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The impacts of natural disasters are often disproportionally borne by poor or

otherwise marginalized groups. However, while disaster risk modelling studies

have made progress in quantifying the exposure of populations, limited

advances have been made in determining the socioeconomic characteristics

of these exposed populations. Here, we generate synthetic structural and

socioeconomic microdata for around 9.5 million persons for six districts in

Bangladesh as vector points using a combination of spatial microsimulation

techniques and dasymetric modelling. We overlay the dataset with satellite-

derived flood extents of Cyclone Fani, affecting the region in 2019, quantifying

the number of exposed households, their socioeconomic characteristics, and

the exposure bias of certain household variables. We demonstrate how

combining various modelling techniques could provide novel insights into

the exposure of poor and vulnerable groups, which could help inform the

emergency response after extreme events as well targeting adaptation options

to those most in need of them.
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Introduction

An increasingly large number of people are exposed to the impacts of natural hazards,

such as floods, droughts, and cyclones (Jongman et al., 2012; Tanoue et al., 2016; Formetta

and Feyen, 2019). For instance, while global urban settlements grew by 85% over the

period 1985–2015, settlements exposed to flooding grew by 122 percent (Rentschler et al.,

2022a). However, the vulnerabilities of those populations exposed to climate-related risks

are not spatially homogenous. Using subnational poverty data, Rentschler et al. estimate

that of the 1.47 billion people that are exposed to an extreme flood event (i.e. 1-in-
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100 years), around 10% live under the $1.9 poverty threshold and

around 40% live below the $5.5 poverty threshold (Rentschler

et al., 2022b). Poorer populations may suffer disproportionately

from disasters for several reasons. First of all, poorer households

are often forced to live in hazard-prone areas and hence suffer a

“poverty exposure bias”, as has been identified for certain types of

hazards (e.g. droughts and urban floods) (Winsemius et al.,

2018). Second, poor households generally have a greater share

of their total assets exposed to hazard events (e.g. agricultural,

livestock) or poorer quality assets (e.g. low quality housing stock)

(Alam and Collins, 2010; Hallegatte et al., 2020). For example,

during the 2015 Nepal Earthquake, most damages were

attributed to rural housing structures comprised of low-

strength masonry (Lallemant et al., 2017). Similarly, surveys

after the 2005 floods in Mumbai showed that poor households

lost 75% of their assets, while non-poor households lost only 30%

(Hallegatte et al., 2020). Third, poor or otherwise marginalized

groups often have fewer resources to prepare for, and lower

coping capacity (e.g. access to finance, savings, social safety nets)

to respond to, and recover from, hazard impact (Hallegatte and

Rozenberg, 2017). After the 2012 cyclone in Samoa, poorer

households faced inequal access to remittances, therefore

experiencing difficulties in recovering from the event (Le De

et al., 2015).

Over the last decades, significant advances have beenmade in

our understanding of the spatial distribution of populations and

built-up areas, driven by new high-resolution exposure data such

asWorldPop (Tatem, 2017), the Global Human Settlement Layer

(GHSL) (Melchiorri et al., 2018), and the Global Urban Footprint

(Esch et al., 2017). These types of datasets have underpinned high

resolution national and global disaster risk analysis (Smith et al.,

2019; Dullaart et al., 2021; Rentschler et al., 2022a). Despite

advancements in modelling the exposure of people,

understanding the vulnerability of populations remains a

challenge for risk modelling. While studies have evaluated the

exposure of vulnerable groups on a subnational level for specific

countries (Bangalore et al., 2016; Marzi et al., 2019; Lee et al.,

2021), extending these type of analysis to high resolution point or

gridded datasets is limited not only due to lack of reliable

frequent and granular socioeconomic and demographic data,

but also due to privacy concerns regarding the release of granular

socioeconomic data (i.e. microdata) (Arzberger et al., 2004). The

root of the challenge is an inherent trade-off betweenmaximizing

the usefulness of the survey data, and safeguarding anonymity

(Arzberger et al., 2004). Removing location information is a key

objective of anonymization, making spatially focused research

particularly difficult to pursue without some sort of workaround.

Thus, our ability to quantify disparities of exposure and

vulnerability to climate-related risks at a highly granular level

has remained limited.

To overcome the challenge of having limited socioeconomic

data on a granular level for geospatial analysis, several

advancements in microsimulation techniques have taken place

over the last decades, driven by increases in computational

power, development of new algorithms, and the growing

willingness of governments to release census microdata.

Microsimulation techniques, such as Small Area Estimation

(SAE) approaches, can be used to improve the resolution of

aggregates available for comparison (Ghosh and Rao, 1994).

