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This paper investigates the carbon risk and its role in stocks’ return prediction by

identifying the carbon risk information implied in feature engineering. We

predict the stock returns with different neural networks, construct the

investment portfolio according to the predicted returns and reflect the

returns of stocks with different carbon risks through the relevant evaluation

of the investment portfolio. Our Multi-CNN method can best collect

information on different relationship types and make full use of graph

structure data to identify carbon risks. With or without carbon factor, the

stock market performance of high-carbon industry is better than that of

medium-carbon industry, and the performance of low-carbon industry is

the worst. Moreover, our finding is consistent in both Chinese and American

markets. Investment should pay attention to carbon risk and requires

corresponding carbon risk premium.
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1 Introduction

As concerns grow over global warming, climate extremes and human-generated

carbon dioxide emissions, increasing attention has been paid on carbon issues (Bolton and

Kacperczyk, 2021a; Ren et al., 2022a; Ren et al., 2022b). For example, the Paris Agreement

was adopted at the Paris Climate Change Conference and signed by 195 countries

worldwide. From then on, more countries have initiated policy measures to address

climate change. Particularly, the Department of Resource Conservation and

Environmental Protection issued the Working Guidance for Carbon Dioxide Peaking

and Carbon Neutrality in Full and Faithful Implementation of the New Development

Philosophy1 on 24 October 2021. These policies enhance the strategic significance to

achieve the peak of carbon dioxide emissions and carbon neutrality, which may also

impact the performances of carbon-related firms in capital markets. Therefore, a related

research question is raised: whether some carbon risk factors are of concern to stock

investors. If so, whether these carbon risk factors have important roles in predicting stock

returns.

Carbon risk has attracted widespread attention (Görgen et al., 2020; Bolton and

Kacperczyk, 2021; Wang et al., 2022a). Extreme climate events, physical risks and
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environmental regulations caused by carbon emissions may

bring risks of low-carbon transition and lead to the

revaluation of corporate financial assets (Carney, 2015;

Campiglio et al., 2018; Wang et al., 2022b; Dou et al., 2022).

Moreover, for companies facing carbon risks, especially fossil

fuel-intensive companies, due to factors such as uncertainty in

carbon control regulations and fluctuations in carbon prices,

future cash flow is extremely unstable (Oestreich & Tsiakas, 2015;

Ilhan et al., 2021). They might be very easy to fall into operational

difficulties, which in turn affects the expectations on their stock

returns. In addition, the stock returns of fossil fuel-intensive

companies are also affected by the risk of fossil energy prices and

commodity prices (Bolton and Kacperczyk, 2021).

However, it is very difficult to isolate carbon risk, as there are

many kinds of characteristic factors that reflect stock

information. In this paper, we choose two groups of carbon

factors. First, for dominant carbon factors, we consider carbon

emissions and crude oil prices, as documented in the literature

(Wei Li et al., 2021; Ren X. et al., 2022c). Second, for non-

dominant carbon factors that are not directly related to the

company’s carbon risk, we use fundamental factors and price

factors as they reflect the consistency of carbon risk of enterprises

with the same degree of relevance to carbon. Accordingly, this

paper also sorts all stocks into high-carbon, medium-carbon, and

low-carbon industries, in order to distinguishing stocks based on

the degree of relevance to carbon issues. In theory, the carbon risk

in high-carbon industries might be the highest, followed by that

in medium-carbon industries and the lowest in low-carbon

industries.

There is a long line of literature on stocks’ return

predictability, while only a few have considered the roles of

carbon risk. In this paper, we assume that adding carbon risk

would help to improve the accuracy of predicting stock returns,

especially for stocks that are highly relevant with the carbon

issues. We analyze individual stock information through feature

engineering. Feature engineering plays a decisive role in neural

network prediction to some extent. It provides predictable

information for subsequent operations, and the richness of

information as well as the content of expression play a key role.

This paper mainly contributes to the literature from three

perspectives. First, we use a neural network model to find that

there is a positive carbon risk premium in the stock market under

the nonlinear assumption. Second, we use the Multi-CNN

method to selectively gather information on different

relationship types, and make full use of graph structure data

to identify carbon risks, which gives the best prediction power

when compared to other methods. Third, we find a significant

strategy for selecting stocks with better performance based on our

prediction results, in both Chinese and American markets. In

particular, we predict the return and choose the best 100 stocks

according to the predicted value to construct investment

portfolios. Our portfolios outperform the benchmark

portfolios in all cases.

The structure of this paper is as follows. In Section 2 we

review related literature. In Section 3, we develop our mainmodel

used for prediction. In Section 4, we present our empirical

methodologies and conduct robustness tests. Section 5

concludes and puts forward some potential research questions.

