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Trade has contributed to economic development and has brought countries or

regions of the world closer together, but it has also had a significant impact on the

global environment, particularly in terms of carbon dioxide emissions. Does an

increase in a country’s trade necessarily contribute to an increase in its carbon

emissions? This paper examines the impact of changes in the position of major

countries in the world trade network on their carbon emission levels. In terms of

research methodology, this paper achieves an innovation by adopting a complex

network approach to analyze the structural characteristics of the trade relationship

networks ofmajor countries or regions in theworld, providing a newperspective for

the studyof the relationship between tradedevelopment andcarbon emissions. The

results of the study show that: trade relations among countries are relatively stable

from2000 to2020, trade ties amongmembers of regional integrationorganizations

are increasing, the top ten countries in terms of importance are mainly developed

countries, andChinahas very close trade relationswithmost countries. Basedon the

analysis of structural characteristics, the impact of changes in the network status of

each country on its ocarbon emissions is analyzed, using indicators such as the

degree centrality of each node as the independent variable and its domestic carbon

emission level as the dependent variable. It is found that developed countries have a

significant positive impact on in-going degree centrality, and insignificant impact on

out-going degree centrality and betweenness centrality. In contrast, developing

countries have a significant positive impact on out-going degree centrality and a

negative impactoncarbonemissionsbybetweenness centrality, and this conclusion

tells us that not all export growthwill contribute to higher levels of carbon emissions

in the country. Eigenvector centrality has a negative effect on carbon emissions for

both developing and developed countries, and closeness to centrality has no effect

on carbon emissions while closeness centrality has no effect on carbon emissions.

The results of this study again show that the influence of developed countries is

greater than that of developing countries on carbon emissions; therefore, the role of

developed countries can be taken into account in subsequent studies on carbon

emission reduction.
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1 Introduction

In 2021, global exports will total US$22.284 trillion, up 26.3%

year-on-year and 17.3% compared to 2019, the year before the

epidemic. The surge in world trade shows that the world

economic order is being restored, but trade development is

accompanied by increasing pressure on the environment.

2021 has seen frequent episodes of severe weather around the

world, with abnormally high temperatures in many places. The

main cause of global warming is carbon dioxide emissions from

burning fossil fuels (Quilcaille, et al., 2018). 2019 global carbon

dioxide emissions are at the same level as in 2018, and for the first

time in 10 years, growth stops for the first time [IEA World

Energy Development Report (2020)]. In 2021, a post-epidemic

economic rebound allowed global carbon emissions to largely

return to the levels prior to the 2019 New Crown epidemic

pandemic, reversing the temporary reduction in 2020 due to the

New Crown epidemic (BP World Energy Statistics Yearbook

2022). It is, therefore, necessary to study the relationship between

trade and carbon emissions. Studies have shown that there is an

inverted “U” shaped relationship between trade liberalization

and environmental regulation (Duan, et al., 2022), and that there

is a causal relationship between trade volumes and carbon

emissions (Sinha and Sen, 2016). The positive link between

international trade and carbon emissions is facilitated by

technology so free trade agreements are beneficial for carbon

emissions in high-income countries (Yao, et al., 2019), and trade

development is beneficial for carbon performance in developing

countries (Li, et al., 2022). There are many studies on trade and

carbon emissions, but most of them are based on the relationship

between trade volume and carbon emissions, while no research

has been found on the relationship between the trade status of

each country and carbon emissions, and this study fills this

gap. This paper adopts a social network approach,

incorporating the entire world trade network into a network

system, and studies the position of the world’s major countries in

the trade network and the network’s status. This paper uses a

social network approach to study the position of the world’s

major countries in the trading network and the impact of changes

in network position on their carbon emissions.

2 Literature review

2.1 Research on trade networks

The trading system is complex and consists of interactions

between countries or regions. Changes in the politics and

economics of each country or region within this system affect

themselves and have knock-on effects on countries or regions

outside its country or region. This makes the trading system a

complex system that requires new research tools to analyze trade

as a system (Serrano and Boguna, 2003).

Complex networks as a complex network analysis tool and

complexity theory provide a research paradigm for international

trade research. The application of the complex networks

approach to the study of international trade reveals the

mechanisms of international trade formation and evolutionary

patterns from a global perspective. It explains the patterns of

interactions in trade between countries (regions) and their

impact on the structure and function of the system. (Lee,

et al., 2013; He and Deem, 2010).

The use of complex networks in the trading system academic

research many (Amador and Cabral, 2017; Garcia-Perez et al.,

2016; Ge, et al., 2016; Hatfield, et al., 2018) for the study of

international trade networks. Starting from the unweighted

network, ignoring the impact of trade direction, and the

amount on the relationship between the two, only consider

the existence of import and export relationships between

trading countries or regions from the perspective of the

number of relationships to analyze the topological nature of

the global trade network, and the position of each economy in the

trade network (WANG, et al., 2009).