Aggregate releases of survey data are often paired with

microdata releases, which provide individual or household

attributes for a percentage of households (typically up to

10 percent) within the aggregated geographic unit (Arzberger

et al., 2004). For instance, the Integrated Public Use Microdata

Series (IPUMS) put significant efforts to populate a database of

individual-level microdata samples, including from international

census records. Together, microdata can be applied to SAE

methodologies for the downscaling of the aggregate data, with

SAE methodologies typically falling under one of two categories:

statistical SAE techniques or spatial microsimulation techniques.

Statistical SAE techniques match explanatory variables from

the higher-level data set with those available from a separate data

set in the smaller area of interest. In situations where official

microdata directly taken from the census records are not released

or where attributes not collected in the census are required,

surveys collecting similar attributes can be used instead, or in

connection with official microdata for the purposes of SAE. This

can be exemplified through the Elbers, Lanjouw and Lanjouw

(ELL) method of SAE to derive estimates of poverty rates, which

require supplemental attributes related to welfare not typically

collected in a national census, and has been successfully applied

in Bangladesh (Elbers et al., 2003) and Brazil (Elbers et al., 2008).

While anonymized household and individual level releases of

microdata can help provide a baseline for understanding the

distribution of socioeconomic and demographic attributes

collected within a geographical area, it may not provide much

further detail into the spatial variance of those attributes within

the spatial unit. As such, population synthesis, i.e. the generation

of new anonymous microdata for an entire “synthetic

population” (Rubin, 1993; Beckman et al., 1996), is

increasingly applied to create plausible higher resolution

population datasets, including their socioeconomic

characteristics (Wheaton et al., 2009). Creating a dataset of

synthetic populations through spatial microsimulation

techniques requires the application of algorithms to extract

information from various data sources to construct an entirely

new dataset with the required attributes of households (Münnich

and Schürle, 2003). Although each method for spatial

microsimulation SAE differs in substantial ways, they all “fit”

the microdata to the multidimensional aggregates and generate

representative synthetic populations. The raw synthetic

population data can be useful on its own or can be re-

aggregated into the smaller area of interest. Over the years,

synthetic socioeconomic attributes are increasingly used to

evaluate the socioeconomic impact of policies and programs

(Williamson et al., 2002; Barthelemy and Toint, 2013) or to
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support dynamic agent-based simulation in disaster risk

management (Grinberger et al., 2017). Despite the potential of

spatial microsimulation for geospatial analysis, two challenges

remain. Regardless of which method for spatial microsimulation

SAE is employed, the output remains spatially aggregated. On top

of that, although some attempts have been made to calculate

uncertainty using certain spatial microsimulation techniques, the

limited ability to explicitly capture model uncertainty remains a

methodological weakness of the technique when used for SAE

(Whitworth et al., 2017).

While SAE focuses on downscaling individual or household

attributes, spatial population modelling focuses on the spatial

distribution of individuals or households over a population

surface. The primary difference between the two is that spatial

population modelling focuses solely on the geographic distribution

of the population over a discrete surface, while SAE techniques focus

on the downscaling of socioeconomic attributes to a higher spatial

resolution. As a result, both techniques rely heavily on the

disaggregation of census data but approach it from a different

perspective. Dasymetric modelling, a branch of areal interpolation,

is often employed for spatial disaggregation of population data

(Wright, 1936; Lam, 1983; Goodchild et al., 1993). The increasing

availability of high-resolution Earth observation data (e.g. data

collected by Sentinel and Landsat satellites) together with

improvements in post-processing and analytical techniques have

led to increasingly accurate dasymetric population modelling

approaches, even up to global scales. Examples are the Gridded

Population of the World Layer (currently GPWv4), which provides

1-km resolution population estimates (Doxsey-Whitfield et al., 2015),

the High-Resolution Settlement Layer (HRSL), providing population

estimates at 30 m resolution (Tiecke et al., 2017), and the WorldPop

100-m population dataset (Stevens et al., 2015; Tatem, 2017). A small

number of studies have complemented dasymetric approaches with

geospatial techniques to generate spatially referenced synthetic

populations. For instance, RTI, an independent, non-profit

research institute, has produced a synthetic household population

database for 116 million households and 300 million individuals in

the United States (Wheaton et al., 2009). Thomson et al. first used

DHS data with dasymetric modelling techniques, using 19 covariate

layers, to create a 100-m resolution probability layer of seven distinct

household types (e.g. urban rich, rural poor) in Namibia (Thomson

et al., 2018). Synthetic household points were derived from

multinomial logistic regression computed in the R package

SimPop and assigned to household locations as observed in high

resolution satellite imagery (30 cm resolution). Hence, simulating

close-to-reality geospatial household survey information across large

regions in areas with otherwise limited household survey information

held considerable promise to advance geospatial analyses that rely on

detailed household survey data while maintaining the anonymity of

households.

