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The correlation calculationmodel between landslide andmapping factors has a

direct influence on the accuracy of landslide susceptibility mapping results.

Using the Baihetan reservoir area as a case study, the effect of several

correlation models on mapping landslide susceptibility is studied. The

frequency ratio (FR) and the information value (IV) coupled BP neural

network (BPNN) model was utilized to assess landslide susceptibility, with

the mapping results of the single back propagation neural network (BPNN)

model acting as a reference. The receiver operating characteristic (ROC) curve,

the frequency ratio, and the susceptibility index distribution (mean value and

standard deviation) are used to compare and assess landslide susceptibility

values. The FR-BPNN coupling model is less precise than the IV-BPNN model.

Findings from a single BPNN model for susceptibility mapping are less exact

than those from a coupled model. Using the coupling model of the mapping

factor correlation approach to assess landslide susceptibility has evident

benefits, according to the study. The coupled model employing IV as the

correlation method provides the most accurate and dependable

susceptibility findings, and the mapping results are more consistent with the

actual distribution of landslides in the study area. It can effectively direct disaster

prevention efforts in the reservoir region.
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1 Introduction

Landslides are one of the most destructive geological

disasters globally, as they threaten human life, the

environment, resources, and property (Yang and Chen, 2010;

Rotigliano et al., 2012; Bao et al., 2019; Sun et al., 2020; Xiaoyu

et al., 2021). The high incidence and widespread distribution of

landslides have aroused the research interest of many scientists,

some of whom are committed to drawing landslide susceptibility

maps (Davis, 2003; Ren and Wu, 2014). By analyzing landslide

susceptibility maps, we can evaluate and locate the areas

vulnerable to these events and then use this information to

take appropriate precautions and reduce the negative impact

of landslides. After decades of development, landslide

susceptibility mapping has become one of the most important

topics in international geomorphology and engineering geology

(Bui et al., 2019; Liu et al., 2019; Mondal and Mandal, 2019;

Monsieurs et al., 2019).

With the advent of remote sensing technologies such as

InSAR, UAV, and GIS technology, the quality and availability

of landslide fundamental data sources and mapping factor layer

data sources have increased significantly (Kouhartsiouk and

Perdikou, 2021). Typically, the selection of landslide mapping

elements in the study area may be chosen by studying pertinent

literature and regional environmental circumstances in the study

area. According to the law of geographical similarity, which

states, “the more similar the geographical environment, the

more similar the geographical characteristics,” it is more likely

that the spatial location of potential landslides can be predicted

by analyzing the mapping factors of existing landslides and

developing a landslide susceptibility model (Huang, et al., 2022).

Clearly, the key to measuring landslide susceptibility in the

studied area through landslide hazard is to establish the

connection between landslide susceptibility values and their

mapping factors; hence, it is vital to pick the most suitable

landslide mapping factor correlation method. The frequency

ratio (Aemail and Lepcha, 2019), information value (Achour

et al., 2017;Wubalem, 2020), probability method (Hangjian et al.,

2017) and weight of evidence (WOE) (Sifa et al., 2019; Goyes-

Penafiel and Hernandez-Rojas, 2021; Kontoes et al., 2021) are

now the most used correlation analysis method. There is

currently no clear regulation regarding which correlation

analysis method to use, and different correlation analysis

methods have different ideas when calculating the grading

interval of each mapping factor, resulting in large uncertainty

in the landslide susceptibility results obtained using different

correlation analysis methods. In order to examine the impact of

different correlation methods on landslide susceptibility findings,

this has prompted several studies to utilize various correlation

approaches with assessment models for landslide susceptibility

mapping (Huang et al., 2022). For instance, Bai selected the Index

of entropy (IOE) as the mapping factor correlation method

coupled with random forest (RF) model to obtain the results

of landslide susceptibility mapping in the Northeast Yu region.

They discovered that the IOE-RF model was approximately 8%

more accurate than the single RF model, demonstrating that the

IOE-RF model is more accurate for landslide susceptibility

mapping in Northeast Yu or similar large study areas

(Zhigang et al., 2022). Huang Lixin et al. utilized the IV

model as a correlation strategy in tandem with the RBF

neural network (RBFNN) model to simulate landslide

susceptibility in Min County, Gansu Province, and analyzed

the results using receiver operating characteristic curves.