Subsequently, the study of directed networks and weighted

directed networks began (Zhou, et al., 2020; Hou, et al., 2018). At

that time, the choice of weights was also various methods

commonly used in trade flow networks based on export

volumes, but also based on import and export volumes to

calculate and obtain the trade competition index or

complementarity index, establish a competitive or

complementary network (Wang, et al., 2022, Zhou, et al.,

2022; Yu and Niu, 2022), and analyze the competitive

position of each economy and its complementary position

with other countries. This allows the analysis of economic

linkages between economies and the prediction of trade

possibilities. Nowadays, complex networks have been widely

used as a research method for studying various trade

networks. However, most are limited to studies of the

characteristics of trade networks and simply differ in the

methods used to build them.

2.2 Research on carbon emissions

Environmental changes have prompted scholars to focus on

carbon emissions, and many studies on carbon emissions have

been conducted (Adebayo, et al., 2022; Shah, et al., 2022; Liu,

et al., 2022; Tang, et al., 2022). Through numerous studies, it has

been found that there is a consistency between economic growth

rates and carbon emission growth rates (Zhao B et al., 2022), with

urbanization and urban sprawl driving an increase in

transportation, construction, and industrial spending, thus

contributing to an increase in carbon emissions (Cheng and

Hu, 2022; Yan, et al., 2022).

Research on carbon emission transfer networks generated

employing commodity distribution found that due to advanced
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technology and relatively reasonable industrial structure,

economically developed regions are capable of accomplishing

the expected carbon emission reduction, while economically

relatively backward regions are not (Zhao X et al., 2022). Still,

emission reduction achieved in this way tends to cause developed

regions to transfer high-emission industries to backward regions,

thus increasing the carbon emission reduction pressure on

backward regions, which is not conducive to overall carbon

emissions reduction.

To reduce overall carbon emissions, scholars have found that

by increasing investment in clean energy (Shi, et al., 2022),

increasing the proportion of clean energy use, improving

production technology, upgrading industrial structure,

adopting integrated power generation (Zhang, et al., 2022)

and enhancing carbon emission efficiency and energy intensity

(Xiang, et al., 2022; Zhang, et al., 2022), the goal of carbon

emission reduction can truly be achieved, thus contributing to

the sustainable development of the environment (Gao, et al.,

2021). There are also many studies on carbon emissions but

many examine the factors influencing carbon emissions and their

performance from the perspective of industry heterogeneity or

regional heterogeneity.

2.3 Studies on the relationship between
trade development and carbon emissions

The relationship between trade and carbon emissions has

been a popular topic of academic research, with some scholars

arguing that increased exports must increase energy

consumption and that there is a causal relationship between

trade volumes and carbon emissions (Sinha and Sen, 2016; Khan,

et al., 2022; Aller, et al., 2015).

However, Nasir, et al. (2021), (Adebayo et al., 2021; Shahbaz,

et al., 2013), through a study on the relationship between trade

openness and carbon emissions in Australia, Indonesia, and

Argentina, found that trade openness would have a positive

impact on carbon dioxide emissions as a whole in the long

run, as trade openness allows developing economies to gain

technological advances that are conducive to improving the

efficiency of carbon emissions.

Therefore, some scholars suggest that the development of

FTAs is conducive to environmental improvement in high-

income countries because high-income countries reduce their

carbon emission levels by improving technology or shifting high-

polluting industries, while the environmental standards of low-

and middle-income countries are relatively lax. Their

environmental systems are less rigorous than those of high-

income countries, leading to the development of FTAs being

detrimental to their environmental improvement (Yao, et al.,

2019; Acheampong, et al., 2019; Hung, et al., 2022).

Synthesizing scholars’ research on trade, trade networks,

and carbon emissions, we find that there are many studies on

the three. However, most of the studies on trade networks are

based on various methods to build networks and carry out

analysis of network characteristics, while most of the studies

on carbon emissions also focus on influencing factors and

carbon emission efficiency. This paper fills a gap in the

research on the association between trade networks and

carbon emissions using complex networks and econometric

methods. This paper takes the status indicator of each country

node in the world trade network as the independent variable

and the level of carbon emissions of each country as the

dependent variable to study the impact of the evolution of

each country’s status in the trade network on its domestic

carbon emissions level. The greatest innovation of this paper is

to take global trade as a system and systematically analyze the

impact of the change in each country’s network status on its

domestic carbon emissions from the perspective of the

network.

3 Data sources and research methods

3.1 Sources of data

The trade data in this paper is based on carbon dioxide

emissions data from the WIOD environmental accounts

database, which is recorded as of 2016. This paper takes the

WIOD environmental account countries as the main basis to

ensure the consistency of the two databases and correctly

measure the node indicators in the trade network. It adds

Singapore and other countries and finally obtains trade data

from UN comtrade for 51 countries and regions from

2000–2016 trade data, 51 countries or regions with others

between the trade network, all under the ZOW, so the final

trade network has 52 countries or regions nodes.

As these 52 countries or regions are the world’s major

countries or regions, their economic development is relatively

developed compared to other countries, and trade contacts are

close; building a trade network based on this will be a near fully

linked network.