2 Literature review

2.1 Carbon risk and return prediction

Carbon risk generally refers to uncertainty risks associated

with climate change or the use of fossil fuels (Hoffmann & Busch,

2008). The earliest definition of carbon risk includes three

independent parts: regulatory risk, physical risk and business

risk (Labatt & White, 2007). For example, the carbon reduction

requirements in the Paris Agreement and related climate policies

have prevented some traditional energy companies from making

full use of existing resources, resulting in a decline in the value of

these assets (McGlade & Ekins, 2015), which is a manifestation of

regulatory risk. Some scholars also suggest six specific types of

carbon risks (Lash & Wellington, 2007), namely regulatory risk,

physical risk, reputational risk, legal risk, product and technology

risk and supply chain risk. On this basis, related studies have

carried out different studies on the connotation of carbon risk

according to different focuses (Subramaniam et al., 2015;

Gasbarro et al., 2017).

The long-term, structural and systemic effects of low-carbon

transition and global warming have profoundly affected the

stability of the real economy and financial markets

(Svartzman et al., 2021; Dong et al., 2021). Among them, the

important channels through which changes in investment

decisions caused by carbon risk affect the financial market are

mainly reflected in the relationship between carbon risk and

stock returns. Therefore, many scholars begin to consider the

impact of carbon risk on the stock market, and most of the results

show that there is a positive carbon premium in the stock market.

That is, investors require the securities issued by carbon emission

companies they hold to provide higher expected returns to

compensate for higher climate policy risk exposure. For

example, Oestreich and Tsiakas (2015) apply the capital asset

pricing and Fama-French factor models and use a “dirty” vs.

“clean” portfolio approach with data from the German stock

market. The abnormal returns (alpha) of the “dirty-minus-clean”

portfolios are defined as a carbon premium. Wen et al. (2020),

based on the data of 245 companies in Shenzhen Carbon

emission rights Pilot Exchange, find that the establishment of

carbon emission rights exchange significantly increases the

carbon risk premium by using DID model. Bolton &

Kacperczyk (2021) find that companies with higher total

CO2 emissions have higher stock returns, mainly because

investors are already demanding compensation for the carbon

risks they face. Related to this, Hsu et al. (2022) look at the effects
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of environmental pollution on the cross-section of stock returns.

They find that highly polluting firms are more exposed to

environmental regulation risk and com-mand higher average

returns. Kim et al. (2015) and Trinks et al. (2022), based on

Korean and global data, show that carbon intensity is positively

correlated with a firm’s cost of equity capital. However, some

scholars have come to the opposite conclusion that there is a

negative carbon premium in the stock market, and companies

with higher carbon risks have lower expected stock returns.

Garvey et al. (2018) find that a portfolio constructed by

ranking stocks according to carbon emission intensity can

produce positive α. In et al. (2017) similarly points out that

the portfolio of long stocks of low carbon emission companies

and short stocks of high emission companies will generate

positive abnormal returns. Furthermore, Görgen et al. (2020)

explores global stock prices and find no evidence of a significant

carbon risk premium.

Therefore, it is interesting to investigate whether the carbon

risk have impacts on predicting stock returns. If so, would the

predictability vary across stocks with different degrees of

relevance to the carbon.

2.2 Return prediction methods

Stocks’ return prediction is an important research topic. Early

studies tend to investigate this topic by using traditional statistical

methods, such as linear econometric models. Recently, some

scholars start to use nonlinear models (e.g., neural network

model). Financial time series are characterized by nonstationarity,

nonlinearity, and high noise, and thus it is difficult for traditional

statistical models to predict them accurately. Lin et al. (2013) put

forward an SVM-based approach with a two-part feature selection

and forecasting model, and prove that this method has better

generalization ability than traditional methods. Wanjawa and

Muchem (2014) propose the use of an Artificial Neural Network

that is a feedforward multi-layer perceptron with error

backpropagation and this model can better predict the typical

stock market. Zhao et al. (2017) add a time weighting function

to LSTM, and their result is better than other models. Zhang and

Wen (2022) combine CNN and RNN and propose a new

architecture-DWNN. The results show that compared with the

conventional RNN model, the DWNN model can reduce the

mean square error of prediction by 30%. Some other studies also

enhance residual error (ER) which is used to extract important

information from the shallow layer and migrate it to the deep layer.

The neural networks prove robust to this new statistical test and

emerge as the best-performing method in terms of predictability

(LeippoldWang and Zhou, 2022).

CNN model is also widely used in image recognition.

Krizhevsky et al. (2017) develop a new model structure

—Alexnet, which greatly reduced the error rate and subverted

the image recognition field, in order to enhance the network

expression ability and enhance the network level. Szegedy et al.