Utilizing ROC (receiver operating characteristic) curves, the

results were examined. The area under the curve (AUC) of

the IV-RBFNN model is 0.853, which is 6.3% and 9.7% higher

than the AUCs of the RBFNN and IV models, respectively,

indicating that the RBFNN-IV model gives a more accurate

evaluation (Lixin et al., 2021).

Rarely do researchers select two or more correlation models for

comparison analysis when mapping landslide hazard. Therefore,

this research focuses on mapping the effect of factor correlation

approach on landslide susceptibility outcomes. The correlation

method is too coarse, resulting in the loss of some information

and a reduction in the accuracy of landslide susceptibility mapping

results, whereas an excellent correlation method can fit the

information of mapping factors affecting landslide development

more reasonably and accurately, thereby increasing the

dependability of landslide susceptibility models. Both the IV

method and the FR method statistical analysis methods are more

traditional, straightforward, and user-friendly, and they may

respond more sensibly to landslide distribution features (Faming

et al., 2022).

After identifying the mapping factor correlation method, the

landslide susceptibility mapping model must be established, with

the model’s quality directly influencing the accuracy of the

mapping findings. Currently, empirical methods, statistical

analysis models, physically-based models (Medina et al.,

2021), and machine learning models are utilized most

frequently for landslide susceptibility mapping. Early landslide

susceptibility mapping made substantial use of empirical and

statistical analytical methods, such as fuzzy evaluation (Zhao

et al., 2017; Salcedo et al., 2018), Certainty factor (CF) model

(Wei-dong et al., 2009; Chen et al., 2016) and multiple linear

regression (Wenbin et al., 2021). Nowadays, back propagation

neural network (BPNN) (Vahidnia Abbas and Hosseinali, 2009;

Li et al., 2019; Mohammad H.; Xiong et al., 2019; Huang et al.,

2022), support vector machine (SVM) (Huang and Zhao, 2018;

Pham et al., 2019; Yu and Chen, 2020), logistic regression (LR)

(Abeysiriwardana and Gomes, 2022; Liu et al., 2022), random

forest (RF) (Zhao et al., 2020; Sun et al., 2021) and decision tree

(DT) (Kadavi et al., 2019; Guo et al., 2021), and other machine

learning models, have been found to be applied to regional

landslide susceptibility evaluation with high accuracy and

significant impact on landslide susceptibility intervals. In this

research, we employ BPNN, a common machine learning model,
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to estimate landslide susceptibility and analyze the accuracy

features of its mapping findings. The BPNN model adjusts the

weights and thresholds by forward and backward propagation to

learn the landslide susceptibility mapping sample data and

master the inherent change law of landslides; its calculation

concept is more scientific and reasonable, easy to understand

and master, and can fully reflect the machine’s self-learning

ability (Wu et al., 2013).

The data values of two correlation models of frequency ratio

(FR) and information quantity (IV) and the original mapping

factor data were used as the input layer of the BP neural network

model to conduct landslide susceptibility mapping analysis using

the Baihetan reservoir area as an example, and the various

susceptibility results were evaluated by ROC curve, frequency

ratio, and susceptibility value distribution law (mean and

standard deviation).

2 Materials and methods

2.1 Study area

The study area, which is located on the southeastern margin

of the Qinghai-Tibetan Plateau, comprises high-elevation

mountains and plateaus in southwestern Sichuan and

northeastern Yunnan and is located in the wide valley

reservoir section of the lower Jinsha River, 32.4–94 km from

the Baihetan dam site, with an area of 583.36 km2. The valley

shape is wide and forms a gentle U shape, and the bank slopes on

both sides are asymmetrical. During the normal water period, the

elevation of the river level is 700–630 m, and the river surface is

62–380 m wide. On both banks, the lower bank slopes (below

900 m) are gentle (generally 10°–30°), while the upper slopes

(above 900 m) are steep (generally 30°–50°). The study area is

composed of floodplains (floodplains and central plains are

widely distributed), terraces, and platforms, and the

population is relatively dense. The study area is located on the

border of Sichuan and Yunnan, with the most intense human

engineering activities, highly inhabited areas, and a high risk of

geological disasters, making it the primary focus for the

prevention and management of geological disasters in the

Baihetan reservoir area.

The stratigraphic section in the study area is relatively complete.