3.2 Research methodology

3.2.1 Trade network construction
In this paper, 52 countries or regions between the trade

volume were utilized to construct the weight relationship

matrix: M � (Wtij)N×N, Wtij is the export trade volume of

country i to country j in year t. On this basis, the data were

truncated using the average export value of the 52 countries or

regions in 2000 as the threshold, and trade below the threshold

was considered to determine that Wtij � 0, thus ensuring that

the world’s major countries were included in the analysis

network (see Figure 1).
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3.2.2 Analysis of network properties
In social network analysis, there are many indicators to

analyze the topological nature of the network, but this

paper focuses on the closeness of the links between nodes in a

trade network. Therefore, network density is chosen to analyze

the closeness of the links between nodes as a whole, while

modularity analysis analyzes the closeness of the links

between nodes from a partition perspective.

Network density is a key measure of the closeness of nodes in

a social network, expressed as the ratio of the actual number of

links in the network to the number of links that should

theoretically exist, and is generally measured using a binary

adjacency matrix. The higher the network density, the closer

the links between the nodes in the network, the smoother the

exchange of information, and the more active the network as a

whole (Hua, et al., 2022).

Newman (2006) states that a complex social network is

mostly composed of several or more intra-group clusters or

communities, each with common characteristics and attributes

among the nodes, and the communities are connected by a few

nodes (Wasserman and Faust, 1994). When the density within a

community is higher than the density of the network, the nodes

within the module are generally considered to be more closely

connected (Liu, 2014).

3.2.3 Analysis of network node status indicators
The indicators of node status in social networks mainly

include node centrality indicators and influence indicators,

where node centrality includes degree centrality, mediator

centrality, proximity centrality and eigenvector centrality.

The original data in this paper are time-series data. The

authors obtained the above centrality indicators by

calculation and then standardized them to facilitate the

analysis of changes in indicators for the same country over

different periods.

(1) Degree and Degree Centrality (DC) analysis includes the

degree analysis of unweighted and weighted networks. In

a trade network, the degree of an unweighted network is

the number of countries or regions with which a country

or region trades, and the degree of a weighted network is

the total exports of a country or region, which is used to

indicate the importance of the nodes in the trade network.

In this paper, the export value of the country or region is

used as the weight to build the weighted trade network,

therefore, the degree of this paper is the degree of the

weighted network, and its calculation formula is as

follows. (Liu, 2014):

Ki � ∑
j

Wij

Where: Wij is the node i and j connecting edge weights. In this

paper, it refers specifically to the export trade of country i to

country j and also the import of country j from country i.

Therefore, the degrees of exit of country i and entry of

country j are defined as follows:

FIGURE 1
Global trade network (2020).
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Kout
i � ∑

j

Wij

Kin
j � ∑

i

Wij

Where the equation represents the degree of exit for country i

and the next equation represents the degree of entry for

country j. In a global trade network, a higher value of nodal

exit for a country indicates a higher export trade, and a higher

value of nodal entry for a country indicates a higher import for

that country. Degree centrality is a standardized form of

degree.

(2) Betweenness Centrality (BC) was first proposed by the

American sociologist Linton C. Freeman (Freeman, 2004).

Nodal betweenness centrality refers to the percentage of the

minimum value of the number of paths at a node. It is used to

analyze the relationship between world trade networks

(Wang, et al., 2012), expressed as follows:

BC(v) � ∑ δij(v)
δij

In the above equation i、 v、 j represent different nodes, BC(v)
represents the meso-centrality value of node v, δij represents the

number of entries in the shortest path between nodes (i, j), and
δij(v) represent the number of entries in the shortest path

between nodes (i, j) passing through node v.

(3) Proximity Centrality, also known as Closeness Centrality

(CC), refers to the degree to which a node is close to the

center. The higher the proximity centrality, the closer the

node is to the center of the network and the shorter the

distance from other nodes in the network (Zhang and Luo,

2017). The importance of the node from a location

perspective. Its calculation formula is expressed as:

CCc
i �

n − 1

∑n−1
j ≠ iδij

where n is the number of nodes and δij is the distance between

nodes i and j, which in this paper refers to the distance at which

trade relations exist between countries.

(4) Eigenvector Centrality (EC), which is the idea that the

environment in which a node is located also reflects the

importance of the node, and the importance of the node is

underlined by the importance of its direct neighbors; the

more important nodes are connected, the more important

the node is, and the higher its eigenvector centrality is.

From the perspective of propagation, eigenvector

centrality is generally used to reflect the long-term

influence of a node. In this paper, the higher the

eigenvector centrality of a node, the more important its

trading partner nodes are, and in the long run, the node’s

trade capacity will continue to grow. Thus its position in

the trade network will also continue to grow.

(5) The influence index indicates the strength of the

contribution made by the node to the network

structure. The KATZ (Katz, 1953) influence model

judges the influence of each node in the network by

the direct or indirect relationships it acquires. Each node

in a trade network has a different choice of direct or

indirect trade relationships. The more trade partners

there are and the closer the relationship with the

partner, the more trade resources the node will

provide or acquire to other nodes and the greater its

influence, and vice versa.

The influence indicators commonly used in social network

analysis are the KATZ influence indicator and Huber influence

indicator, and the results of both analyses are almost identical. In

this paper, the KATZ influence index is chosen to analyze the

influence of each node in the trade network, and the expression

formula for KATZ influence analysis is

t � (1
a
I − C′)

−1
s

Where a represents the ‘attenuation factor’, which represents the

effect between countries, and is a number between 0 and 1, with

0 representing complete attenuation and 1 representing no

attenuation. In practice, a � 0.5, I represents the unit matrix,

C′ represents the transpose matrix of the network matrix, and s

represents a column vector of the sum of the columns of the

matrix C (Liu, 2014).