(2015) construct a 22-layer CNNmodel, which is cascaded by the

Inception structure as the basic modules, and each module uses

different sizes. The filter is processed in parallel with the

maximum pooling, and the number of parameters is reduced

by deleting the full connection layer. By constructing a dense

block structure to approximate the optimal sparse structure, the

performance can be improved without increasing the amount of

computation. He et al. (2016) propose a residual network model

(ResNet), which effectively solved the problem of gradient

disappearance. Currently, convolutional neural network

(CNNs) has been introduced into the field of stock

performance prediction, which is capable of directly extracting

the features of the input without sophisticated preprocessing and

can efficiently process various complex data (Krizhevsky et al.,

2017; Widiastuti 2019; Chen and Huang, 2018). When grouped

according to the degree of carbon risk, combined with the

characteristic engineering including dominant and non-

dominant carbon factors, it essentially constitutes the

relational data similar to the graph structure. The

convolutional neural network is very suitable for processing

graph structure data (Kim et al., 2019) because of its good

fault tolerance, parallel processing ability, and generalization

ability. At the same time, convolutional neural networks are

widely used in carbon-related problems (Estrada and Pop, 2011;

JiZou et al., 2019; ZhaoWang et al., 2019; Zhang andWen, 2022),

indicating that convolutional neural networks can efficiently

identify carbon risks and carbon relationships.

Therefore, we also use the Multi-LSTM and CNN-LSTM

methods as our baseline methods. However, in order to make full

use of the excellent nature of the neural network in forecasting

(Rather et al., 2015; Akita et al., 2016; Gao, 2016), we further

develop the Multi-CNN approach to improve the accuracy of

carbon risk identification and predicting stocks’ returns. We

predict the rate of return to the screen, reduce the number of

stocks andmake them appear more obvious agglomeration effect.

3 Model development

3.1 CNN

Convolutional neural network has different layers which

could be categorized into the input layer, convolutional layer,

fully connected layer, and the output layer.

The convolutional layer is used to do the convolution

operation on the data. We posit input of layer l−1 is an N×N

matrix with F×F convolutional filters. Then, the input of layer l is

calculated according to Eq. 1.

vli,j � δ⎛⎝∑F−1
k�0

∑F−1
k�0

wk,mV
l−1
i+k,j+m⎞⎠ (1)
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In the Eq. 1, vli,j is the value at row i, column j of layer l,wk,m is the

weight at row k, column m of filter and δ is the activation

function.

ReLu (Eq. 2) is a commonly used nonlinear activation

function.

f(x) � max(0, x) (2)

Fully connected layer is responsible for converting extracted

features in the previous layers to the final output. The relation

between two successive layers is defined by Eq. 3

vij � δ⎛⎝∑
k

vj−1k wj−1
k,i

⎞⎠ (3)

In Eq. 3, vij is the value of neuron i at the layer j, δ is activation

function and weight of connection between neuron k from layer

j−1 and neuron i from layer j is shown by wj−1
k,i .

Dropout layer can avoid the model from too much learning

of the training data. It discards some data in time to effectively

prevent over-fitting.

When we distinguish high-carbon, medium-carbon and low-

carbon industries, we automatically cluster the carbon risk

information as the first type of information. The dominant carbon

factor and the non-dominant carbon factor add two different types of

data, and at the same time, the two types can be subdivided into other

types of data. For example, the non-dominant carbon factor contains

price information and fundamental information. There are

relationships among these different types of data, such as

subordination between individual stocks and characteristics,

subordination between individual stocks and industries, etc. Thus,

we innovatively adopt CNN in this paper to solve the estimation

difficulty given these complex relationships and graph structure data.

3.2 LSTM

Long Short-Term Memory (LSTM) is first designed for

overcoming the back-propagating errors (RumelhartHinton

and Williams, 1986). As a special kind of RNN, capable of

learning long-term dependencies, LSTM can solve the

problem of exploding and vanishing gradient problem for

general RNN (Graves 2012).

A typical LSTM cell is composed of an input gate, an output

gate, and a forget gate. Each cell has two states, the cell state and

the hidden state (Liu and Pun, 2022). The output of LSTM at time

t is hi, which is defined by Eq. 4

hi � oi* tan h(ci) (4)
In the Eq. 4:

ot � σ(Woxt + Uoht−1 + bo) (5)
ct � f tct−1 + it~ct (6)

f i � σ(Wf xt + Uf ht−1 + bf ) (7)

it � σ(Wixt + Uiht−1 + bi) (8)
~ct � tan h(Wcxt + Ucht−1) (9)

In the Eq. 5, ot is the output of the output gate, σ is Sigmoid

function, xt is the input vector at time t, ht is the output of the
hidden layer at time t-1, and W, U as well as b are the weight

matrix and offset vector during calculation, respectively. In the

Eq. 6, it is the output of the input gate at time t. In the Eq. 6, ft is

the output of the forget gate at time t.

