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The Zhuhai-1 hyperspectral satellite can simultaneously obtain spectral

information in 32 spectral bands and effectively obtain accurate information

on land features through integrated hyperspectral observations of the

atmosphere and land, while the presence of clouds can contaminate remote

sensing images. To improve the utilization rate of hyperspectral images, this

study investigates the cloud detection method for hyperspectral satellite data

based on the transfer learning technique, which can obtain a model with high

generalization capability with a small training sample size. In this study, for the

acquired Level-1B products, the top-of-atmosphere reflectance data of each

band are obtained by using the calibration coefficients and spectral response

functions of the product packages. Meanwhile, to eliminate the data

redundancy between hyperspectral bands, the data are downscaled using

the principal component transformation method, and the top three principal

components are extracted as the sample input data for model training. Then,

the pretrained VGG16 and ResNet50 weight files are used as the backbone

network of the encoder, and the model is updated and trained again using

Orbita hyperspectral satellite (OHS) sample data to fine-tune the feature

extraction parameters. Finally, the cloud detection model is obtained. To

verify the accuracy of the method, the multi-view OHS images are visually

interpreted, and the cloud pixels are sketched out as the baseline data. The

experimental results show that the overall accuracy of the cloud detection

model based on the Resnet50 backbone network can reach 91%, which can

accurately distinguish clouds from clear sky and achieve high-accuracy cloud

detection in hyperspectral remote sensing images.
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Introduction

When using optical remote sensing satellites to observe the

surface, clouds have extremely strong reflective properties of

solar radiation in the visible and near-infrared wavelengths, only

little or no incident radiation can reach the surface through

clouds, and the real surface properties cannot be effectively

observed because of the contamination of cloud pixels. The

Earth is covered with 50%–60% clouds year round (Zhang

et al., 2004), which greatly limits the inversion of surface

parameters using remote sensing images. The most important

role of clouds in climate is to regulate the Earth’s radiation

balance, and they also play an important role in short-term

weather forecasting and long-term climate change. Accurate

distinction between cloud pixels and clear sky pixels to obtain

high-precision cloud mask products is a basic requirement for

extracting ground surface features using remote sensing data

(Ghassemi andMagli, 2019); it also provides reliable data support

for atmospheric and environmental applications by detecting the

changes and movements of clouds over the atmosphere. The

determination of high-precision clear sky pixels and cloud pixels

is an important data support to expand remote sensing

applications; therefore, cloud detection is a necessary part of

remote sensing quantitative applications.

The most commonly used algorithm for cloud detection in

remote sensing images is the spectral threshold method based on

its physical characteristics (Sun et al., 2016; Qiu et al., 2017; Sun

et al., 2017; Mateo-García et al., 2018; Qiu et al., 2020). Through

the difference in spectral characteristics between clouds and

other features in visible and near-infrared wavelengths, the

reflectance and other information of image elements in

remote sensing images are compared with the threshold value

to distinguish cloud pixels from clear sky pixels. Fixed thresholds

often cause incorrect cloud detection results such as missing

fragmented clouds, thin cloud areas and misclassifying

highlighted areas as clouds. To improve the applicability of

the threshold method, various types of adaptive dynamic

threshold methods have been developed. Sun (Sun et al.,

2016) proposed the Universal Dynamic Threshold Cloud

Detection Algorithm (UDTCDA) method based on the 6S

atmospheric radiative transfer equation theory; the UDTCDA

simulates the relationship between the top of atmosphere

reflectance of visible to near-infrared bands and the surface

reflectance under different observation geometries and

atmospheric conditions, and it constructs dynamic threshold

cloud detection models for different spectral bands. Zhu (Zhu

and Woodcock, 2012) proposed the Fmask (function of mask)

algorithm to calculate the cloud probability of each pixel based on

the probability model of the image itself for different physical

characteristics of clouds; finally, they determined the optimal

threshold dynamically based on a series of cloud-free pixel points

to distinguish clouds from the ground surface. However, due to

the complexity of the surface structure and variability of the

atmospheric environment, it is difficult to effectively simulate for

all situations, while the support of auxiliary data may be required

in the detection process. Due to the good performance of

machine learning methods in image classification, they are

also applied to cloud detection. Clouds are considered an

image type in classical machine learning methods. The model

is trained using supervised or unsupervised classification (Jang

et al., 2006; Taravat et al., 2014; Yuan et al., 2015; Fu et al., 2018;