4 Analysis of the characteristics of
world trade networks

4.1 Overall trade network indicator
measurements

4.1.1 Density of trade network
Network density is the ratio of the true number of connected

edges between nodes to the theoretical maximum number of

connected edges in a complex social network. It indicates how

closely linked the nodes are to each other within the network.

Therefore, when there are more links between nodes within a

network, the denser the network is and the higher its density.

Conversely, a lower network density indicates that the links

between the nodes of that network are not strong, and the

relationships between the nodes are not intimate.

Through Figure 2, it is easy to find that the network density

after the threshold truncation of the 2000 average is not high, the
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lowest is in 2001, only 0.1333, and the highest is only 0.3086

(2008 network density). That is, the actual number of links

between nodes is only 30% of the maximum number of

theoretical links, indicating that from 2000 to 2020, most of

the countries or regions between trade were lower than the

average international trade volume in 2000. Only 13%–30.86%

of the trade volume between countries or regions is higher than

the average international trade volume in 2000.

4.1.2 Analysis of trade network modules
Block model analysis is an analysis method based on internal

and external relationships. It is generally believed that the greater

the density of modules, the closer the relationships within

(between) modules, and the smaller the number of modules,

the closer the network relationships (Moyer, et al., 2015). The

number of modules in the world trade network is very stable,

except for 2001, which is 7 modules. All other years are

8 modules, which indicates that from 2000–2020, the trade

relations among countries or regions in the world trade

network are relatively stable.

At the same time, there are obvious regional characteristics in

the division of modules. Members of the same regional economic

organization are more likely to be divided into one module; for

example, module 1 in 2000, module 4 in 2014, and module 1 in

2020 are dominated by ASEAN member countries, and modules

6 and 7 in 2020 are dominated by Western European countries,

and the members of modules 6, 7, and 8 in 2000 are all European

countries.

Continuing the analysis of module densities from 2000–2020,

it was found that the smallest module densities for each year were

0, indicating that trade relations between the various member

countries within these modules are very fragile. In contrast, the

maximum density of modules in the world trade network was

1 several times yearly (see Table 1). Except for the 5 years 2000,

2012, 2018, 2019, and 2020, the module members with the

highest density in all other years contain countries such as

Japan, the United States, China, and South Korea.

Through the maximummodule density analysis, we also find

an interesting phenomenon that the closeness between ASEAN

countries is increasing. The intra-module density, dominated by

ASEAN countries, was only 0.429 in 2000, increasing to 0.655 by

2010 and 1 in 2020, indicating increasing trade and closer

relations between member countries within ASEAN.

4.2 Network node status indicator
measurements

4.2.1 Centrality analysis
The object of this paper is a trade network, and trade is

directional. The import of one country is also the export of

another country, so the analysis of degree centrality in this paper

is divided into “in-degree centrality” and “out-degree centrality”

(Abbreviated as IDC and ODC, respectively). Therefore, the

degree of centrality is directly related to the import and

export capacity of the country. The degree centrality analysis

shows that the top 10 countries in terms of outbound and

inbound centrality from 2000 to 2020 are mainly developed

countries, including Germany, the United States, the

United Kingdom, France, Japan, the Netherlands, etc. China is

also in the top 10, with South Korea, Singapore, and Russia added

in some years. (See Table 2. For reasons of space, detailed analysis

data cannot be shown and can be requested from the author upon

request).

The analysis of degree centrality reveals that in several years,

such as 2000–2003 and 2013, the gap between the country with

FIGURE 2
Density of world trade network from 2000 to 2020.
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the highest degree centrality and the country ranked 10th is very

large; for example, Germany, the highest ranked country in terms

of in-degree centrality in 2000, was 1. (In order to facilitate the

comparison of each centrality indicator in different years, the

centrality indicator is standardized for each year in this paperand

the top-ranked centrality after standardisation is 1) however,

Singapore, which ranked 10th, had an entry centrality of only

0.3667. While the United States, which had the highest out-

degree centrality, and Sweden, which ranked 10th, had only

0.406. Thus, there was a huge gap between the trade volumes of

the world’s major trading countries in 2000. However, with the

frequent trade between countries in the world and the

development of regional integration organizations, the trade

volume between countries or regions has continued to climb,

which is reflected in the increasing centrality of out-degree and

in-degree. The gap between countries or regions and the top-

ranking countries has been narrowing, with Belgium in 10th

place reaching 0.55 inbound centrality in 2020, and Russia’s

outbound centrality also having 0.425, a significant reduction in

the gap compared to 2000.

Betweenness centrality reflects the mediating role of nodes,

which in this paper refers to countries with direct trade relations

with two nodes that do not have trade relations of their own.

Their influence serves as a bridge between the two trading

partners. The analysis of the centrality of the mediating nodes

shows that Germany still ranks first many times, with a

standardized centrality of 1 (see Table 2), while the gap

between the second-ranked countries and Germany is large,

with the largest gap being in 2009 when the second-ranked

United Kingdom had a centrality of only 0.532. The top

countries in terms of centrality are not all developed countries.