Altogether, the increasing availability of remotely sensed

imagery and socioeconomic datasets, and the improvement in

computational power and analytical approaches, have the

potential to bridge the spatial mismatch between exposure

and socioeconomic information. This could be particularly

useful for disaster risk modelling and adaptation, not only to

better quantify whether certain social groups are particularly

exposed to hazard impacts, but also to target adaptation

interventions to those that need it the most (Verschuur et al.,

2020). However, to date, such microsimulation and population

synthesis techniques have not yet been applied in high-resolution

disaster risk modelling studies. As such, there is limited

understanding how such approaches can improve disaster risk

assessment and support investment planning of adaptation

strategies.

In this study, we generate synthetic structural and

socioeconomic microdata for six districts in coastal

Bangladesh (around 9.5 million persons, comprising

2.2 million households). We use this dataset in combination

flood inundation maps of Cyclone Fani (May 2019) derived from

Sentinel-1 images to provide insight into the absolute exposure of

households to flooding, as well as the relative exposure of

potentially vulnerable households (i.e. the “exposure bias” of

exposed versus non-exposed populations) within the study area.

For each exposed household, we compare five socioeconomic

indicators: type of housing material; toilet type; water source;

access to electricity; and whether it is in an urban or rural area.

We estimate the spatial heterogeneities of socioeconomically

disadvantaged households across affected districts, as well as

the exposure bias for each socioeconomic indicator. In the

Supplementary Materials, we compare our results with those

reported in the Cyclone Fani Joint Situation Analysis (NAWG,

2019). The methodology we propose relies entirely on publicly

available information, and hence can be applied in other

developing countries to provide more spatially nuanced

insights into the vulnerability of populations to natural

hazards. This type of information could enable decision-

makers to better understand who is exposed to climate-related

risks and help better target interventions that could benefit the

poor or most vulnerable.

Methodology

In this study, we propose a methodology that combines

spatial microsimulation techniques for generating synthetic

populations together with dasymetric modelling to produce a

dataset of spatially referenced synthetic households as point

locations (hereafter referred to as synthetic household survey

data, or SHSD). The methodology to create the SHSD entails

three discrete steps: 1) generation of synthetic households

inclusive of selected attributes to the lowest reasonable level of

aggregation; 2) spatial disaggregation of household units using

dasymetric modelling techniques; and, 3) pairing of synthetic

households with location of household units based on the

population distribution identified in the dasymetric model.

Frontiers in Environmental Science frontiersin.org03

Rubinyi et al. 10.3389/fenvs.2022.1033579

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2022.1033579


This methodology is then applied to simulate the location and

characteristics of 2.2 million households across six districts in the

Bangladesh Coastal Zone (BCZ).

To demonstrate the potential of SHSD to augment disaster-

related decision-making, policies, and investment planning, we

examine the impacts of Cyclone Fani, which hit Bangladesh in

2019, on the population residing in the western part of the BCZ.

To do this, we perform the following three steps: 1) develop a

granular estimation of flood delineation to enhance our

understanding of Cyclone Fani’s extent; 2) spatially overlay

the flood extent with the SHSD; and, 3) analyze the

socioeconomic characteristics of exposed households and

compare the relative vulnerabilities of exposed and non-

exposed households (‘exposure bias’).

Case study Bangladesh

The BCZ (47,201 km2) covers 19 districts and was home to

approximately 37.2 million in 2011 (Bangladesh Bureau of

Statistics, 2012) and 43.8 million at present (Bangladesh

Bureau of Statistics, 2022). We focus on six districts in the

western part of the Bangladesh Coastal Zone (BCZ); Bagerhat,

Barguna, Khulna, Patuakhali, Pirojpur, and Satkhira (Figure 1).

The area we examine in this study spans nearly 16,000 km2 and

in 2011 was home to approximately 9.5 million people residing

in 2.2 million households (Bangladesh Bureau of Statistics,

2012).

The BCZ lags behind other parts of the country in

socioeconomic development and struggles to cope with

natural disasters and the gradual deterioration of the

environment (Adams et al., 2016; Hossain et al., 2016).

