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Wind speed forecasting is critical to renewable energy generation, agriculture,

and disaster prevention. Due to the uncertainty and intermittence of wind,

conventional forecasting methods with numerical weather prediction (NWP)

models fall short of achieving satisfactorily high accuracy. Post-processing of

the predicted results is necessary for enhancing the prediction accuracy. The

industry generally employs time-series prediction (TSP) methods for error

correction, yet it is time-consuming since repeated modeling is needed if

the location changes. Aiming at addressing this problem, this paper

discusses the application of a deep learning algorithm in the post-

processing period of wind speed prediction. NWP results are utilized as the

forecasting basis, and deep learning algorithms are used for minimizing errors.

An experimental study is conducted with industrial data. The functionality and

performance of TSP-based algorithms including rolling mean, exponential

smoothing, and autoregressive integrated moving average algorithms are

compared with deep learning-based algorithms, including long-short term

memory and convolutional neural network. From the numerical results, both

TSP and deep-learning error-correction methods can effectively increase the

accuracy of day-level NWP model prediction results, while deep-learning

methods are data-driven, and no modeling process is needed. This work

also poses an insight into the future development of wind speed prediction

in meteorology.
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1 Introduction

Weather forecasting plays a profound role in daily human life as well as in economic

and social activities since it is pivotal to agriculture, disaster prevention and control,

power generation, etc. (Barbounis et al., 2006). As a key indicator of the weather system,

wind speed forecasting has particular value to a lot of engineering applications, e.g.,

meaningful for wind power generation. In particular, with the development of large-scale
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wind farms, more and more wind power is integrated into the

power grid (Yang et al., 2014), and the accuracy of wind speed

directly affects the performance of wind power scheduling.

However, due to the intermittence and uncertainty of wind,

the high accuracy of wind speed forecasting is a challenge.

It is known that wind speed is pertinent to numerous factors,

e.g., temperature, terrain, rainfall, pressure, etc., Hu et al. (2014).

Inspired by this idea, the numerical weather prediction (NWP)

system is a commonly used physical model for weather

forecasting and wind speed forecasting (Alexiadis et al., 1998).

However, this physical model is based on ameteorological system

which is huge and complex, and with an experiment overhead, it

is difficult to be constructed by individuals. With this drawback,

the dominant proportion of existent forecast methodologies in

the literature is generally data-driven models Al-Yahyai et al.

(2010). As the performance of computing devices has increased

dramatically in the past decades, more advanced artificial

intelligence (AI) algorithms are being applied to these data-

driven models for wind speed forecasing. However,

conventional data-driven methods are statistical models which

can achieve good accuracy in short-term prediction but have bad

performance in long-term prediction due to the error

accumulation problem. Physical models, e.g., NWP, could

realize the large time-scale prediction, but the forecasting

results are rough and low-accurate. Combining these two

methods, a useful way of improving the long-term forecasting

accuracy is correction modeling which utilizes statistical models

to correct the results of physical models (Voyant et al., 2012). The

mechanism of error correction methodologies is usually utilizing

the current weather information as the input to further correct

the predicted data (Wang et al., 2019). It aims to minimize the

prediction errors brought by the meteorological models.

To realize a correct model with higher accuracy in wind

speed forecasting, this article proposes a kind of comprehensive

correction strategy based on a deep learning algorithm.

Compared with the conventional models, deep learning

algorithms have a better feature representation ability to

improve prediction accuracy. It provides a comprehensive

model, while the customized meteorological model of the local

information is not needed. It can significantly reduce the

workload. This article also compares the performance of

NWP models with various conventional models and deep-

learning models. Experimental results show that deep learning

models can significantly simplify the workflow, while the

prediction accuracy is satisfied.

The layouts of the other sections are organized in the

following way: Section 2 demonstrates the related work of

conventional methodologies in wind speed prediction. Section

3 shows the design process of the error correction for wind

speed forecasting with deep learning. A case study is given to

validate the functionality of the proposed method in Section 4.

Section 5 concludes the whole paper and illustrates

future work.

2 Related work

To increase the accuracy of wind speed forecasting,

appreciable effort from academia and industry has been

dedicated to the improvement of the models. Due to the

intermittency and uncertainty of wind, as reported by Li

(2022a), and the observation errors of the model, the

prediction inevitably introduces errors, particularly under the

hourly scale.

