original ERA-Interim Method Ⅰ Method Ⅱ Method Ⅲ Method Ⅳ Method Ⅴ

1 Dun Huang 0.987 0.986 0.986 0.987 0.987 0.988

2 An Xi 0.979 0.976 0.978 0.978 0.978 0.975

3 Yu Menzhen 0.972 0.974 0.975 0.974 0.974 0.976

4 Jin Ta 0.971 0.967 0.968 0.968 0.969 0.968

5 Jiu Quan 0.949 0.951 0.952 0.953 0.952 0.960

6 Gao Tai 0.917 0.898 0.904 0.907 0.910 0.908

7 Zhang Ye 0.911 0.892 0.895 0.897 0.901 0.897

8 Shan Dan 0.932 0.920 0.925 0.929 0.930 0.926

9 Yong Chang 0.924 0.922 0.922 0.922 0.923 0.921

10 Wu Wei 0.907 0.899 0.902 0.904 0.904 0.902

11 Wu Shaoling 0.933 0.933 0.932 0.931 0.932 0.914

12 Jing Tai 0.910 0.907 0.908 0.908 0.908 0.911

13 Gao Lan 0.960 0.959 0.960 0.960 0.960 0.961

14 Leng Hu 0.944 0.943 0.943 0.943 0.943 0.940

15 Tuo Le 0.947 0.943 0.944 0.943 0.944 0.929

16 Ye Niugou 0.897 0.892 0.894 0.894 0.895 0.870

17 Qi Lian 0.886 0.875 0.879 0.881 0.882 0.874

18 Da Chaidan 0.949 0.947 0.946 0.946 0.947 0.940

19 De Lingha 0.952 0.950 0.952 0.952 0.952 0.932

20 Gang Cha 0.887 0.880 0.881 0.882 0.883 0.876

21 Men Yuan 0.835 0.814 0.819 0.821 0.825 0.806

22 Lin Xia 0.936 0.940 0.937 0.934 0.934 0.948

23 Xi Ning 0.386 0.409 0.390 0.374 0.380 0.373

24 Min He 0.929 0.926 0.928 0.929 0.930 0.934
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TABLE 7 RMSE (°C) between daily observed and original ERA-Interim temperature, and between observed temperature and data obtained from five
correction methods for 24 meteorological stations during the period 1979–2017.

No Site name Original ERA-Interim Method Ⅰ Method Ⅱ Method Ⅲ Method Ⅳ Method Ⅴ

1 Dun Huang 0.42 2.14 2.09 2.04 2.05 1.62

2 An Xi 1.17 1.87 1.81 1.76 1.77 1.26

3 Yu Menzhen 0.67 1.16 1.12 1.09 1.09 0.79

4 Jin Ta 0.75 1.53 1.48 1.44 1.45 1.07

5 Jiu Quan 1.85 1.37 1.30 1.24 1.26 0.73

6 Gao Tai 3.51 1.94 1.83 1.74 1.76 0.87

7 Zhang Ye 2.33 1.01 0.95 0.89 0.90 0.43

8 Shan Dan 2.09 0.60 0.55 0.51 0.52 0.32

9 Yong Chang 1.04 0.85 0.81 0.78 0.79 0.51

10 Wu Wei 1.85 0.96 0.91 0.88 0.89 0.57

11 Wu Shaoling 2.84 0.25 0.28 0.30 0.29 0.69

12 Jing Tai 1.38 0.57 0.59 0.60 0.59 0.72

13 Gao Lan 1.07 0.38 0.40 0.41 0.40 0.51

14 Leng Hu 1.07 0.21 0.21 0.20 0.20 0.26

15 Tuo Le 3.87 0.93 0.99 1.04 1.03 1.53

16 Ye Niugou 1.54 1.32 1.26 1.22 1.23 0.79

17 Qi Lian 3.33 0.34 0.32 0.32 0.32 0.69

18 Da Chaidan 1.29 1.04 0.99 0.96 0.96 0.61

19 De Lingha 3.38 1.06 0.97 0.89 0.91 0.28

20 Gang Cha 2.55 0.42 0.38 0.35 0.36 0.40

21 Men Yuan 2.62 0.78 0.72 0.68 0.69 0.49

22 Lin Xia 2.94 1.32 1.23 1.16 1.17 0.48

23 Xi Ning 3.22 1.22 1.14 1.08 1.09 0.61

24 Min He 3.03 0.34 0.31 0.30 0.30 0.55

FIGURE 4
Inter-annual variability and warming trends in the QLM temperatures: observed, original ERA-Interim temperature, and corrected using five
lapse rates, during the period 1979‒2017.
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performed better than Method Ⅴ at Stations No. 11, 12, 13, 14,

15, 17, 20, and 24. These eight stations were at high elevations;

stations No.11, 15, and 20 were located at altitude above 3,000 m;

13, 14, and 17 were at were located at altitude above 2,000 m, and

12 and 24 were at were located at altitude above 1500 m.

Methods Ⅰ‒Ⅳ may therefore be more suitable for correcting

ERA-Interim temperature data at high-elevation meteorological

stations.