3.3 CNN-LSTM

Figure 1 shows the CNN-LSTM structure used in the paper.

The data is transmitted via the input layer, and the convergence

of the network structure is accelerated by Batch Normalization

layer, preserving the characteristic skew of the activation function

at one and the mean activation average near zero due to

normalization. The normalized result is calculated by the 1D

convolutional layer and the LSTM layer. To match the size of the

input data amount, two operations are performed separately.

Following that, part of the data is discarded through the Dropout

layer to prevent overfitting. The processing data is flattened and

then passed through the fully connected layer (Dense) and the

result is finally obtained through the output layer.

3.4 Sliding window

To study the impact of the real stock market, we use the

sliding window method (Nair et al., 2010) to simulate the real

investment process, as shown in Figure 2. The model performs

estimation and prediction within one data window at a time, and

after a single completion, lets the data window slide forward to

perform the same estimation and prediction operation for the

next interval. The sliding window method preserves the time

series information within the data and is consistent with reality

compared to traditional data set segmentation methods such as

the random leave-out method (Li et al., 2017). Within each data

window, we divide it into a training interval, a test interval and a

validation interval. The training interval is to fit the parameters of

the model using the data while the test interval is to test the

selection of suitable hyperparameters and then refit the model on

the training and validation data once suitable hyperparameters

are obtained. Furthermore, the validation interval is to test the

out-of-sample prediction of the resulting model.

3.5 Multi-CNN

Finally, based on the models and LSTM approach introduced

above, we increase the complexity of the model and develop the

Multi-CNN methodology as the main empirical model for our
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study. Basically, we refer to standard approach in the literature

and select Conv1D layers, LSTM layers, Dense layers, Dropout

layers, Batch Normalization layers, ReLu activation functions,

finding suitable combinations for hyperparameters selection,

model estimation, and performance evaluation. It is worth

noting that we do not include Conv2D layers, Conv3D layers

and Pooling layers in the construction of the model. This is

because both layers require the input quantities to be converted

to 2D or 3D, which can lose the original 1D data characteristics of

the stock data and add a large amount of redundant information

creating interference. Although Pooling layers can prevent over-

fitting to some extent, they are essentially downscaling and

abstraction of visual input objects modelled on the human

visual system, which is clearly not applicable to stock data.

Moreover, we do not construct a particularly large set of

features, preventing the influence of the carbon factor from being

weakened. In addition, on the application of sliding windows,

90% of the first order of all trading day data for 5 years is taken as

the training interval each time, and the remaining 10% is the test

interval. The test interval is the 1 month of trading day data

immediately following this 5-year period. All the neural networks

are built using Keras, a high-level API for Tensorflow in Python,

and to accomplish the computation of huge amounts of data, we

program them on the Linux operating system, using GPU

acceleration.

4 Empirical methodology

4.1 Data sample

We obtain Chinese daily quotes data for all A-share stocks

listed on the Shanghai and Shenzhen stock exchanges from the

Tendency and download carbon-related factors from Wind

Database, the largest financial data provider in China.

Meanwhile, according to the “Notice on the Release of Energy

Efficiency Benchmarking Levels and Benchmarking Levels in Key

Areas of High Energy-Consuming Industries (2021 Edition)",

which defines high energy-consuming industries. All

individual stocks are sorted into high-carbon, medium-carbon

and low-carbon industries according to the CSRC Releases

Guidance Document on Uncovered Losses of Listed Companies.

Our data sample covers more than 4,600 A-share stocks traded

from January 2000 to 2 December018. We also collect the same

dimensional data for the US, obtaining daily frequency quotes for

all US stocks from the Wharton CRSP database and for the S&P

FIGURE 1
CNN-LSTM structure. Note: the data is transmitted via the input layer, and the convergence of the network structure is accelerated by Batch
Normalization layer. The normalized result is calculated by the 1D convolutional layer and the LSTM layer. Following that, part of the data is discarded
through the Dropout layer to prevent overfitting. The processing data is flattened and then passed through the fully connected layer (Dense) and the
result is finally obtained through the output layer.

FIGURE 2
Sliding window operation mode. Note: the model performs
estimation and prediction within one data window at a time, and
after a single completion, lets the data window slide forward to
perform the same estimation and prediction operation for the
next interval. Within each data window, we divide it into a ①

training interval; ② a test interval and a ③ validation interval.
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500, which is set as the benchmark. In distinguishing between

high-carbon, medium-carbon and low-carbon industries in US

markets, we follow the industry classification of the Wharton

database and refer to the definition of high energy-consuming

industries by Bolton et al. The final sample of data from the US

covers 7,528 stocks traded from January 2000 to December 2018.