A straightforward way to reduce forecasting errors is by

improving the accuracy of the prediction model. The extensively

applied methods can be categorized into two types: physical

models and statistical models. Similar to NWPs, a physical model

requires numerous meteorological information and a physical

mechanism which makes the application and modeling

complicated (Maria Grazia De Giorgi et al.,2011). As

mentioned earlier, multiple physical processes such as

aerodynamics, thermodynamics, and hydromechanics are

involved. Thus, the physical model of the meteorological

system is generally complicated (Maria Grazia De Giorgi

et al., 2011). Statistical models require historical data such as

wind speed and time stamps to conduct the forecasting. A

classical method is the persistence method which utilizes the

latest measured wind speed value as the forecast basis of the next

point (Buhan et al., 2016). Its major advantage is the

straightforward working principle and low-computational

overhead which enable it to be easy-implemented. Li (2022a)

also built the model for the wind turbine generator for wind

power generation forecast error correction. Various statistical

learning algorithms are also applied in the wind speed forecasting

industry, e.g., the autoregressive moving average (ARMA) model

(Ergin Erdem, 2011) invented in the 1980s, the artificial neural

network (ANN) (Li and Shi, 2010), support vector machine

(SVM) (Ren et al., 2014), etc. Moreover, some hybrid

methods combining several statistical learning algorithms are

also proposed. Additionally, the physical model and data-driven

model can also be blended to increase the accuracy of the

prediction, as demonstrated in Nielsen et al. (2007).

Lima et al. (2020) compare the historical solar data with

NWP model predicted results in Brazil, and they claim the

predicted results have notable differences from the local data.

Thus, due to prediction error existing in all forecasting methods,

post-processing methods seem to be essential to correct the

forecasting error. Vogelzang and Stoffelen (2011) proposed

NWP model error structure functions with the scatterometer

winds. Synthetic and model prediction methods are adopted. As

a mighty tool for error correction, Kalman filtering has been

employed in wind prediction (Wang et al., 2021; Vogelzang and

Stoffelen, 2011). The machine learning technology has

superiorities in regard to self-adaptive and data-driven

features which enable it to be extensively applied for data

post-processing of NWP. Li et al. (2021) utilized bilinear

transformation and the ICEEMDAN framework for short-
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term wind power prediction, while spatial-temporal analysis is

applied in Li (2022b).

In Sweeney et al. (2013), different combinedmethods for wind

speed forecasting were compared for error minimization. Zjavka

(2015) proposed polynomial neural networks for on-line wind speed

forecast correction. The multi-site model experimental study was

conducted to validate the functionality of the proposed method.

Jiang and Huang (2017) utilized hybrid methods of SVM and

generalized the auto-regressive conditionally heteroscedastic

model to correct the prediction error. Both the accuracy and

stability of the model were satisfied. Du (2019) employed an

ensemble-based method that incorporates three machine learning

algorithms for NWP prediction result correction. By combining the

three predicted results, it can enhance the prediction accuracy.

Hossain and Mahmood (2020) used a long short-term memory

model for minute-level solar energy forecasting, while Yang et al.

(2014) used deep learning methods for day-ahead hour-level

forecasting. Tang et al. (2022) used two shallow machine

learning algorithms for medium- and long-term weather

forecasting. Intelligent techniques are also employed for the

underground projects of the Rockburst Hazard in Ahmad et al.

(2021b) and Ahmad et al. (2022) and shallow foundation on

cohesion-less soils in Ahmad et al. (2021a).

3 Materials and methods

3.1 Forecasting setup

The prediction process is defined as �v � f(.), where �v is the
predicted 10 m wind speed, and f (.) is the NWP model. The

NWP models contain errors due in part to the quality of the data

used to drive the model and in part to computational limitations.

Some errors are systematic, and it is desired to be reduced by

applying statistical post-processing methods.

FIGURE 1
NWP prediction error of one location.

FIGURE 2
Time series prediction for correction.
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The current NWP model predicts 10 m wind speed data for

every 12 h over a 13–48 h period. In addition, the real

measurements are collected hourly; thus, the prediction error

et can be calculated, as given in Eq. 1, when the real

measurements are collected.

et � vt − �vt, (1)

where �vt is the NWP wind speed at time t; vt is the measured

10 min wind speed at time t. Figure 1 shows the heat map plot of

prediction errors of one location.