The closeness center is a metric that indicates how close a

node is to the center of the network. The higher the value, the

more central the node is to the network, and the shorter the

distance between the node and the other nodes, the faster the

speed of information transfer. Analyzing the proximity centrality

yearly, it is found that the proximity centrality of each node is

very close to each other each year, decreasing very slowly from

high to low. The top 10 countries are still dominated by

developed countries (see Table 2). Still, they are not limited to

developed countries, for example, Lithuania, Thailand, Vietnam,

India, South Korea, and Russia, which shows that non-developed

countries are gradually moving into the center of the world trade

network through their continuous participation in trade.

The indicator of the neighbour node’s importance to contrast

the node’s importance is the eigenvector centrality. The

eigenvector centrality in this paper reflects the future trend of

the nodes importance. The higher the eigenvector centrality is,

TABLE 1 Analysis of the largest modules of the world trade network density.

Year Member countries in the largest density module Density

2000 CHE、BEL、IRL、DNK、SWE、RUS、AUT、ESP、NOR 0.944

2005 JPN、KOR、CHN and BEL、GBR、ITA、DEU、FRA、NLD 1

2010 CAN、MEX、BRA、CHN、USA 0.95

2015 DEU、CHN、USA 1

2020 MYS、THA、IDN、PHL、VNM 1

TABLE 2 Ranking of the centrality of trade network nodes in 2000, 2005, 2010, 2015, and 2020 (excerpt of top 10 nodes).

Year IDC BC CC EC

2000 DEU、USA、GBR、JPN、FRA、
ITA、NLD、ZOW、CHN、KOR

DEU、ITA、FRA、GBR、CHN、
AUT、JPN、SWE、USA、KOR

ZOW、USA、DEU、GBR、JPN、
NLD、FRA、ITA、CHN、SGP

USA、ZOW、CAN、MEX、JPN、
GBR、DEU、FRA、NLD、KOR

2005 DEU、GBR、USA、ITA、NLD、
FRA、CHN、JPN、RUS、ZOW

NLD、RUS、DEU、GBR、ITA、
KOR、BEL、FRA、THA、IND

ZOW、DEU、GBR、USA、NLD、
ITA、FRA、CHN、JPN、ESP

USA、ZOW、CAN、DEU、MEX、
GBR、FRA、JPN、CHN、NLD

2010 DEU、CHN、USA、GBR、JPN、
RUS、KOR、ZOW、ESP、BEL

DEU、ESP、RUS、GBR、THA、
CHN、USA、CHE、BEL、VNM

ZOW、DEU、USA、NLD、GBR、
ITA、FRA、CHN、ESP、JPN

ZOW、USA、CAN、CHN、MEX、
JPN、DEU、GBR、NLD、KOR

2015 DEU、CHN、USA、GBR、FRA、
KOR、ZOW、IND、POL、ESP

DEU、FRA、CHN、RUS、POL、
GBR、VNM、LTU、CHE、ESP

ZOW、DEU、USA、GBR、NLD、
CHN、ITA、FRA、JPN、ESP

ZOW、USA、CAN、MEX、CHN、
JPN、DEU、GBR、NLD、KOR

2020 DEU、CHN、USA、NLD、ITA、
GBR、FRA、KOR、BEL、POL

RUS、DEU、GBR、BEL、NLD、
CHE、ITA、VNM、THA、AUT

ZOW、DEU、USA、GBR、
CHN、NLD、ITA、FRA、
JPN、BEL

ZOW、USA、CAN、CHN、MEX、
DEU、JPN、GBR、NLD、KOR

Note: For space reasons, the results of the centrality analysis for some years are shown; if you require data for other years, please ask the authors separately.
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the more important the nodes connected to all the countries in

the trade network are; that is to say, the trading partners of this

node country are all in the global trade. The strong import and

export capacity of these countries is bound to drive the

development of the country’s trade, thus improving its status

in the trade network. The eigenvector centrality reveals that the

top 10 countries are still dominated by developed countries

though, indicating that global trade is dominated by trade

between developed countries.

4.2.2 KATZ influence analysis
In the whole network, each node’s external and received

relationship selection differ. If a node receives and sends very

few relationships, the node is lonely, and its influence is small.

The KATZ influence not only considers the relationship that

the node directly receives and sends but also considers the

influence of its indirect relationship. Therefore, the KATZ

influence index shows the node’s importance from the

perspective of the direct or indirect relationship that the

node sends and receives.

In the global trade network from 2000 to 2020, the countries

with the highest influence on KATZ are still mainly developed

countries, and the gap is very large. The U.S. influence index is

much higher than other countries. For example, in 2020, the U.S.

KATZ’s influence was 0.844, ranking second, but in Germany,

the third-ranked influence was only 0.43. Therefore, the

United States has an absolute advantage, and its influence is

far higher than that of the top 10 countries, such as Germany,

France, China, and Canada. Except for China, all the top

10 countries are developed countries. Amongst the top

15 countries are South Korea (South Korea was recognized as

a developed country in 2021), India, Russia, and other countries.