Existing challenges in the BCZ are likely to be exacerbated

by the effects of climate change and associated sea-level rise

(Dasgupta et al., 2010), with 62 percent of coastal lands being

less than 3 m above sea level. The BCZ is highly vulnerable to

tropical cyclones and subsequent storm surges, which are

projected to increase in frequency and intensity in

Bangladesh due to climate change (Dasgupta et al., 2010,

2014).

FIGURE 1
Study area comprised of (west to east) Satkhira, Khulna, Bagerhat, Pirojpur, Barguna, and Patuakhali districts.

Frontiers in Environmental Science frontiersin.org04

Rubinyi et al. 10.3389/fenvs.2022.1033579

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2022.1033579


Creating the synthetic household
survey data

We develop a methodology to simulate synthetic household

locations. For each household we estimate its unique location (x

and y coordinates) and a set of socioeconomic characteristics. To

do this, we rely on the aggregate tables of the 2011 Bangladesh

National Census at the union council level (admin level 4)

(henceforth Census) (Bangladesh Bureau of Statistics, 2012),

which are spatially disaggregated to point locations.

We derive the population synthesis using the framework

provided by the R package simPop (Templ et al., 2017), an open-

source and flexible synthesizer based on a modular object-

oriented concept. This framework relies on aggregate tables

for population margins and a microdata sample (both ideally

from a population census), with the microdata sample containing

at least all variables available in the aggregated tables. The steps

for generating the synthetic population can be summarized as

follows; 1) calibrate survey weights in the microdata to fit

population margins, 2) extrapolate the microdata using alias

sampling to generate the synthetic population, 3) set the variables

of interest, household or personal variables, based on the

microdata and “predict” them for each person in the synthetic

population, and 4) use simulated annealing (SA) to calibrate the

synthetic population to known population margins. The

Supplementary Materials describes the detailed simulation and

calibration procedure for creating the SHSD, while here we

provide a brief overview of the methodology and how it is

applied to the Census data.

Creating a target point layer

First, we convert the 2011 unconstrained WorldPop dataset

for Bangladesh (~100-m resolution) (WorldPop, 2017) from

population counts (a float number) to household counts (an

integer). The methodology to create WorldPop population

density estimates considers spatial covariates such as

nighttime lights, slope, elevation, and distance to features of

both the built environment (e.g. urban areas, major road

intersections) and the natural environment (e.g. inland

waterbodies, sparsely vegetated areas) (Stevens et al., 2015).

For each union council (admin level 4), the average

household size is calculated from Census data and spatially

joined to the WorldPop layer. The WorldPop float population

counts are then divided by the average household size within the

union council, resulting in per-pixel household counts. To move

from a polygon grid to a point layer, we create a dataset of

randomly generated points within each cell corresponding to the

integer value of households per cell. The point layer (representing

locations of households) is spatially joined with the

administrative boundaries (extracted from the Census) to

associate a unique ID to each point. Figure 2 depicts

approximately 58,000 predicted household point features

across 550 km2 spanning Patharghata, Barguna Sadar, and

Amtali upazilas in Barguna District, clearly depicting

population clustering in densely populated areas.

Generating synthetic socioeconomic
attributes

We generate synthetic structural and socioeconomic

microdata for each of the 9.5 million persons grouped into

2.2 million households. Using the R package SimPop, the

synthetic population is first generated to correspond with

population margins for each union council. Then, each

synthetic household is paired randomly with the derived

target household point layer from the same union council. We

rely on the following input data:

FIGURE 2
Point feature class of predicted household locations
spanning Patharghata, Barguna Sadar, and Amtali upazilas in
Barguna District.
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• Integrated Public Use Microdata Series (IPUMS): 5%

sample microdata from the 2011 Bangladesh National

Census includes topology at the upazila level (admin

level 3).

• Census Tables: Aggregate tables from the 2011 Bangladesh

National Census at the union council level (admin level 4).

• Demographic and Health Survey (DHS) Standard Data Set:

2011 DHS data set for Bangladesh.

We use variables from the sample microdata at the upazila

level to generate a synthetic dataset at the union council level

which is then matched to the aggregate Census tables. The DHS

data is used to correct for age heaping as well as an

underrepresentation of infants (see Supplementary Materials

for details). For calibration, we used the maximum number of

matching variables from the census tables to which we had access

for this study.

The synthetic data contains three types of information (see

Table 1). “Basic structural information” (sex, age, relationship

to household head, urban/rural, upazila), which are created

for each household and household member, are sampled from

the microdata and are kept fixed to generate a realistic base.