3.2 Time series-based algorithms

Time-series prediction (TSP) algorithms predict the future value

over a period of time by developing models based on previous data

and applying them to conduct prediction. The future is estimated

based on what has already happened. Following the principle of TSP,

the historical errors are learned and modeled to predict the future

error, as shown in Figure 2. Once the error is predicted, the NWP

wind speed can be corrected easily by just adding the predicted error.

This process is expressed by Eq. 2 and Eq. 3:

êt � ftsp et−1, et−2, . . .( ), (2)
v̂t � �vt + êt, (3)

where êt is the predicted error at time t and v̂t is the corrected

NWP wind speed.

3.3 Deep learning-based algorithms

TSP-based algorithms only leverage historical error

information, yet other features such as temperature and air

pressure, are generally neglected. Moreover, for different

FIGURE 3
RNN model structure.

FIGURE 4
LSTM cell.

Frontiers in Environmental Science frontiersin.org04

Zhao et al. 10.3389/fenvs.2022.1034536

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2022.1034536


locations and predicted periods, TSP-based algorithms need to be

modeled separately. In other words, for an NWP system

monitoring 50 locations over 13–48 h periods, 1800 models

are needed separately in terms of learning parameters and

prediction. The modeling process is time-consuming.

To generalize the application scenarios of the forecasting

model, in this paper, deep learning algorithms are utilized

since they are able to automatically learn arbitrary complex

mappings from inputs to outputs, which have been widely

used in time series prediction tasks recently. Deep learning-

based time series prediction algorithms are able to take

location patterns and prediction periods into consideration

and thus can train a generalized model with location patterns

and prediction periods as input features. For the sake of

simplicity, deep learning-based TSP algorithms are verified

to pose an optimal balance among multiple parallel prediction

FIGURE 5
Overall rmse results based on the location.

FIGURE 6
Overall mae results based on the location.
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tasks such as wind speed prediction for various locations and

prediction periods.

3.3.1 Recurrent neural networks
Recurrent neural networks (RNNs) are appropriate for

modeling time series data with the recurrent structure which

uses neural networks to model the functional relationship

between input features in the recent past to a target variable

in the future.Figure 3 shows the structure of the RNN in which

the transition of a hidden state from consecutive time slots is

learnt from historical data. Specifically, the prediction of the

output yt depends not only on the input xt but also on the hidden

state wht, as shown in Eq. 4. wht plays the role of memorizing the

previous information by weighting the previous output yt−1.

However, RNNs have the disadvantage of vanishing gradients

due to the weight matrix multiplication at each time step. Thus,

the RNN is not good at capturing non-stationary dependencies

that occur over a long period of time.

yt � f xt, wht( ). (4)

3.3.2 Long short-term memory model
The long short-term memory (LSTM) model is a variant of

the RNN first, as proposed by Zjavka (2015), to overcome the

gradient vanishing problem in the vanilla RNN. Figure 4 shows

the structure of an LSTM cell in which a cell state c and three

gates are imported to enable the storage and access of

information over long periods of time. Gates are composed of

a sigmoid neural net layer and a point-wise multiplication

operation which are able to optionally let information

through. First, the input gate weighs the current input xt and

previous output ht−1, as shown in the following:

it � σ Wi · ht−1, xt[ ] + bi( ), (5)

where Wi and bi are the weight matrix and the bias vector of the

input gate, respectively. The output of the input gate controls the

selection of information in the cell state.

~ct ≔ tanh Wc · ht−1, xt[ ] + bc( ), (6)

where Wc and bc are the weight matrix and bias vector of the

input layer, respectively. Therefore, the selected information can

be represented by cit ≔ it ⊙ ~ct.

Similarly, the forget gate controls the selection of information

that should be dropped:

f t � σ Wf · ht−1, xt[ ] + bf( ), cft � f t ⊙ ct−1, (7)

where Wf and bf are the weight matrix and bias vector of the

forget gate, respectively. Then, the new cell state is as follows:

ct � cit + cft . (8)
The output gate decides which part of information should be the

output, i.e.,

on � σ Wo · hn−1, xn[ ] + bo( ), hn � on ⊙ tanh cn( ), (9)
where Wo and bo are the weight matrix and bias vector of the

forget gate, respectively.