4.2.3 Analysis of node characteristics in China
The block model theory suggests that if a module’s

internal (external) density is higher than the density of the

network in which it is located, it is assumed that the module is

closely linked internally (externally). At the same time, the

density with other modules is, in most cases, higher than the

network density in that year (see Table 3) (network density

between 0.1333 and 0.3086 for 2000–2020). It can be assumed

that China is in a module that is not only very closely

connected internally but also very closely connected with

external modules. This is because, as China’s economy

develops and becomes more open, it trades more closely

with outside countries or regions.

By analyzing the centrality and KATZ influence of China’s

nodes from 2000 to 2020 (see Figure 3), it is found that: China’s

degree centrality and meso-centrality were highest in 2006, and

the degree centrality was higher than 0.5 in all years except 2000

(2000 annual centrality of 0.4237). From 2006 onwards, the

degree centrality shows a fluctuating increase, indicating that

China’s external trade ties are getting closer, closely related to

China’s increasingly open policy. The proximity centrality is

between 0.474 (2008 CC) and 0.827 (2018 CC), indicating that

China is moving closer to the center of the network in the world

trade network. The median centrality fluctuates considerably,

with only 7 years between 2000 and 2020, a between centrality

above 0.5, and most years with a median centrality below 0.5.

This indicates that China’s role as a “trade bridge” between the

two countries is not strong. That is, when trade is generated

between China and two countries or regions that do not have

direct trade relations at the same time, China’s ability to act as a

medium for information transfer between the two is not strong.

The low centrality of China’s eigenvector from 2000 to 2020 (see

Figure 3), which is an indicator of the importance of a node by

the importance of its neighbors, is mainly due to the importance

China attaches to its trade relations with neighboring countries

and developing countries, which have a low status in the trade

network. However, the influence of KATZ is as low as the

centrality of the eigenvector. Although the results of the Katz

influence calculation are as low as the eigenvector centrality,

China’s Katz influence ranking is not low in the annual trade

network. In some years is second only to the US or Germany (see

Table 4), mainly because the influence of the US is much higher

than that of other countries in the world, resulting in low analysis

results for other countries’ KATZ influence.

5 Empirical study on the relationship
between node status and carbon
emissions

5.1 Presentation of hypotheses

The development of a country’s trade impacts its position in the

global trade network and its level of carbon emissions. Therefore, the

authors of this paper argue that a country’s or region’s position in the

trade network also impacts its level of carbon emissions. Based on

this, the following hypotheses are proposed.

Hypothesis 1. In-degree centrality in developed countries

positively affect carbon emissions, and out-degree centrality in

developing countries significantly affect carbon emissions.

TABLE 3 Module-related densities in China.

Year Intra-module
density

Inter-module density

2000 1 0.768 0.6 1 1 0.833 0 0

2005 1 1 1 1 0.4 0.944 0.25 0

2010 0.95 0.473 0 0.9 0.2 0.057 0.54 0.4

2015 1 1 0.8333 0.222 0.8 1 0.429 0

2020 0.75 0.75 0.75 0.167 0.5 0.75 0.1 0
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In a global trade network, degree centrality includes in-degree

centrality and out-degree centrality. In-degree centrality is

determined by the node’s imports, while out-degree centrality is

determined by exports. Therefore, a higher in-degree centrality of

the node means that the country or region imports more into the

network. The more imports, the greater the domestic consumption

and the higher the level of carbon emissions. In contrast, developing

countries import mainly technology-intensive products, and the

more they import, the better their technological level will be, and

their carbon emission efficiency will be improved (Jin, et al., 2014).

The node with higher centrality of export degree indicates that the

country or region exports more. Developed countries export more

technology-intensive products, and their carbon emission efficiency

is higher than the labor-intensive products exported by developing

countries, so the increase in developed countries’ export has no

significant impact on their carbon emission level, but the increase in

developing countries’ export and their domestic resource depletion

will have a positive impact on carbon emission.

Hypothesis 2. Betweenness centrality in developing countries

negatively impacts carbon emissions.

The nodes with higher betweenness centrality have a greater

ability to control information as a “bridge,” which allows them to

access the information of neighboring nodes more easily and helps

them to improve their technology and commodity structure, and

increases the efficiency of their carbon emissions (Salman, et al.,

2019). Therefore, we believe that nodes in developing countries with

a higher level of betweenness centrality do not have a positive impact

on carbon emissions. In contrast, nodes in developed countries with

a high level of technology do not significantly impact carbon

emissions.

Hypothesis 3. Closeness centrality can negatively impact

carbon emissions.

Closeness centrality reflects how close a node is to the center

of the network. The closer a node is to the center of the network,

the more important it is. Therefore, countries or regions with

high closeness centrality are more important in the trading

network, and it can be tentatively assumed that closeness

centrality negatively impacts carbon emissions.

Hypothesis 4. Eigenvector centrality negatively impacts carbon

emissions.

A node with higher eigenvector centrality indicates that its

neighboring nodes are more important. From a development

perspective, this node will move towards being an important

node. Therefore, we tentatively believe that the higher the

eigenvector centrality, the more important the node’s country

or region tends to be in the trade network, and the lower its

domestic carbon emission level.

Hypothesis 5. KATZ influence can negatively impact carbon

emissions.

FIGURE 3
China node centality and influence from 2000 to 2020.

TABLE 4 2000, 2005, 2010, 2015, and 2020 KATZ influence.