For the data processing of the US and Chinese data, we used

the same method. We build the pool of stock-level predictive

characteristics, which includes 19 characteristics in total,

including four carbon-related factors, namely China

CO2 emissions, Global CO2 emissions, Futures Settlement

Price (continuous): Brent Crude Oil, Futures Settlement Price

(continuous): WTI Crude Oil. In terms of data frequency, all

15 stock characteristics are updated daily, 2 crude oil futures

prices are daily updated and 2 carbon emissions factors annually.

In order to improve the validity of the data, the annual data is

converted into daily data.

Machine learning has been proven to be effective in

extracting features for prediction in complex and noisy data

environments. In order to exploit the potential of the data,

enriching the amount of information provided by the limited

data available, we process the data slices, not only in terms of the

number of factors, but also in terms of the length of the data

slices, creating a more complex three-dimensional tensor. For

example, the training set shapes for the Chinese and US stock

markets from 2014 to 2018 are 3339180*20*19 and

9106633*20*19 respectively.

4.2 Prediction accuracy assessment for
baseline methods

The metric for evaluating forecast accuracy is defined as:

MSE � 1
n
∑n
i�1
(ŷi − yi)2 (10)

RMSE �
������������
1
n
∑n
i�1
(ŷi − yi)2√

(11)

MAE � 1
n
∑n
i�1

∣∣∣∣ŷi − yi

∣∣∣∣ (12)

where y represents the true return, ŷ represents the model

predicted return, MSE, RMSE, MAE represent the mean

squared error, root mean squared error and mean absolute

error of the model respectively. Their statistical values lie

between 0 and 1, with smaller data representing better model

prediction performance.

We initiate our tests by using some baseline methods such as

Multi-LSTM, CNN-LSTM methodologies, as shown in Table 1.

Prediction accuracy assessment metric values (MSE, RMSE and

MAE) are calculated under the without and with the carbon

factor, respectively. The neural network method has similar

prediction results for the all-stock, high-carbon and medium-

carbon sectors, while the prediction accuracy is poorer for the

low-carbon sector. Moreover, the prediction effect of the neural

network is less affected by the carbon factor.

In order to more clearly and visibly represent the impact of

the inclusion of factors representing the carbon macro

environment on the stock market, we conduct an in-depth

analysis by constructing a portfolio. For all stocks, we rank

their returns over the forecast period. Then, to amplify the

impact to get more valuable results, we select the top

100 stocks in terms of forecast returns to build the portfolio

for that day and calculate both the true return and the cumulative

return of the daily portfolio from January 2005 to December

2018. The SSE is used as a benchmark for the Chinese stock

TABLE 1 Evaluation of prediction accuracy using Multi-LSTMmethod and CNN-LSTMmethod with and without carbon factor in feature engineering
Note: This table records the values of MSE, RMSE and MAE used to evaluate the prediction accuracy of Multi-LSTM method and CNN-LSTM
method. And all, high, mid as well as low represent the full stock, high-carbon, medium-carbon as well as low-carbon sectors respectively.
Meanwhile, the values of Chinesemarket and Americanmarket are recorded respectively. Overall, in the case of feature engineeringwith andwithout
carbon factor, the values of each forecast accuracy assessment indicator in different industries are small, indicating that the methodology has
good forecasting effect and high forecast accuracy.

CNN-LSTM-China CNN-LSTM-America Multi-LSTM-China Multi-LSTM-America

MSE MAE RMSE MSE MAE RMSE MSE MAE RMSE MSE MAE RMSE

All_non_c_factor 0.0201 0.0009 0.0290 0.0182 0.0008 0.0250 0.0217 0.0010 0.0300 0.0187 0.0008 0.0268

High_non_c_factor 0.0210 0.0009 0.0273 0.0180 0.0007 0.0243 0.0211 0.0009 0.0280 0.0183 0.0008 0.0261

Mid_non_c_factor 0.0210 0.0009 0.0298 0.0191 0.0007 0.0253 0.0215 0.0009 0.0299 0.0189 0.0009 0.0268

Low_non_c_factor 0.0269 0.0012 0.0352 0.0230 0.0093 0.0299 0.0286 0.0014 0.0363 0.0206 0.0012 0.0331

All_c_factor 0.0229 0.0009 0.0329 0.0198 0.0009 0.0298 0.0232 0.0010 0.0319 0.0213 0.0009 0.0284

High_c_factor 0.0204 0.0008 0.0303 0.0183 0.0008 0.0280 0.0218 0.0009 0.0298 0.0217 0.0008 0.0282

Mid_c_factor 0.0201 0.0009 0.0289 0.0194 0.0009 0.0284 0.0228 0.0010 0.0304 0.0208 0.0009 0.0270

Low_c_factor 0.0288 0.0010 0.0314 0.0237 0.0010 0.0335 0.0299 0.0013 0.0354 0.0248 0.0011 0.0332