“Household-level variables” (housing type, housing structure,

tenancy status, water source, electricity, sanitation) are

defined on a household level and are modelled and

appended to the “Basic structural variables”. “Individual-

level variables” (years of schooling, literacy, level of

education, employment status and industry) are modelled

on an individual level and are appended to the “Basic

structural variables”; and the “Household-level variables”.

The steps for modelling these synthetic variables are

described in more detail in Supplementary Materials.

Calibrating the synthetic population

Initially, generated households are randomly assigned to

union councils (admin level 4) within each upazila (admin

level 3), matching the total number of households listed per

union council in the Census tables. To achieve a more accurate

distribution of households with certain properties at the union

council level, we perform calibration through simulated

annealing (SA). SA is the heuristic procedure used to

approximate complex optimization problems (Templ et al.,

2017), and has shown to outperform other methods, including

deterministic re-weighting and conditional probabilities

(Harland et al., 2012). We use the aggregate Census data at

the union council level to estimate several household attributes

(housing type, tenancy status, water source, electricity and

sanitation) and individual attributes (sex, age, literacy) to

better represent their distribution (and households overall) at

the union council level (the calibration process is described in the

Supplementary Materials).

Joining the synthetic population to the
target point layer

Each point is randomly joined with a discrete synthetic

household within the union council. This results in a

TABLE 1 Overview of the different variables in the synthetic dataset, including which variables are used in the calibration process using simulated
annealing.

Category Variable Options Simulated annealing

Basic structural variables Sex Male, female yes

Age Years yes

Relationship to head of household Head, Spouse/partner, Child, Non-relative, Other relative, Unknown no

Urban Urban, rural no

Upazila Upazila name no

Household-level variables Housing type General, institutional no

Housing structure Pucka, semi-pucka, katcha, jhupri yes

Tenancy status Owner, renting, usufruct yes

Water source Tap, tube well, other yes

Electricity Yes, no yes

Sanitation Sanitary with water seal, sanitary without water seal, non-sanitary, none yes

Individual-level variables Years of schooling Years no

Literacy Yes, no yes

Level of education Less than primary, primary, secondary, university no

Employment status Employed, unemployed, inactive no

Industry Agriculture, industry, services no
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household point feature that now contains the synthetic

structural and socioeconomic attributes for each household as

well as for all individual persons within a household.

Validation synthetic household survey
data

To externally validate the SHSD generated, we collected an

independent household survey dataset that covers three union

councils in Khulna district. This dataset was collected as part of

the REACH project, a global research program aimed at

improving water security for the poor, and includes household

attributes for 707 households (3,124 persons) in these three

union councils (5.6% of population) during the period 17-12-

2017 to 01-07-2018. We compare the age distribution, the only

comparable household parameter in both survey data, and

geographical locations between the REACH survey and almost

12,700 synthetic households that are sampled for these three

unions councils. As shown in the Supplementary Materials, the

field data corresponds to the SHSD in terms of age distribution

(though slightly skewed towards a younger population). In terms

of spatial correlation, 98% of all surveyed households are within

100 m of at least one synthetic one, with the median distance

being 18 m.

Flood inundation associated with
Cyclone Fani

We analyze the flood inundation associated with Cyclone

Fani, which made landfall near Puri, India (03-05–2019) as a

Category four tropical cyclone and proceeded in a northeasterly

direction, eventually making landfall in Bangladesh (04-

05–2019) by which time it had weakened into a deep

depression. Cyclone Fani caused widespread inundation across

28 districts, inundating 60 villages, with the largest inundation in

the six districts in our study area. In total, 1.6 million people were

evacuated to cyclone shelters, 155,000 acres of agricultural land

was affected and around 20,000 houses were damaged (NAWG,

2019).

Satellite remote sensing has emerged as a viable alternative or

supplement to in situ hydrological observations especially over

ungauged regions (Khan et al., 2011). In this study, we utilize

Synthetic Aperture Radar (SAR) data collected by Sentinel-1

satellites. This constellation provides dual polarization

capabilities, short revisit times and rapid product delivery

using four C-band imaging modes with different resolutions

(down to 5 m) and coverage (up to 400 km). Data collected by

SAR sensors is especially useful for flood detection, due to the

ability of these sensor to capture Earth at day and night, in all

weather conditions (Chini et al., 2019; Malmgren-Hansen et al.,

2020). The method of detecting inundated flood extents with

SAR data relies on differences in the backscattered signal between

surfaces that are covered and not covered with water. SAR data,

including Sentinel-1 measurements, have shown to be effective in

delineating floods, including in urban populated areas (Chini

et al., 2019; Malmgren-Hansen et al., 2020).