Ghasemian and Akhoondzadeh, 2018; Joshi et al., 2019; Wei

et al., 2020) methods through the observed cloud and other

collected sample data to construct a classification model of cloud

and other feature categories. Finally, it discriminates cloud pixels

and clear sky pixels. Jang (Jang et al., 2006) selected cloud, water

and vegetation pixels as training samples and processed the

SPOT data with a multi-layer perceptron to obtain accurate

detection results. Taravat (Taravat et al., 2014) used a multi-

layer perceptron and a support vector machine to detect cloud

pixels in remote sensing images. Zhu (Zhu et al., 2015) proposed

a continuous time series cloud detection method (multiTemporal

mask). This method is based on cloud-free observations detected

by the Fmask algorithm, constructs a time-series periodic model

to predict the reflectance of green, near-infrared and shortwave

infrared bands, and compares it with the real observations for

cloud detection, which is more accurate. However, the detection

results are easily disturbed by ground cover changes. Sun et al.

selected a sufficient number of cloud and clear sky pixels from

AVIRIS (Airborne Visible Infrared Imaging Spectrometer)

hyperspectral data to construct a hyperspectral data sample

library, which was used to simulate different satellite data as

training samples, and used backpropagation (BP) neural network

to detect multispectral sensors data and obtained to a high

accuracy (Sun H et al., 2020).

Hyperspectral images have more bands and narrower

spectral intervals than multi-spectral images. The fine spectral

resolution can capture the detailed features of feature spectra and

has the advantage of integrating images and spectra into one.

However, the bands have narrow channels, which results in

malimited energy acquisition. The images are more affected

by noise, and the correlation of adjacent bands is high, which

increases the information redundancy. The current research of

cloud detection for hyperspectral images is comparatively less

than that for multi-spectral images, and the detection algorithms

are mainly based on the threshold method (Zhai et al., 2018) and

spectral feature match method. The threshold method uses the

difference between the spectral reflectance of clouds and other

terrestrial features to find specific bands and uses the threshold to

determine the cloud and clear sky pixels. Due to the narrow band

interval of hyperspectral images, they are easily influenced by

noise. The detection results of using the threshold method are

prone to misdetection and omission because there are thin clouds

and many mixed pixels. In addition, different satellite sensors

have largely different spectral response functions, and the simple

reuse of multi-spectral sensor cloud detection methods may lead
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to uncertainty in the accuracy of the results. The spectral feature

match method compares the spectral features of the pixels from

the established standard spectral library with those of the remote

sensing image and selects the best matching feature as the current

image label, while the remote sensing image has many

homogeneous and heterogeneous spectral phenomena. For

example, the mixed pixels caused by thin clouds over the

feature will have obvious spectral similarity with a high bright

surface, so it is easy to make a false detection using this method.