Frontiers in Environmental Science frontiersin.org06

Tang and Li 10.3389/fenvs.2022.1035809

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2022.1035809


FIGURE 3
Cumulative return rate of portfolio constructed by Multi-LSTMmethod and CNN-LSTMmethod. Note: the figure shows the cumulative returns
from January 2005 to December 2018 of investment portfolios constructed by China and America through Multi-LSTM method and CNN-LSTM
method with and without carbon factors in feature engineering. SSE Composite Index is selected as benchmark in China, while the S&P 500 is
selected in America. In the legend, all stands for all stocks, high stands for high-carbon industry, mid stands for medium-carbon industry and
low stands for low-carbon industry.
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market and the S&P 500 is used as a benchmark for the US stock

market, and they are used to compare the cumulative returns of

the method with and without the carbon factor respectively.

Figure 3 shows the cumulative returns of the portfolios

constructed under the Multi-LSTM, CNN-LSTM

methodologies for both the no-carbon factor and the carbon-

containing factor. The portfolio constructed through the neural

network approach outperforms and that the carbon factors have

a significant impact on portfolio selection. With the addition of

the carbon factor, the high carbon sector forecasts improve

significantly in these neural network methodologies and the

portfolios all achieve good returns. The total return, average

return, omega ratio, Sharpe ratio and Sortino ratio of the

portfolio, using Multi-LSTM method and CNN-LSTM

method, are calculated for further analysis, given in Table 2.

In fact, for high carbon sectors, they have higher carbon risk and

investors need a higher risk premium to compensate.

4.3 Further evidence from the Multi-CNN
methods

Similarly to the tests we have done on the two baseline

methods, Table 3 records the MSE, RMSE, MAE values of these

prediction accuracy assessment metrics for the Multi-CNN

methodology without and with carbon factors separately,

where All, High, Mid, and Low represent the all-stock, high-

carbon, medium-carbon, and low-carbon sectors, respectively.

Clearly, the Multi-CNN methodology has the smallest MSE,

RMSE and MAE values and performs the best, the CNN-LSTM

TABLE 2 Evaluation of performance of portfolio using Multi-LSTM method and CNN-LSTM method with and without carbon factor in feature
engineering Note: This table records the values of total return, average return, omega ratio, Sharpe ratio and Sortino ratio used to evaluate the
performance of portfolio of Multi-LSTM method and CNN-LSTM method. And all, high, mid as well as low represent the full stock, high-carbon,
medium-carbon as well as low-carbon sectors respectively. Meanwhile, the values of Chinese market and American market are recorded
respectively. And SSE Composite Index is selected as benchmark in China, while the S&P 500 is selected in America. Compared to the benchmark,
the five measures of investment performance of the portfolio constructed by this methodology far exceed the benchmark, implying a
significantly higher return per unit of risk, which is a positive prediction.