3.3 Plateau-wide temperature climatology
and trends

Figure 4 shows the inter-annual variations and warming

trends over the QLM from 1979 to 2017. The ERA-Interim and

corrected temperature can successfully capture trends in the

observations, including an increasing trend in observed

temperature, original ERA-Interim temperature, and

corrected temperature during the period 1979–2017

(Table 8). The largest increasing rate was found in summer

(0.55°C/decade), and the smallest increasing rate was found in

winter (0.34°C/decade). The increasing trends shown by both

the original ERA-Interim temperature and corrected

temperature data underestimated the warming trend

exhibited by observation data. The internal variability and

increasing trends were similar for Methods Ⅰ‒Ⅳ, while

Method Ⅴ most closely matched the warming trend of the

observed temperatures. In general, Method Ⅴ reflected the best

correction results, showing the smallest biases at a seasonal

scale, and the best reflection of warming rates in the QLM.

4 Discussion

4.1 Analysis of temperature lapse rates

Our results indicated that temperature lapse rates

exhibited bigger values in warm periods and smallest

values in cold periods, which is mainly because the cold

air invasion in winter has a more dramatic effect on the

temperature at low altitudes than at high altitudes. (Jiang

et al., 2016). Qing et al. (2018) also found that temperature

lapse rates during warmer months are bigger than that in

colder months in the QLM, which is consistent with this

study. In this study, the absolute value of ΓObs was lower than

that of ΓERA, and the lowest temperature lapse rates were

detected in winter, which is consistent with previous

research (Jiang et al., 2016).

4.2 Analysis of correction results

The corrected temperatures obtained in this study using

Method Ⅴ were better than those obtained using the other four

correction methods in terms of the increasing trend in

observed temperature, which was similar with previous

studies (Gao et al., 2012; Gao et al., 2017). The temperature

lapse rates in Method Ⅴ were calculated using observed

temperature data, the correction results were tested with

observation data, and the method depends critically on the

density of ground observation stations; therefore, Method Ⅴ
may outperform the other methods. However, although

Method Ⅴ performed well, mountainous areas have few

meteorological stations, therefore this method cannot be

widely promoted. Gao et al. (2012) also found that

temperature lapse rates calculated from observations were

not reliable when observations contained outliers. Methods

Ⅰ‒Ⅳ, which were based on ΓERA, were more flexible and

independent of meteorological stations, may be applicable

to correcting temperature data specifically for high-

elevation stations. Furthermore, this method should be easy

to extend, and will be particularly useful in mountainous areas

with few observation stations. The most important advantage

is that the method based on ΓERA is fully independent from the

observed data. Thus, it provides a tool for correcting ERA-

Interim temperature data for any high mountainous areas

where no observations exist (Gao et al., 2018; Luo et al., 2019;

Fan et al., 2021). Gao et al. (2017) indicates that the correction

TABLE 8 Seasonal warming trends (°C/decade) observed, original ERA-Interim temperature, and temperatures corrected with five methods for the
period 1979-2017 in the QLM.

Temperature Spring Summer Autumn Winter Annual

Observations 0.54 0.55 0.40 0.34 0.46

ERA-Interim 0.46 0.48 0.35 0.24 0.38

Method Ⅰ 0.46 0.46 0.34 0.23 0.37

Method Ⅱ 0.46 0.46 0.34 0.22 0.37

Method Ⅲ 0.46 0.46 0.34 0.22 0.37

Method Ⅳ 0.46 0.46 0.34 0.22 0.37

Method Ⅴ 0.51 0.51 0.36 0.20 0.39
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method using ERA-Interim internal vertical lapse rates can

capture the inter-annual variations for the plateau-wide

climatology very well, which is similar with this study. The

bias reflects the specific difference of temperature before and

after the correction, while the correlation coefficient mainly

reflects the similarity between the site observations and the

ERA-Interim temperature changes. The correction method

based on temperature lapse rate mainly corrects the ERA-

Interim temperature according to the height difference

between meteorological stations and reanalysis grid points.

Therefore, it mainly corrects the systematic errors between

ERA-Interim temperature and observed values, which has

little influence on the temperature trend. This is the reason

why the bias of some sites decreased after correction, but the

correlation coefficient did not change much. The correction

skills are weak in winter except for Method V (Table 5,

Table 8). In addition to the altitude difference, the snow

cover and glaciers may also be the main reasons for the

bias in winter (Zhao and He, 2022a), so the elevation

correction method may not be suitable for the bias

correction in winter. In addition, after comparing biases,

RMSE, and r of Methods Ⅰ‒Ⅳ based on ΓERA, we concluded

that the corrected results using Method Ⅲ were superior to

those using Methods Ⅰ, Ⅱ, and Ⅳ. The seasonal bias, RMSE, r,

and mean station biases of Method Ⅲ were 0.67°C, 0.91°C,

0.905, and 0.67°C, respectively (Table 9). Hence, Method Ⅲ
should be the most suitable for the correction of ERA-Interim

temperature data in the Qilian Mountains. Gao et al. (2012)

found that using (global climate) model showed a convincing

performance when compared to measured data of the twelve

stations, again especially for those in higher elevations, which

is similar with this study.