In recent years, with the rapid development of deep learning

(Lecun et al., 2015), convolutional neural networks (CNNs) have

reduced model complexity due to their sparse connections and

weight sharing capability and have unique advantages in

extracting data features. It is widely used in remote sensing

image target recognition, classification, parameter inversion,

etc., and has achieved better accuracy than conventional

machine learning methods (Krizhevsky et al., 2012;

Schmidhuber, 2015; Pantazi et al., 2016; Fischer and Krauss,

2018; Shendryk et al., 2019; Ji et al., 2020; Sun L et al., 2020). In

order to reduce the amount of data transmitted to the ground by

the hyperspectral satellite Hyperscout-2, Gianluca et al. proposed

an algorithm for cloud detection directly on the satellite using

CNN, which is called CloudScout (Giuffrida et al., 2020), they

trained and tested the network against an extracted dataset from

the Sentinel-2 mission, which was appropriately preprocessed to

simulate the Hyperscout-2 hyperspectral sensor. The training of

deep learning models requires a large amount of sample data, the

acquisition of which is expensive and time-consuming, so it is

difficult to extensively use deep learning for remote sensing

ground parameter inversion. Transfer learning (Weiss et al.,

2016) migrates the trained model parameters to a new model

to help train the new model. Transfer learning is the process of

taking a model that has been learned or trained in an old domain

and applying it to a new domain, which takes advantage of

similarities among data, tasks, or models. The key point of

transfer learning is the similarity between the new task system

and the old task system in terms of data, tasks and models.

Generally, a more complex model requires a larger amount of

training data; otherwise, it will be easily overfitted. Compared to

training a model from scratch, transfer learning has a lower

training cost and is also more advantageous for small sample

data. If one wants to use the super feature extraction ability of

large neural networks with a small sample size, a more reliable

method is to rely on transfer learning to train the neural network.

To enhance the application potential of hyperspectral remote

sensing images, this paper uses a U-Net (Ronneberger et al.,

2015) architecture, which is an image segmentation model. The

pretrained weights based on VGG16 (Simonyan and Zisserman,

2014)and ResNet50 (He et al., 2016) are used as the backbone

network for cloud and clear sky pixel detection using transfer

learning techniques.

Hyperspectral data pre-processing

“Zhuhai-1” is a constellation of commercial remote sensing

micro-nanosatellites invested and operated by Zhuhai Orbita

Aerospace Technology Co., Ltd., Zhuhai, China (Jiang et al.,

2019). By 2022, three launches were successfully performed, four

satellites codenamed OHS-2A/B/C/D were launched on 26 April

2018, and four satellites codenamed OHS-3A/B/C/D were

launched on 19 September 2019. Currently, there are eight

hyperspectral satellites in orbit. The OHS all adopts the push-

sweep imaging mode with a 10-m spatial resolution, a 2.5-nm

spectral resolution, a wavelength range of 400–1,000 nm and

32 spectral bands. The revisit period of a single hyperspectral

satellite is 6 days, and the combined revisit period of

8 hyperspectral satellites is reduced to approximately 1 day.

The data in this research are the Level-1B product. Each

hyperspectral satellite is composed of three complementary

metal oxide semiconductor (CMOS) sensors: CMOS1,

CMOS2, and CMOS3. The CMOSs have slightly different

spectral ranges, and the central wavelengths and spectral

response functions of each band must be separately processed.

Table 1 shows the spectral ranges of OHS-3A CMOS1.

To perform cloud detection, the image must be

radiometrically calibrated first to change from a digital

number (DN) to radiance as follows:

L � a · DN + b (1)

where L is the radiance inW/(m2 · sr · μm), a is the gain value for
a specific band, and b is the bias value for a specific band. The

values of a and b can be extracted from the calibration file that

comes with the image data. Cloud detection generally uses the

top of atmosphere (TOA) of each band, which is calculated as

follows:

p � π · L · D2

Esun · Cos (θ) (2)

where p is the TOA reflectance, D is the Earth-Sun distance in

astronmoical units, θ is the solar zenith angle at the moment of

image scanning, and Esun is the mean solar exoatmospheric

irradiances. Parameters a, b, Esun, and θ required for the above

evaluation can be obtained from the accompanying xml file. After

processing the images of Table 2 to the TOA reflectance, the

visual interpretation method is used to distinguish cloud pixels

and clear sky pixels, all the cloud pixel areas are outlined using

the red vector, some of the results are shown in Figure 1. They

cover different types of ground features, such as plain, plateau,

water, vegetation, towns, etc. Thick cloud regions are first

detected using the thresholding method, after which the cloud

masks are hand-edited to include thin cloud regions missed by

the thresholding and to remove regions that are incorrectly

included.
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TABLE 1 OHS-3A CMOS1 hyperspectral sensor parameters.