Non_c_factor_LSTM-China Non_c_factor_LSTM-America

Index All High Mid Low Index All High Mid Low

All_return 113.98 745.59 722.45 654.15 530.53 97.05 810.2 738.74 689.77 537.14

Annual_return 8.77 57.35 55.57 50.32 40.81 7.47 62.32 56.83 53.06 41.32

Omega_ratio 1.06 1.44 1.42 1.38 1.32 1.08 1.73 1.67 1.64 1.49

Sharpe_ratio 0.32 2.05 1.99 1.81 1.5 0.37 2.95 2.73 2.58 2.05

Sortino_ratio 0.44 3.02 2.93 2.65 2.16 0.52 4.55 4.17 3.91 3.05

C_factor_LSTM-China C_factor_LSTM-America

Index All High Mid Low Index All High Mid Low

All_return 113.98 660.17 738.4 619.05 544.39 97.05 743.36 825.36 807.75 580.67

Annual_return 8.77 50.78 56.8 47.62 41.88 7.47 57.18 63.49 62.13 44.67

Omega_ratio 1.06 1.41 1.44 1.36 1.33 1.08 1.73 1.76 1.81 1.55

Sharpe_ratio 0.32 1.87 2.03 1.72 1.54 0.37 2.84 3.03 3.08 2.23

Sortino_ratio 0.44 2.73 3 2.5 2.22 0.52 4.33 4.67 4.74 3.33

Non_c_factor_CNN-LSTM-China Non_c_factor_CNN-LSTM-America

Index All High Mid Low Index All High Mid Low

All_return 113.98 746.74 816.34 699.9 630.54 97.05 855.79 801.01 738.86 662.21

Annual_return 8.77 57.44 62.8 53.84 48.5 7.47 65.83 61.62 56.84 50.94

Omega_ratio 1.06 1.44 1.5 1.41 1.4 1.08 1.79 1.72 1.68 1.66

Sharpe_ratio 0.32 2.05 2.26 1.94 1.81 0.37 3.14 2.93 2.75 2.58

Sortino_ratio 0.44 3.03 3.36 2.85 2.63 0.52 4.87 4.51 4.2 3.89

C_factor_CNN-LSTM-China C_factor_CNN-LSTM-America

Index All High Mid Low Index All High Mid Low

All_return 113.98 746.74 816.34 699.9 630.54 97.05 784.77 866.32 738.37 651.21

Annual_return 8.77 57.44 62.8 53.84 48.5 7.47 60.37 66.64 56.8 50.09

Omega_ratio 1.06 1.44 1.5 1.41 1.4 1.08 1.71 1.82 1.68 1.65

Sharpe_ratio 0.32 2.05 2.26 1.94 1.81 0.37 2.88 3.2 2.75 2.54

Sortino_ratio 0.44 3.03 3.36 2.85 2.63 0.52 4.42 4.97 4.2 3.82
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TABLE 3 Evaluation of prediction accuracy using Multi-CNN method with and without carbon factor in feature engineering Note: This table records
the values of MSE, RMSE and MAE used to evaluate the prediction accuracy of Multi-CNNmethod. And all, high, mid as well as low represent the
full stock, high-carbon, medium-carbon as well as low-carbon sectors respectively. Meanwhile, the values of Chinese market and American market
are recorded respectively. Overall, in the case of feature engineeringwith andwithout carbon factor, the values of each forecast accuracy assessment
indicator in different industries are small, indicating that the methodology has good forecasting effect and high forecast accuracy.

Multi-CNN-China Multi-CNN-America

MSE MAE RMSE MSE MAE RMSE

All_non_c_factor 0.0199 0.0008 0.0284 0.0143 0.0007 0.0225

High_non_c_factor 0.0195 0.0008 0.0278 0.0153 0.0006 0.0215

Mid_non_c_factor 0.0198 0.0008 0.0282 0.0157 0.0006 0.0223

Low_non_c_factor 0.0250 0.0012 0.0343 0.0183 0.0009 0.0302

All_c_factor 0.0198 0.0008 0.0283 0.0162 0.0006 0.0242

High_c_factor 0.0193 0.0008 0.0275 0.0161 0.0007 0.0249

Mid_c_factor 0.0197 0.0008 0.0281 0.0167 0.0007 0.0241

Low_c_factor 0.0245 0.0011 0.0338 0.0221 0.0009 0.0290

FIGURE 4
Cumulative return rate of portfolio constructed by Multi-CNN method. Note: the figure shows the cumulative returns from January 2005 to
December 2018 of investment portfolios constructed by China and America through Multi-CNNmethod with and without carbon factors in feature
engineering. SSE Composite Index is selected as benchmark in China, while the S&P 500 is selected in America. In the legend, all stands for all stocks,
high stands for high-carbon industry, mid stands for medium-carbon industry and low stands for low-carbon industry.
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methodology is in the middle and performs the second best, and

the Multi-LSTM methodology is the largest and performs the

worst, but compared to other traditional methods, the neural

network methodologies still perform well in prediction.

In more detail, the values of each forecast accuracy

assessment indicator in different industries are small,

indicating that the methodology has good forecasting effect

and high forecast accuracy. The high prediction accuracy of

the Multi-CNN approach also shows that this method is suitable

for the graph structure data used in this paper. It has good fault

tolerance, parallel processing ability, and self-learning ability. It

can deal with the problems of complex environmental

information, unclear background knowledge, and unclear

reasoning rules, and identify carbon risks efficiently. The close

relationship between levels and spatial information makes it

especially suitable for the processing and understanding of

graph structure data, and it can automatically extract rich

related features. From the results, the values of each indicator

for the all-stock, high-carbon andmedium-carbon sectors are not

significantly different, implying that they have similar prediction

results, while the values of each indicator for the assessment of

prediction accuracy for the low-carbon sector are greater than

those of the other groups, implying that the methodology has

poorer prediction accuracy for the low-carbon sector. This may

be because the small number of stocks in the low carbon sector

means that the amount of data is low, which affects the

forecasting effect. Following this, the groups with and without

the carbon factor are similar in the values of these indicators, with

only individual indicator values being smaller in the neural

network system with the carbon factor. Thus, the inclusion of

the carbon factor or not has no significant effect on the prediction

accuracy. In terms of the dimension of prediction accuracy alone,

the carbon factor has little influence on the predictive

effectiveness of this multi-CNN method.