4.3 Analysis of potential uncertainties

Although the five correctionmethods can improve the accuracy

of ERA-Interim temperature data, they do not consider the

characteristics of terrain or geographical location. Errors between

the observed and ERA-Interim temperature data were not only

caused by the differences between the station and ERA-Interim grid

cell elevation, but also by other factors, such as the large-scale error

of ERA-Interim, glacier, and errors introduced by the assimilation

system and the interpolation method (Dee, 2005; Dee and Uppala,

2009). Therefore, it may not be sufficient to correct ERA-Interim

temperature using only the temperature lapse rate; additional

influencing factors need to be considered in future research. The

24 meteorological stations considered in this study were situated at

different altitudes and were widely spaced geographically.

Discrepancies exist in direct comparisons of temperature lapse

rates established using observation data and those established

using ERA-Interim data. The 2881 ERA-interim grid points

shown in Figure 1 span a large area, covering not only the QLM,

but also areas adjacent to the QLM. Some of these grid points were

located in the interior of the Tibetan Plateau, which increased terrain

complexity and may lead to different temperature lapse rates.

Moreover, due to the spatial location and altitude of the

24 meteorological stations are different, the calculated

temperature lapse rates cannot represent a single station, but

instead, represent a generalized area. Whether the

representativeness is significant or not is worthy of a further

study. Finally, in the formula Tt=Tref +Γ×△h, the Tref uses the

ERA-Interim 2m temperature values corresponding to the

24 stations, and the system error for Tref is transferred,

contributing to the final correction error. In addition,

temperature lapse rate changes could be more variable from

surface to within boundary layer and in the presence of clouds,

which may affect the overall bias correction.

4.4 Future research

The aims of the error corrections performed in this study

were to verify the reliability of the method and to establish a

foundation for future downscaling research. For example, with

DEM data for the entire QLM, we can correct all 2881 ERA-

Interim grid points using Method III, and obtain temperature

data from all grid points. ERA-Interim temperature data can be

downscaled to higher resolution, contributing to a high-

resolution data set for climate change research in this region

(Gao et al., 2018; Fan et al., 2021). We focused on ERA-Interim

data in this study, which is the third-generation reanalysis

product of the ECMWF. However, future studies can extend

the methods used here to other reanalysis products such as

ERA5 and ERA5-Land (Wang C. et al., 2019; Liu et al., 2021;

Zhao andHe., 2022a). In addition, it would be worth trying to use

TABLE 9 Comparison of four correction methods based on ΓERA.

Evaluation index Method Ⅰ Method Ⅱ Method Ⅲ Method Ⅳ

Seasonal bias (°C) 0.77 0.71 0.67 0.68

Daily RMSE (°C) 0.98 0.94 0.91 0.92

Daily r 0.904 0.905 0.905 0.906

Daily bias (°C) 0.77 0.71 0.67 0.68
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radiosonde vertical profiles to calculate lapse rates and to verify

the same in this study. Moreover, temperature lapse rate may

vary in different atmospheric conditions and slightly from one

geographical location, especially in the boundary layer and in the

presence of cloud.

5 Conclusions

In this study, ERA-Interim temperature data were corrected

using temperature lapse rate methods, with the corrected results

were verified using bias, r, and RMSE. Four ERA-Interim

temperature lapse rates (ΓERA) were different from the

temperature lapse rate based on observations (ΓObs). The ΓERA
and ΓObs in warm periods were larger than those in cold periods.

Biases indicated that the corrected results using Method Ⅴ were

more accurate than those using the other four methods. Among the

four ERA-Interim temperature lapse rates (i.e., Methods I‒IV),

Method III generally performed best. For seasonal biases,

Method Ⅴ performed best. The mean seasonal biases of the

original ERA-Interim and the four correction methods based on

the ΓERA were 0.77, 0.71, 0.67, 0.68, and 0.24°C, respectively, with

significant correlation coefficients (r > 0.9). In general, the corrected

results for spring and autumn were more accurate than those for

summer andwinter. For the correction coefficient (r), the corrected r

was above 0.9 for themajority of meteorological stations. The RMSE

for corrected ERA-Interim improved compared to RMSE for

uncorrected ERA-Interim for 19 stations, indicating that the

temperature lapse rate method was suitable for correcting ERA-

Interim temperature data. The mean RMSE of the five correction

methods used here for data from 24 stations were 0.98°C, 0.94°C,

0.91°C, 0.92°C, and 0.70°C, respectively. The ERA-Interim and five

sets of corrected temperature data successfully captured the trend of

increasing observed temperatures in the QLM for the period

1979–2017. In general, temperature lapse rate method is reliable

for correcting reanalysis temperature data. Although ΓObs performed

best in bias correction, it critically depends on the density of ground

observation stations. Correctionmethods based on ΓERAwere shown
to be reliable for bias correction and are applicable in mountainous

areas with few observation stations.
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