To delineate potential flooded areas in the six Fani-affected

districts, we apply an image differencing technique, where SAR

images collected during a non-flooded state are compared against

images collected during (or just after) the flood. Compared to

flood detection with a single image, image differencing

techniques are advantageous because they allow to mask out

permanent water bodies and some water look-alike objects (Li

et al., 2018). Satellite images can be mosaiced together to better

capture the full extent of dynamic flood events. However, the full

extent of flooding may be underestimated when the frequency of

data capture is limited. We perform the analysis in Google Earth

Engine (GEE), which has been previously used for flood

detection and surface water mapping applications (Markert

et al., 2018; Uddin et al., 2019).

To create the flood inundation maps, several processing steps

are followed (the methodology is described in detail in the

Supplementary Materials). First, we mosaic several Sentinel-1

scenes together before (28 April 2019) and after the event (4 May

2019). These are hereafter named the Base Image (BI) and the

Event Image (EI). Sentinel-1 image has one or two out of four

possible polarization bands. Here we use a single co-polarization,

vertical transmit/vertical receive data (VV), which has a slight

advantage over other polarization modes (Twele et al., 2016;

Clement et al., 2018) and has successfully been used for flood

mapping in previous studies (Schlaffer et al., 2015). Second, we

remove permanent water bodies from the images, which may

distort the flood inundation extent, and are taken from the Joint

Research Center (JRC) Yearly Water Classification History

dataset (version 1.1) (Pekel et al., 2016). Third, we create the

Difference Image (DI) by subtracting the pixel values of the EI

with the BI per grid cell. Fourth, to reduce the “noise” in the data,

we smooth the DI by calculating a morphological reducer over

the pixels in the image. The result of this step is a Smoothed

Difference Image (SDI) which contains fewer isolated pixels that

could potentially be misclassified in the subsequent steps. The

final step in the analysis involves the conversion of the SDI into a

binary map of observed flooded areas. We apply a thresholding

technique that relies on the relative values (a percentile value) of

the pixels in the study area, ending up with a binary flood

inundation map of the study area at 10-m resolution.

Results

Flood inundation

Our flood mapping methodology generated 578 km2 of

observed flooded areas (i.e. about 3.8 percent of the study
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area) with a widespread partial inundation across the study area,

and several more concentrated clusters. Only six out of the

49 populated upazilas show more than 10 percent of their

area flooded (Table 2). At a more granular level, five out of

436 union councils show more than 20 percent of their area

flooded.

Overlaying the SHSD with the derived flood map results in a

total of 105,116 households being exposed to flood inundation.

Figure 3 provides a visual snapshot of a small section of the study

area–depicting approximately 172,000 synthetic households

across 780 km2 of Bagerhat and Pirojpur Districts. Nearly

46.3 km2 of land is predicted to be potentially flooded

(highlighted in blue in the figure), within which reside

approximately 6,000 households. Across the six districts, we

observe a relatively equal share of households being flooded,

with the highest percentage in Sathkira (~5.5%) and Pirojpur

(~3.8%) districts, and lowest in Bagerhat, Barguna and Khulna

districts (all ~3%).

Social vulnerability

Next, we take a closer look at the socioeconomic characteristics

of potentially flooded households. Figure 4 provides a summary of

selected socioeconomic characteristics from our 105,116 modelled

flooded households, including: the type of housing material; toilet

type; water source; access to electricity; and whether it resides in an

urban or rural area. The left figures show the absolute count, while

the right-hand side shows the relative share per district. The

proportional distribution of modelled attributes by district

provides a proxy for understanding the relative vulnerability of

exposed households. For example, certain housing types are often

associated with poorer households, such as jhupri and katcha

structures (unimproved housing), while certain structure designs

may also be better suited to withstand flooding than others

(Dasgupta et al., 2010). Hence, households in jhupri structures

are often poorer and are more likely to lose their house when being

exposed to the same flood severity.

As can be observed from Figure 4, a relatively higher

proportion of households in unimproved housing are exposed

to flooding in Bagerhat, Barguna, Pirojpur and Patuakhali

districts in comparison to Khulna and Satkhira districts. This

is useful information to understand disparities in the

vulnerability of exposed households between districts and can

also be used to improve risk modelling efforts as these different

housing types have a different fragility with respect to a given

flood magnitude and different reconstruction costs.