Furthermore, as illustrated in Figure 4, the cumulative

returns of the portfolios constructed through the Multi-CNN

methodology all significantly outperform the benchmark,

although the downward trend and timing of returns occur

roughly in line with the index. This again means that the

methodology is not able to select stocks that perform well

during a downturn in the stock market, which is not ideal,

whereas when the index is running smoothly, the

methodology’s forecasts are able to successfully select stocks

with top real returns, resulting in an increasing cumulative

portfolio return.

We can also find that the addition of the carbon factor has

a significant impact on sectors with different carbon

relevance. A pool of all stocks without the carbon factor

has the highest cumulative portfolio returns constructed

through the neural network system, followed by high-

carbon, medium-carbon and low-carbon sectors in that

order. We believe that an all-stock group implies a greater

range of selection and a wide variety of stocks covered, which

can effectively avoid a collective decline in yield due to an

over-concentration of stocks included in the group. And when

the carbon factor is added, the cumulative returns of the high

carbon sectors increase significantly, outperforming the

cumulative returns of the all-equity range constructed

portfolios. This reflects the presence of investors

demanding a higher risk premium for carbon risk, a

phenomenon highlighted by the introduction of the carbon

factor.

The total return, average return, omega ratio, Sharpe ratio

and Sortino ratio of the portfolio, using Multi-CNN method, are

calculated for further analysis, given in Table 4. Compared to the

benchmark, the five measures of investment performance of the

portfolio constructed by this methodology far exceed the

benchmark, implying a significantly higher return per unit of

risk, which is a positive prediction. In contrast, we can see that

overall investment performance declines with the addition of the

carbon factor, possibly because the independent carbon factor

changes the stable structure of the neural network’s already

TABLE 4 Evaluation of performance of portfolio using Multi-CNN method with and without carbon factor in feature engineering Note: This table
records the values of total return, average return, omega ratio, Sharpe ratio and Sortino ratio used to evaluate the performance of portfolio of
Multi-CNN method. And all, high, mid as well as low represent the full stock, high-carbon, medium-carbon as well as low-carbon sectors
respectively. Meanwhile, the values of Chinese market and American market are recorded respectively. And SSE Composite Index is selected as
benchmark in China, while the S&P 500 is selected in America. Compared to the benchmark, the fivemeasures of investment performance of the
portfolio constructed by this methodology far exceed the benchmark, implying a significantly higher return per unit of risk, which is a positive
prediction.

Non_c_factor_CNN-China Non_c_factor_CNN-America

Index All High Mid Low Index All High Mid Low

All_return 113.98 864.37 812.68 790.87 663.13 97.05 906.62 859.28 819.21 701.08

Annual_return 8.77 66.49 62.51 60.84 51.01 7.47 69.74 66.10 63.02 53.93

Omega_ratio 1.06 1.51 1.49 1.47 1.38 1.08 1.81 1.81 1.74 1.61

Sharpe_ratio 0.32 2.34 2.25 2.17 1.82 0.37 3.25 3.17 2.99 2.57

Sortino_ratio 0.44 3.50 3.34 3.21 2.66 0.52 5.08 4.93 4.62 3.90
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15 factors, and is less effective than without the carbon factor in

terms of overall input.

5 Conclusion

This paper mainly develops the Multi-CNN method to

predict stock returns, dividing all stocks into high-carbon

industry, medium-carbon industry and low-carbon industry

for their carbon relevance degree. According to the predicted

returns, we construct investment portfolios in different

industries, and reflect the stock performance of with different

carbon relevance. We analyze individual stock information

through feature engineering, distinguishing all data between

dominant and non-dominant carbon factors. It is found that

under the nonlinear hypothesis, the stock market also has a

carbon risk premium, and it is a positive carbon risk premium.

We find that Multi-CNN methods can selectively collect

information on different relationship types and make full use

of graph structure data to identify carbon risks. Using Multi-

CNN method for return predictions does outperform Multi-

LSTM and CNN-LSTM methods.

In the empirical process, some interesting phenomena are

found. For example, when the characteristic engineering contains

an explicit carbon factor, the investment return of the portfolio

formed by stocks selected from high-carbon industries is higher

than that of the portfolio formed by stocks selected from all

stocks. Theoretically, if the forecast is accurate, the return of the

all-stock portfolio should be the highest. Thus, some further

studies might be required to explain this phenomenon.

Moreover, in reality, carbon risk is not the only influencing

factor. Some other factors can be further controlled when

studying carbon risk premium, which is reflected in the

subdivision of internal stocks in high-carbon, medium-carbon,

and low-carbon industries.

Some inspirations are drawn from the above conclusions. It is

necessary to continuously improve the efficiency and

effectiveness of carbon supervision, form a balanced carbon

price signal through market operations, and guide the

sustainable development of high-carbon enterprises. In

addition, attention should also be paid to the role of laws and

regulations in the green transformation of high-carbon

enterprises, strengthening the connection between China and

the global carbon market, and generating economic and political

benefits.
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