4 Experimental study

In this section, the actual weather forecast data are utilized to

evaluate the time series and deep learning-based strategies. The

historical NWP output data are produced by Weather Research

and Forecasting (WRF)-3.5 adopted by the Inner Mongolia

Meteorology Bureau as one of their bases to deliver daily

weather forecasts of that region. The WRF-out data are

generated every 12 h (at 00:00 UTC and 12:00 UTC) from

June 2019 to March 2022, containing predictions in advance

of 12 h extending to 96 h with an interval of 1 h. The

corresponding ground truth data are acquired from the China

land surface data assimilation system, 2rd version (CLDAS-

V2.0), which provide near-real-time reanalysis field data via

integrating information from land surface stations, radars, and

remote sensing of satellites.

The following experiments are implemented on a Linx PC

with AMD Ryzen 5 3550H, 2.1 GHz CPU, 16 GB of RAM, and

Python 3.8 with TenserFlow 2.8.0.

4.1 Empirical evaluation

To verify the superiority of the proposed correction strategy,

the original NWP wind speed error and corrected wind speed

error are compared. For the TSP-based algorithms, the training

data are the past original NWP wind speed errors for a specific

location and a specific prediction period. In contrast, for the

deep-learning-based algorithms, the past original NWP wind

speed errors for all locations and all predicted periods are used to

train a general model. The input is features that are created from

the historical NWP wind speed errors and additional related

information.

4.1.1 Location-based evaluation
For the purpose of evaluating the correction and predicting

the performance of the proposed strategy over all locations, the

root mean square error (rmse) and themean absolute error (mae)

are used as the performance criteria. Obviously, the smaller the

value, the better the performance of the proposed model is.

rmseloc �
��������������∑T∑N vnt − v̂nt( )2

TpN

√
, (10)

where t ∈ N T is the time slot for making prediction, and n ∈ NN

is the prediction period. Thus, rmseloc evaluates the overall

prediction performance for location loc. Similarly,
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maeloc � ∑T∑N|vnt − v̂nt |
TpN

. (11)
The overall forecasting performance is evaluated in Figure 5

and Figure 6. The boxplot is used to compare the overall

performance based on locations. The curve of NWP, i.e., the

blue one on the left, shows the predicted results without

correction. Rolling mean, ETS, and ARIMA denote the

predicted results of the NWP model with conventional data

correction models, while LSTM and CNN are the predicted

results corrected with deep learning algorithms. From the

result, without forecast correction, the rmse and mae are

apparently higher than those with correction. Both TSP-

based algorithms and deep-learning-based forecast correction

algorithms are able to reduce the prediction error. Specifically,

rolling mean methods and LSTM show the best comprehensive

performance. Thus, forecast correction is necessary since it can

significantly increase the prediction accuracy. However, as

demonstrated earlier, the rolling mean, exponential

smoothing (ETS), and autoregressive integrated moving

average (ARIMA) methods all need to build the local NWP

model. This means the model is no longer applicable if the

location changes. The deep learning model does not need to be

trained repeatedly by location patterns and predicted period

data which enables it to be more universal. Also, Figure 5 and

Figure 6 show that the CNN algorithm has a reduced upper

limit and lower limit of RMSE over the LSTM algorithm, but the

FIGURE 7
Overall rmse results based on the prediction period.

FIGURE 8
Overall mae results based on the prediction period.
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LSTM algorithm has a lower average RMSE. Reliability has the

highest priority in terms of weather forecasting. Therefore,

LSTM is still the most recommended algorithm for NWP

forecast correction.

4.1.2 Prediction period-based evaluation
Similarly, rmse and mae for different prediction periods are

also learnt to evaluate the correction and predicting the

performance of the proposed strategies.

rmsen �
��������������∑T∑L vt,l − v̂t,l( )2

TpL

√
, (12)

rmsen � ∑T∑L|vt,l − v̂t,l|
TpL

, (13)

where l ∈ N L is the location set. Thus, rmsen andmaen represent

the overall predicting performance at the prediction period n.