Moreover, the type of water and sanitation associated with

the exposed households can help understand the potential

social disruptions that households might experience. In most

cases, tube wells and pit latrines are co-located with households,

implying that if households are flooded, it is likely that their

water and/or sanitation facility is also flooded. For instance,

most flood exposed households use tube wells (Figure 4), which

(if not elevated) are prone to flood waters. As shown, the use of

tube wells is almost uniform across the six districts. The

distribution of the type of sanitary facilities used differ more

across the districts than the type of drinking water source used

(sanitary facilities often being pit latrines on the household

premises), and the social disruption as a result of flooded

sanitation facilities may also have similar spatial variabilities.

For instance, flooding of non-sanitary facilities could initiate

local disease outbreaks (e.g. cholera) after flooding, which is

more likely to occur in areas with flood-exposed households

relying on non-sanitary facilities. This information can help

inform emergency response efforts in terms of providing

temporary water or sanitation facilities or products (e.g.

water purification tablets).

Exposure bias

In addition to quantifying the socioeconomic characteristics

of exposed households, we derive whether there is an exposure

bias, i.e. whether certain households with specific socioeconomic

characteristics are disproportionally exposed compared to non-

exposed households. Figure 5 presents the difference between the

distribution of modelled flooded and modelled non-flooded

households for each socioeconomic variable. The differences

for toilet type and electricity are very small, while the

TABLE 2 Upazilas with at least 10 percent observed flooded area.

Upazila District Flooded
area (sq. km)

Total area (sq. km) Percent flooded

Chitalmari Bagerhat 30.07 197.24 15.25

Satkhira Sadar Satkhira 53.43 397.65 13.44

Kalaroa Satkhira 26.43 232.77 11.35

Terokhada Khulna 19.58 183.98 10.64

Kala Para Patuakhali 45.97 444.16 10.35

Dighalia Khulna 7.98 77.15 10.34
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differences for housing type and water source are slightly larger,

but still within a few percentage points. In Bagerhat, households

in kutcha housing have a slight exposure bias, while the same

holds for households living in jhupri housing in Patuakhali.

Similarly, households that rely on tube wells are

disproportionally exposed in three out of the six districts,

while households relying on other water sources have a

negative exposure in three out of six districts. Observed

variance between districts for a particular variable may be

partially attributable to our study’s focus on better

understanding the impact of a single event rather than

focusing on an analysis of flood risk that would incorporate

the broader probability of any single household to be flooded

each year.

FIGURE 3
Synthetic households (dark points) and Cyclone Fani flood extent (in blue) spanning sections of Bagerhat and Pirojpur Districts.
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FIGURE 4
Modelled potentially flooded households by variable in aggregate (left) and proportional by district (right).
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Discussion

In this study, we presented an integrated analytical approach

for disaster risk analysis using a case study of six districts in the

BCZ that were impacted by Cyclone Fani (2019). The

methodology we proposed in this paper combines spatial

microsimulation techniques for generating synthetic

populations with dasymetric modelling techniques to

FIGURE 5
Difference from the expected distribution for variables of modelled potentially flooded households.
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determine the spatial distribution of populations through a

dataset of spatially referenced synthetic households. This

methodology allowed us to generate synthetic structural and

socioeconomic microdata for around 9.5 million persons as point

locations, which we overlayed with satellite-derived inundation

maps of Cyclone Fani. We find that around 580 km2 of land was

inundated, with six out of 49 upazilas having at least 10 percent of

their surface area flooded. We further find that more than

100,000 households were exposed to flood inundation,

predominantly living in kutcha housing, using tube-wells as

drinking water source, living in rural areas and having no

access to electricity. We find mixed results in terms of the

exposure bias of households with certain household

characteristics, which vary across to the district.

The approach we proposed in this paper represents the

natural convergence between two prominent geospatial

workarounds for better understanding household dynamics

without having full access to detailed survey information.

While this technique is exceedingly difficult to verify at lower

resolutions, our study has the advantage of drawing upon a

spatially referenced survey of households to verify both modelled

location information and one associated household attribute

(age) in a contained geographic area. However, despite efforts

to validate the methodology, reliable validation data is hard to

obtain. As such, while proving to be a suitable methodology to

derive synthetic exposure and vulnerability estimates across large

regions in a consistent way, it should be complemented with

detailed household survey data before or after disasters to infer

impacts to households and their socio-vulnerability, as is

common practice in Bangladesh and elsewhere (Akter and

Mallick, 2013).

Techniques for high-resolution dasymetric mapping are

increasingly achievable at higher accuracy and at larger scales.