Band Wavelength/
nm

Start/
nm

End/
nm

Range/
nm

Irradiance/W·m-
2 μm-1

Band Wavelength/
nm

Start/
nm

End/
nm

Range/
nm

Irradiance/W·m-
2·μm-1

Swath
width
(km)

Spatial
resolution
(m)

1 443 436 445 10 1854 17 709 705 713 9 1,389 50 10

2 466 460 471 12 2003 18 730 726 734 9 1,326

3 490 483 495 13 1933 19 746 742 750 9 1,276

4 500 498 507 10 1925 20 760 756 765 10 1,237

5 510 503 516 14 1895 21 776 772 781 10 1,194

6 531 524 537 14 1888 22 780 776 784 9 1,186

7 550 541 555 15 1865 23 806 801 810 10 1,119

8 560 556 567 12 1843 24 820 815 825 11 1,085

9 580 574 585 12 1839 25 833 828 837 10 1,054

10 596 590 601 12 1779 26 850 846 854 9 987

11 620 617 624 8 1,696 27 865 860 869 10 966

12 640 637 643 7 1,634 28 880 875 884 10 959

13 665 662 669 8 1,550 29 896 892 901 10 930

14 670 666 673 8 1,530 30 910 905 915 11 903

15 686 683 690 8 1,465 31 926 922 931 10 866

16 700 696 703 8 1,408 32 940 936 944 9 844

Fro
n
tie

rs
in

E
n
viro

n
m
e
n
tal

Scie
n
ce

fro
n
tie

rsin
.o
rg

0
4

Jian
e
t
al.

10
.3
3
8
9
/fe

n
vs.2

0
2
2
.10

3
9
2
4
9

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2022.1039249


The OHS image has 32 bands with a strong correlation

between bands and a large amount of redundant information.

Meanwhile, some studies have noted that up to 90% of the

spectral bands are unnecessary without affecting the overall

information decoding accuracy (Chang, 2007). Therefore,

before the work of cloud detection, the hyperspectral images’

TABLE 2 OHS candidate image information.

Satellite Date Latitude (°) Longitude (°) Solar zenith (°)

OHS-2 C 2021/1/22 22.22 114.18 48.51

OHS-2 C 2021/1/22 22.23 113.60 48.77

OHS-2_C 2021/1/22 22.04 114.74 48.05

OHS-3 A 2021/1/5 21.29 113.33 45.95

OHS-3 A 2021/1/22 22.27 114.01 43.87

OHS-3 A 2021/1/22 21.90 113.92 43.51

OHS-3 A 2021/1/22 21.64 114.37 43.40

OHS-3 A 2021/1/22 21.44 113.32 42.92

OHS-3 C 2021/1/19 21.43 113.01 44.03

OHS 3 C 2021/1/14 21.31 113.73 44.35

OHS-3 C 2021/1/14 21.41 114.25 44.60

OHS-3 D 2021/1/19 22.11 113.56 43.89

FIGURE 1
Hyperspectral image of the cloud detection (false Color Composite image of bands 26, 13, 6 in RGB, the red vector is the visually interpreted
cloud boundary). Image acquisition date (A) 2021/1/5; (B) 2021/1/22; (C) 2021/1/19; (D) 2021/1/14).
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dimensions must be approximately reduced to reduce the

redundant information and retain the valuable information.

We use principal component analysis (PCA) (Abdi and

Williams, 2010) to extract the first three principal components

of the image. The new image contains most of the features of the

previous data and effectively removes most of the noise while

having a lower dimensionality for subsequent processing.