To validate the application of the aforementioned algorithm

in the short-term weather forecast, the predicted results over 48 h

are plotted, as shown in Figures 7, 8. From the plots, without

forecast correction, the rmsen is 2.05 and themaen is 1.65. With

forecast correction, the rmsen is reduced to be lower than 1.7 and

themaen is reduced to be lower than 1.4. It should be noted that

the error of the CNN algorithm is high in the first 20 h and then

falls down and stays stable in the following period. The NWP

with the LSTM forecast correction model shows superior

comprehensive performance over the other algorithms.

4.1.3 Clustering method-based evaluation
Different locations have different geographical features,

i.e., some locations are on the highland, while some may be

near the waters. Instead of treating them equally, clustering them

into different groups may enhance the model representation

ability. To verify this, three clustering methods based on the

global position system (GPS) data are used to take advantage of

the geographical information. The clustering results are further

input to the LSTM model as additional features. Figure 9,

Figure 10 and Figure 11 show the clustering of GPS data by

different algorithms, where the locations are categorized into

different groups.

The comparison results are shown in Figure 12 and

Figure 13. From the plots, all the clustering methods can

further reduce the rmse and mae. Among these clustering

FIGURE 11
Clustering of the GPS location by agglomerative clustering.

FIGURE 9
Clustering of the global positioning system (GPS) location by
k-means.

FIGURE 10
Clustering of the GPS location by density-based spatial
clustering of applications with noise (DBSCAN).
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methods, agglomerative clustering has the best performance on

reducing the rmse, while k means showed a better effect than

others in terms of the mae.

4.1.4 Multi-step prediction evaluation
Previously, all results are one-step predictions, where

historical data are used to predict the next time slot. In this

subsection, multi-step prediction performance is learned.

Figure 14 and Figure 15 show the rmse and mae results of the

different step prediction performances, respectively. From the

results, the predicting performance drops slightly as the

prediction step increases.

5 Discussion

With the rapidly increasing demand for wind energy, the

fluctuation and intermittence pose challenges to power dispatch.

Thus, it is desired to have an accurate prediction of the wind speed.

From the experimental results presented in Section 4, the NWP

FIGURE 12
Overall rmse results for different clustering methods based on the location.

FIGURE 13
Overall mae results for different clustering methods based on the location.
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model shows considerable prediction errors, and this is also reported

by Lima et al. (2020). Therefore, forecasting correction is necessary.

In industry applications, how to minimize prediction error is still a

major challenge. This study presents the application of deep learning

algorithms on the forecasting correction for the NWP prediction

results. Several conventional methodologies including rolling mean,

ETS, and ARIMA are compared with deep learning methodologies

such as LSTM and CNN. Both methodologies show superiority in

terms of prediction accuracy enhancement. Based on the analysis

demonstrated in this article, the accuracy of the wind speed

prediction can be enhanced from the following perspectives.

5.1 Improved NWP model

Wind speed is an important output of the NWP model,

which is utilized to describe meteorological evolution. Its

accuracy can significantly increase prediction accuracy. The

modeling of the local information is comprehensive progress.

Generally, the accuracy of the model is impacted by multiple

factors, such as the time step. However, with higher resolution,

the computational load increases dramatically. Thus, the NWP

model should consider the tradeoff between the computational

load and accuracy.

FIGURE 14
Overall rmse results for different prediction steps based on the location.

FIGURE 15
Overall mae results for different prediction steps based on the location.
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5.2 Application of the deep learning-based
error correction algorithm

From the analysis of this paper, both TSP-based and deep-

learning-based error correction algorithms can effectively reduce

prediction error. The experimental study shows that both

methodologies can realize the same effect in terms of

prediction error minimization. TSP algorithms are generally

easier to be implemented when the computational load is

lower. However, repeated modeling is needed if the location

information changes. Also, the selection of the TSP algorithm can

have a great impact on the prediction. Hence, the TSP algorithm

should be estimated prior to using it.

The deep learning algorithm is data-driven, and it just needs

the local weather information to train the algorithm. It can save

time in mathematical modeling. Therefore, the penetration of

deep learning-based methods is increasing in the industry. The

experimental study is conducted to compare the accuracy of the

proposed method with ARIMA, ETS, and LSTM. LSTM shows

the best overall performance among the listed methods. It should

be noted that clustering does not show critical improvement to

prediction accuracy. However, it can increase the computational

speed, which makes it still necessary.
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