On top of that, efforts such as IPUMS and other data repositories

are encouraging the open release of microdata and cataloguing its

availability for public usage. Still, public releases of census

microdata only cover a small percentage of the total

individuals and households for the aggregated unit (typically

up to 10 percent), thus making population synthesis as presented

in this study necessary to generate attributes for the entire

population. Hence, we expect our methodology to be

applicable across geographies that have reliable and high-

resolution census information. From a human and computing

capacity perspective, our methodology is set up so that it can be

readily applied in a developing country context through the usage

of pre-packaged tools within open-source software such as R and

QGIS. Our model required approximately 20 total days to run for

the combined study area. While computationally intensive at

scale, it can be run for smaller populations (e.g., less than 50,000)

on local computers. Most importantly, the methodology can be

applied without a potentially costly software license, and once the

dataset is generated, it can then be readily utilized by local

practitioners for spatial analysis.

While SAE techniques can increase the resolution in which

we understand the distribution of attributes, they are still

restricted to the lowest level of disaggregation of the target

data. In other words, they would not pick up on clusters and

patterns of settlement location within the lowest area of

disaggregation. This is particularly trye if one is interested in

attributes which have strong spatial dependencies within a small

administrative unit. For instance, in our study, the lowest level for

disaggregation before the spatial randomization component is at

the union council level in Bangladesh, which still encompasses

relatively large areas compared to the inundation extent in some

union councils. Hence, we expect some level of uncertainty in our

estimates as we are restricted to this level for disaggregation. For

spatial attributes with stronger potential spatial dependencies

(e.g. wealth, water access, etc.) the spatial distribution can be

further refined within the administrative unit by incorporating

spatial modelling techniques which consider factors such as the

spatial autocorrelation of selected attributes, dependencies

related to additional known covariates (e.g. poorer households

may live further from water access) or additional georeferenced

surveys.

Our study takes the high resolution dasymetric population

and spatial microsimulation approaches a step further by

demonstrating a novel methodology for deriving synthetic

households with unique geographic locations and

socioeconomic attributes. However, our methodology for

generating point coordinates comes at the expense of

computational intensity. Going from disaggregated SAE

estimates, in our case information at 436 union councils in

our study area, towards individual (synthetic) household

locations and attributes for 9.5 million people increases the

data output and computational resources needed considerably,

potential limiting the application of such methodologies to

institutions that do have access to such computational

resources. On top of that, uncertainties are not conveyed in

the methodology because of this computational intensity. For

instance, the uncertainty in the randomization component to

assign households to point estimates within the respective union

administrative boundary could be circumvented by creating

multiple realization of the georeferenced synthetic population

data, which was not possible given the computational resources

needed in this study.

Despite the limitations, our approach can be applied to

inform the response and recovery phases after disasters, where

quick access to reliable aggregate figures is essential for

coordinating relief efforts and large-scale resource

mobilization. Modelled socioeconomic characteristics may

provide utility in prioritizing specific and targeted actions

when coordinating relief efforts (e.g. decisions as to where to

provide temporary shelter, water, or sanitation services). In

addition to providing utility in the response and recovery

phases after natural disasters, our approach can be applied to

inform ex-ante investments and associated policies focused on
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enhancing the resilience of vulnerable communities. Our

modelled socioeconomic variables could contribute towards a

multidimensional understanding of household poverty (Alkire

and Foster, 2011) and socioeconomic resilience (Hallegatte et al.,

2017). A better baseline understanding of where populations live,

and their poverty incidence or socioeconomic vulnerability,

could help inform decision-making concerning large-scale

adaptation options (e.g. embankments, cyclone shelters) or

softer adaptation solutions (e.g. cash transfer, social safety

nets). More specifically, our methodology can help target such

interventions such that they reduce the welfare impacts of poor

populations (Verschuur et al., 2020).

In our work, we only observe a very small exposure bias of

modelled potentially flooded households when compared to

modelled non-flooded households. Although this conclusion is

consistent with that of Winsemius et al. for rural flood events

(Winsemius et al., 2018), it is in contrast to some of the literature

in Bangladesh that did find an exposure bias for river flooding

(Brouwer et al., 2007). This could be explained give that the

random nature of cyclones makes the occurrence of an exposure

bias less likely, as it less dependent on long-term structural

conditions that might determine the location of a household

(e.g. land prices).

Altogether, we showcase how combining high-resolution

flood extent information, either from remote sensing or model

output, combined with modelled socioeconomic characteristics

of those populations exposed could provide novel insights into

disproportionate hazard exposure. This could not only inform

mapping the exposure of specific vulnerable populations, but also

add value across the disaster risk management cycle to inform

policy decision-making and investment planning.
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