Year KATZ influence

2000 USA、ZOW、DEU、GBR、FRA、CHN、JPN、NLD、ITA、CAN

2005 USA、ZOW、DEU、FRA、GBR、CHN、CAN、JPN、NLD、ITA

2010 ZOW、USA、CHN、DEU、JPN、NLD、FRA、GBR、CAN、ITA

2015 ZOW、USA、DEU、CHN、GBR、JPN、NLD、CAN、FRA、MEX

2020 ZOW、USA、DEU、CHN、GBR、FRA、NLD、JPN、CAN、MEX

Frontiers in Environmental Science frontiersin.org09

Zhang et al. 10.3389/fenvs.2022.1037654

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2022.1037654


KATZ influence reflects the node’s ability to influence other

nodes within the network and the characteristics of the network.

The higher the Katz influence, the greater the influence of the

node in the trade network. The influence of a country or region in

the trade network is closely related to the level of economic

development of the country; from this perspective, we tentatively

assume that Katz’s influence can negatively impact carbon

emissions.

5.2 Model setting and description of
variables

This paper focuses on analyzing the relationship between

each country’s position in the world trade network and its

carbon emissions. Therefore, in the empirical part, common

indicators of the position of the network nodes: in-degree

centrality, out-degree centrality, median centrality,

proximity centrality, eigenvector centrality, and KATZ

influence are chosen as explanatory variables, and carbon

emissions are used as the response variable to build the

following model:

cit � β0 + β1idcit + β2odcit + β3bcit + β4ccit + β5ecit + β6kzit + εit

where idcit, odcit, bcit, ccit、ecit, kzit are the mid-status indicators

of country i in the trading network in year t calculated in this

paper, i.e., in-degree centrality, out-degree centrality, mediator

centrality, proximity centrality, eigenvector centrality, and KATZ

influence. cit country i in year t is the normalized carbon

emissions in year t.

5.3 Analysis of empirical results

In this study, panel models were constructed using degree,

in-degree, out-degree, closeness centrality, betweenness

centrality, eigenvector centrality, and KATZ as the

explanatory variables and carbon emissions as the response

variable from globally developed and developing countries,

respectively. The panel model involves three models: mixed

POOL model, fixed effects FE model, and random effects RE

model. The model is first tested to facilitate the identification

of the optimal model.

An F-test was conducted to compare the choice of FE and

POOL models. The results implied that the FE model was

superior to the POOL model at the 5% significance level.

Continuing with the BP test to determine the choice of the

RE model or the POOL model, the results showed that the RE

model is superior relative to the POOL model at the 5%

significance level. Finally, for the choice of the FE model

versus the RE model, we used the Hausman test, and the final

result showed no significance. Therefore, the RE model was

chosen for all three models (see Table 5).

This study uses the RE model as the final result, as seen in

Table 6: the centrality of entry shows the intensity of imports

from other country nodes in the network. The analysis results

show that, from the overall analysis, country node entry

centrality has a significant positive effect on national

carbon emissions; i.e., an increase in a country’s imports

will lead to an increase in carbon emissions. The results

suggest that the imports of developed countries are mostly

labor-intensive and low-technology products, which are

imported mainly for residential consumption or as raw

materials or intermediate products for production, thus

leading to an increase in carbon emissions. In contrast, the

imports of developing countries are mostly technology-

intensive manufactured goods, which do not significantly

affect carbon emissions.

The results of the overall regression analysis show a

0.05 level of significance (t = 2.038, p = 0.042 < 0.05),

indicating that an increase in exports also increases carbon

emissions in the country. Still, the regression results for

developed countries show that the effect of degree centrality

on their carbon emissions is not significant, while developing

countries show a 1% level of significance. This is because

developed countries mainly export technology-intensive

products and import raw materials or intermediate goods. At

the same time, domestic inputs are more technology-based, so

the impact of increased exports from developed countries on

domestic carbon emissions is not as significant as that of

developing countries.

Closeness centrality reflects the node’s status from the

position in which it is located; the closer it is to the node in

the central position. As can be seen from the results of the

analysis in Table 6, the results of all three analyses show that there

is no significant effect of proximity centrality on carbon

emissions, whether the analysis is done as a whole or divided

into developed and developing countries. This indicates that the

position of the country in the trading network has no effect on

the level of carbon emissions in the country.

In the overall analysis, the effect of country node betweenness

centrality on national carbon emissions is significant at the 1%

level of significance, and the regression coefficient is less than 0.

Therefore, betweenness centrality negatively affects carbon

emissions.

This is because a node with a high level of betweenness

centrality indicates that the stronger the node’s role as a bridge,

the more control it has over the exchange of information between

its associated country nodes. Compared to other nodes, “bridge”

nodes have easier access to trade, technology, and policy

information from other countries’ nodes. They use this

information to adjust their trade structure, thus improving

production efficiency and reducing carbon emissions.
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The results of both the overall and grouped analyses show

that eigenvector centrality has a significant negative effect on

carbon emissions; i.e., the higher the eigenvector centrality,

the lower the carbon emissions. Eigenvector centrality

reflects the importance of a node through its neighbors, so

the more important the node with high eigenvector centrality

is, the more important its neighbors are in the trade network,

and the stronger its export capacity is. Nodes with high

eigenvector centrality are influenced by their neighbors,

and their export capacity will continue to increase. Their

energy consumption will increase, and their carbon emissions

will also increase. Therefore, the eigenvector centrality plays a

significant negative impact on the node country’s carbon

emissions.