The pixels of each OHS image are approximately 5050*5050.

To input the remote sensing images into the deep neural network

for efficient training, the images must be sliced and processed,

and the remote sensing images are sequentially sliced into

512*512 sizes. Therefore, each OHS image can be sliced into

81 pieces of 512*512 pixel size. In this study, 972 sample data are

obtained in total, and the subsequent neural network training

and validation samples are divided using a 4:1 ratio.

Cloud detection algorithms

U-Net framework

U-Net is a convolutional neural network architecture that

was first used for biomedical image segmentation (Ronneberger

et al., 2015). U-Net is a U-shaped encoder-decoder network

architecture that consists of four encoder blocks and four decoder

blocks, which are connected via a bridge. The spatial dimension

of the encoder network (contracting path) is half, and the

number of filters (feature channels) for each encoder block is

doubled. The encoder network acts as a feature extractor to learn

the abstract representation of the input image through a sequence

of encoder blocks. The encoder consists of convolutional and

maximum pooling layers to extract features from the image. The

decoder network is used to take the abstract representation and

generate a semantic segmentation mask. The decoder uses up-

sampling to recover the original resolution of the input by

transposed convolution. The last decoder gives a segmentation

mask, which represents the pixel-level classification using a

sigmoid activation function. The encoder and decoder paths

are connected by a convolution layer for feature fusion. The

U-Net structure allows efficient access to the contextual and

location information. Since U-Net has a very similar backbone

network to VGG16 and ResNet50, we imported the U-Net model

into VGG16 and ResNet50 as the backbone network and loaded

the weights of image nets in the subsequent transfer learning

process.

VGG16 and ResNet50

VGG is a widely used convolutional neural network

architecture proposed by Karen Simonyan and Andrew

Zisserman from the University of Oxford (Simonyan and

Zisserman, 2014). The architecture of VGG comprises eight

layers in total, the first five of which are convolutional layers,

the last three are fully connected layers, and all outputs of the

convolutional and fully connected layers are connected to the

ReLu nonlinear activation function. The entire network uses the

same-size convolutional kernel size (3 × 3) and max-pooling size

(2 × 2). VGG uses multiple convolutional layers with smaller

convolutional kernels (3 × 3) instead of a convolutional layer

with a larger convolutional kernel, which reduces the parameters

while improving the model fitting ability by continuously

deepening the network architecture.

With the complexity of the network architecture, there is a

decrease in accuracy of the training set, which can be

determined not to be due to overfitting (the training set

should be highly accurate in the case of overfitting). When

the depth of the neural network is deeper, it may not have a

good effect like the shallow model training due to the gradient

disappearance or gradient explosion generated during the

network training. A completely new network, which is

called the deep residual network (ResNet) (He et al., 2016),

has been proposed to address this problem and allows training

deeper networks. ResNet uses residual blocks to improve the

model accuracy. At the core of the residual blocks is the

concept of “skipped connections,” which is the strength of

ResNet. ResNet-50 is a 50-layer-deep convolutional neural

network. Compared to VGGNets, ResNets are less complex

because they have fewer filters.

Fine-tuning using pre-trained models

In transfer learning, we use a strategy called fine-tuning,

which allows a portion of the pre-trained layers to be retrained.

We use pre-trained layers of VGG16 and ResNet-50 to extract

features. There is no actual training on these pre-trained layers.

We freeze the pre-trained convolutional layers and unfreeze the

last few pre-trained layers for training. The frozen pre-trained

layers will be convolved with visual features as usual. The

nonfrozen (trainable) pre-trained layers will be trained on our

custom dataset and updated based on the predictions of the fully

connected layers. The network fine-tuning adjusts the

parameters of the trained network to the new task at hand.

The initial layers learn very general features, and as deeper

network layers are introduced, the layers tend to learn more

specific task patterns. Therefore, to fine-tune, we keep the initial

layers intact (or freeze) and retrain the later layers for our task.

In the training process of the cloud detection model, the

U-Net backbone network is selected to freeze the first 16 layers

when using the pre-training weights file of VGG16; for ResNet50,

the first 150 layers are frozen. For the newly added cloud sample

data, 20 generations are trained, where the first 10 generations are

frozen and the last 10 generations are trained using the full layers

to ensure that the new cloud detection model can have a strong

generality.
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The flowchart of cloud detection is shown in Figure 2. First,

the hyperspectral images are first calculated from DN values to

apparent reflectance. Then, the first three principal components

are extracted using PCA, the clouds are distinguished from clear

sky pixels using visual interpretation, and the original images are

sliced to produce training samples. Afterwards, the U-Net

structure is used, and transfer learning is performed using

pre-trained VGG16 and ResNet50 to obtain end-to-end

network models and classification results for each pixel.

Because clouds generally appear on a large scale and in

successive pieces, for discrete image elements that are

determined as clouds, clump is performed, i.e., if fewer than

5 successive pixels in the range of 3*3 pixels are determined as

clouds, all pixels are re-determined as clear sky pixels.

Analysis of cloud detection results

To validate the detection results of the model, two types of

accuracy metrics are used for evaluation: the overall accuracy

(OA) and F1 score. The OA is the probability that for each

random sample, the classified result matches the true data type,

and the F1 score is an overall measure of the model accuracy,

combining recall and precision. For these two metrics, a higher

score indicates a higher-quality algorithm.

OA � N
TP

(3)

F1 � 2 · Precision · Recall
Precision + Recall

(4)

Precision � Cn
Cn + Fn

(5)

Recall � Cn
Cn + On

(6)

where N is the number of pixels with identical visual

interpretation result to the algorithm detection result; TP is

the number of all pixels of the image; Cn is the number of

correctly detected cloud pixels; On is the number of cloud pixels

detected as clear sky pixels; Fn is the number of clear sky pixels

determined as cloud pixels.

Figure 3 shows the cloud detection results of the algorithm in

this paper compared with the visual interpretation results, and

FIGURE 2
Cloud detection algorithm flow chart.
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the red curve in the figure is the edge of the cloud region for visual

interpretation. The first row is the original image, the second row

is the detection result using VGG16 as the backbone, and the

third row is the detection result using ResNet50 as the backbone.

Table 3 shows the detection statistics of the eight images. The

detection results using ResNet50 as the backbone network are

much closer to the visual interpretation; the average overall

accuracy is 86% and 91.8% with VGG16 and ResNet50 as the

backbone network, respectively. Meanwhile, both have extremely

similar F1 values (approximately 78%). For the full validation

data, the overall accuracy of VGG16 is 87.1%, and the overall

accuracy of ResNet50 is 90.1%. From the graph of detection

results and statistical results, VGG16 has smaller detection result

values than ResNet50. Analyzing all data, we find that the

detection results of VGG16 are completely included in

Resnet50, and Resnet50 has a better overall detection accuracy

than VGG16 in terms of the visual interpretation results.

For the misjudgment of the thin cloud region, the visual

interpretation results are compared with the detection results of

VGG and Resnet50, and the TOA reflectance is counted, as

shown in Figure 4. The blue color among the three lines is the

spectral curve of the clear sky pixels, red indicates the cloud pixels

that are classified as cloud pixels by all models, and green

indicates that only Resnet50 detects as cloud pixels. In the

wavelength range of 600–940 nm, the difference between the

three models is very small, and the TOA reflectance is basically

identical. In the range of 440–470 nm, the clear sky pixels have

the lowest TOA reflectance. In the wavelength range of

FIGURE 3
Cloud detection results, in which white is the cloud pixels, black is the clear sky pixels, and the red curve is the visually interpreted cloud
boundary. The first row is the original image, the second row is the result based on the VGGweights detection, and the third row is the result using the
Resnet50 weights detection. (A–H) are slice images with a size of 512*512.