Katz influence is a common metric for determining the

influence of a node in a network. It calculates the Katz

influence of a node based on the number of direct or indirect

relationships which a node sends and receives to other nodes in

the network. In this paper, KATZ influence is calculated based on

the direct or indirect import and export relationship of countries

to judge the influence of nodes in the network. Through the

analysis of Table 6, it was found that KATZ shows a 1% level of

significance on carbon emissions (t � 3.917, p � 0.000< 0.01),
and the regression coefficient value of 3087713.757> 0, indicates

that KATZ can have a significant positive effect on carbon

emissions.

6 Conclusion and deficiencies

6.1 Conclusion

i. Stable performance of global trade networks, with developed

countries at the core. Using complex network analysis, this

paper explores the evolution of the overall structure of global

trade networks and the changes in the characteristics of

countries in the networks. It is found that after the data

threshold, trade between countries is not close, and the trade

network does not change substantially from 2000 to 2020.

After examining the network chunking, it was found that it

has a clear regional character, with a significant increase in

linkages between regional integration organizations. The

analysis of the network node centrality indicators shows

that the top ranking of each centrality indicator is

TABLE 5 Panel model test results.

Type Purpose Overall test
value (n = 714)

Developed country
test values (n = 442)

Developing country
test values (n = 272)

Conclusion

F -test FE and POOL comparison options F (41,665) = 170.659 (p = 0.000) (25,410) = 2133.257 (p = 0.000) (15,250) = 89.209 (p = 0.000) FE

BP -test RE and POOL comparison
options

χ2 (1) = 3679.153 (p = 0.000) χ2 (1) = 651.772 (p = 0.000) χ2 (1) = 976.216 (p = 0.000) RE

Hausman -test FE and RE comparison options χ2 (7) = -9.118 (p = 1.000) χ2 (6) = 10.957 (p = 1.000) χ2 (6) = 31.322 (p = 1.000) RE

TABLE 6 Regression results of the relationship between trading network status and carbon emissions.

Item Developing
country RE models

Developed
country RE model

Overall RE model

ε −165121.270 (−0.561) 333249.523** (4.831) −75170.425 (−0.421)

idc 402961.766 (0.676) 171717.666** (2.723) 1642620.551** (2.756)

odc 3188751.392** (8.421) 52910.995 (1.708) 1266007.516* (2.038)

cc 425441.003 (1.741) 13932.837 (0.524) 66136.181 (0.577)

bc −1375284.978** (−4.180) −21919.352 (−0.766) −687462.447** (-5.682)

ec −7544365.837** (−3.883) −885387.251** (−5.364) −2382153.123** (−3.306)

kz 10399165.339** (4.505) 1359268.531** (7.641) 3087713.757** (3.917)

R2 0.356 0.167 0.246

R2(within) 0.373 0.364 0.175

Sample size 272 442 714

Testing χ2 (6) = 156.536 p = 0.000 χ2 (6) = 167.678 p = 0.000 X2(7) = 156.465 p = 0.000

*p < 0.05 **p < 0.01 t-values in parentheses.
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dominated by developed countries, which reflects the stability

of the trade network from the side.

ii. China occupies a key position in the global trade network.

In the analysis of the characteristics of the Chinese nodes, it

was found that the results of the analysis of various

indicators of the Chinese nodes are within the top 10,

which fully illustrates the important position of China in

the trade network and its strong influence in the trade

network. In the module analysis, China is often in the same

module as the US and Japan, and the intra-module density

is higher than the network density in the same year,

indicating that China has a close trade relationship with

the US and Japan. At the same time, the density between the

module where China is located and other modules is also

often higher than the network density in the same year,

which shows that China has a very close trade relationship

with other countries.

iii. Network centrality indicators have different impacts on carbon

emissions in countries at different levels of development. Based

on the above analysis and considering the influence of a

country’s trade network characteristics on its carbon

emissions, this paper conducts an empirical analysis of

52 countries or regions. The results found that influenced by

the technological level of imported and exported goods, the in-

degree centrality of developed countries has a significant positive

impact on carbon emissions. In contrast, the out-degree

centrality of developing countries has a significant positive

impact on carbon emissions. The effect of closeness centrality

on carbon emissions is not significant, indicating that the

position of each country node in the network does not have

a significant effect on the carbon emissions of the country.

Betweenness centrality has a significant negative effect on

carbon emissions in developing countries, mainly due to the

ease of access to information and advanced technology in

countries with high betweenness centrality. Eigenvector

centrality has a negative effect on carbon emissions, while

Katz’s influence has a significant positive effect.

6.2 Deficiencies

This paper uses the results of social network analysis as the

explanatory variables and uses a panel model to analyze the

impact of node characteristics in trade networks on carbon

emissions, but is limited by the limitations of data access, as

the WIOD database of carbon emissions is only updated to 2016,

resulting in a panel analysis, which lags behind the development

of practice. This is a shortcoming in most current carbon

emissions studies.
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