TABLE 3 Statistics of cloud detection accuracy.

Image Cloud (%) Vgg16 Resnet50 Vgg16 Resnet50 Vgg16 Resnet50

Detection results (%) Overall accuracies (%) F1 score (%)

A 70.4 74.3 75.3 94.5 93.0 90 87

B 52.0 51.5 52.5 97.1 97.3 97 97

C 18.2 17 17.8 97.3 97.2 98 98

D 70.6 69 74 92.4 92.7 87 87

E 84 73.0 86.3 88.3 92.2 73 74

F 69.5 48.2 83.4 74.7 81.1 69 60

G 45.3 38.2 49.1 90.2 95.6 92 96

H 94.8 49.3 83.6 54.5 84.6 18 29
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480–580 nm, the cloud pixels have higher TOA reflectance than

the clear sky pixels. This is most likely because the lower surface

of the cloud pixels is water, which is visually very close to the

shadows and are identified as cloud pixels in the visual

interpretation due to the surrounding cloud pixels.

Meanwhile, in some images with a high percentage of thick

clouds, if there is a mostly small area of broken clouds, there is a

very small gap between neighboring clouds. In the visual

interpretation process, there is no obvious boundary between

the ground and thin clouds, and there is a certain degree of

subjectivity in the interpretation, which will affect the verification

results and decrease the accuracy.

In this study, some remaining problems must be improved

or discussed. In the process of transfer learning and fine-

tuning the network using pre-trained weight files, the shallow

part of the feature extraction network is frozen, and the

higher-level features are updated using the target data to

fine-tune the network parameters, but the change in

number of frozen layers affects the model results, and the

optimal allocation between the number of frozen layers and

the resource overhead must be further discussed. Meanwhile,

the input data of the deep learning model are the first three

principal components after PCA operation. There are obvious

differences in values compared with the original data, which

needs further discussion and verification of whether higher

accuracy can be achieved by using different band

combinations of the original data. The subjective nature of

visual interpretation may also cause differences between the

training samples and the real state of the ground surface,

which eventually causes misjudgment of the detection results.

When the underlying surface is water, a large amount of vapor

is produced, which is also judged as clouds in the visual

interpretation. Water vapor also obscures the underlying

surface, causing the absence of surface features, so there is

also a need to discuss whether water vapor over water bodies

needs to be detected separately. At present, there are more

public data for cloud detection of remote sensing images, but

these samples are mainly multi-spectral remote sensing

images. In the future, we will establish a standard dataset

for a wider range and a longer time scale and acquire

hyperspectral images of different latitudes, longitudes and

times around the world to verify and compare based on the

unified samples. This effort will be more judicious for the

accuracy of the detection results of different algorithms and

more conducive to the generalization research of the model. In

addition, shadows in remote sensing images can obscure

ground information and cause the same effect as cloud

pixels, and the corresponding detection will be performed

for cloud shadows in future research.

Conclusion

The “Zhuhai-1” hyperspectral satellite has 32 bands of data

in the visible and near-infrared wavelength range

(400–1,000 nm). In this paper, according to the

characteristics of OHS hyperspectral data, the first three

principal components are extracted using the principal

transformation method to remove data noise and reduce

the data dimensionality. Based on the transfer learning

method, using the U-Net framework, the encoder uses pre-

trained VGG16 and ResNet50 models while freezing the

bottom features. For the top features, we use the visually

decoded cloud image element samples for update training

through the fine-tuning of the weights. Finally, we realize

the automatic detection of cloud pixels. In the case of small

sample training data, the use of the transfer learning method

can obtain a cloud detection model with stronger

generalization ability through a smaller training cost. In the

accuracy verification of this paper, using Resnet50 as the

backbone network can lead to an overall accuracy of

detection of 91%, and it can also achieve effective detection

for thin cloud regions.
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