The strata include the Pre-Sinian Antong Formation (Pt2t), Sinian

Dengying Formation (Zbd) and Chengjiang Formation (Zac), lower

Cambrian strata (∈1), middle Cambrian Xiwangmiao Formation

(∈2x) and Erdaoshui Formation (∈3e), Ordovician Qiaojia

Formation (O2q) and Daqing Formation (O2d), Silurian

Shimenkan Formation (S2s), upper Silurian strata (S3), Lower

Devonian strata (D1), Middle Devonian Yaopengzi Formation

(D2y), Upper Devonian strata (D3), lower Carboniferous strata

(C1), lower Permian Liangshan Formation (P1l), lower Permian

Qixia-Maokou Formation (P1q+m), upper Permian Emeishan

Formation (P2β), and Quaternary deposits (Qcol+dl, Qedl, Qapl, Qal,

Qpl, and Qdel).

The study area is located in the subtropical monsoon

climate zone and is characterized by complex terrain and

large elevation differences, forming unique climate

characteristics with an obvious rainfall concentration

season and a noticeable vertical climatic gradient. The steep

bank slopes on both sides of the Jinsha River and the

concentration of precipitation in the reservoir area result in

the strong erosion of valleys, mainly the Jinsha River’s

mainstream tributaries and gullies. The mainstream of the

Jinsha River flows in the direction of N7°W and has three

tributaries in the Baihetan Reservoir area with a length

exceeding 60 km: the Heishui River enters from the left

bank, while the Xiaojiang River and Yili River enter from

the right bank (Yi et al., 2022). Changes in both rainfall and

temperature have certain effects on runoff in the basin. The

wet rainy season is concentrated from June to October, and

the runoff in this season accounts for more than 80% of the

runoff throughout the year. In addition, the annual variation

in runoff decreases gradually from the upper reaches to the

lower reaches (Figure 1).

2.2 Data collection

In order to perform this study, the following information was

gathered:

(1) A digital elevation model (DEM) with a 10 m resolution: The

data were obtained by unmanned aerial vehicle (UAV) aerial

photography and were used to extract topographic factors

such as slope and aspect.

(2) 1:25,000 geological maps: These data were obtained from the

National Geological Data Center (http://www.ngac.cn/) and

were used to extract structural factors such as lithology and

faults.

(3) 1:250,000 water system data: These data were obtained from

the National Earth System Science Data Center (http://www.

geodata.cn/) and were used to extract the water system

evaluation factors.

(4) Land use data with a 30 m resolution: obtained from the

National Geographic Information Resources Catalog Service

(http://www.webmap.cn/) for extracting land use factors

(5) Data on 118 landslide disasters: These data, which are

taken as the sample in this study, were derived mainly

from two sources: 1) Interferometric synthetic aperture

radar (InSAR) data were used to interpret deformation

points, and then the landslide disaster were identified by

an on-site review; 2) UAV remote sensing aerial photos

were used to interpret hidden hazard points, and a

thorough on-site review was conducted to determine

the landslide disasters (Figure 1).
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3 Research method

3.1 Research ideas

The FR and IV models are combined with the BPNN model

for the process of mapping landslide susceptibility as follows

(Figure 2).

(1) The geographical data set for landslide susceptibility

mapping is created by obtaining landslide and related

mapping factor data sources using a variety of remote

sensing and field survey methods.

(2) The input layers of the BPNN model are the original

mapping factor data, FR and IV, whereas the output layer

indicates whether landslides occur or not.

(3) The three models undergo landslide susceptibility mapping

modeling inMATLAB, and the resulting susceptibility values

are loaded into ArcGIS for landslide susceptibility mapping

and grade classification.

(4) ROC curve, frequency ratio, and susceptibility value

distribution pattern were utilized to evaluate the results of

the landslide susceptibility mapping (mean and standard

deviation).

(5) Using comparison analysis to determine the optimal

correlation analysis approach for susceptibility mapping.

3.2 Correlation analysis method

3.2.1 Frequency ratio method
The FR approach may reflect the distribution of landslides in

different grade intervals and highlight the significance of various

grade intervals in landslide development. FR > 1 indicates a high

probability of landslides in the area; the larger the FR value is, the

higher the probability of landslides; FR < 1 indicates a low

probability of landslides in the area (Meena et al., 2019). The

formula is as follows:

FR � Nj/N
Sj/S (1)

In Eq. 1, Nj is the number of rasters of landslides

occurring in a graded area; N is the number of rasters of

landslides occurring in the study area; Sj is the number of

rasters of a graded area; and S is the number of rasters of the

study area.

FIGURE 1
Location of the study area. (A) Location of the Baihetan hydropower station; (B) Range of the Hulukou-Xiangbiling section in the Baihetan
Reservoir area; (C) distribution of landslides in the study area.
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3.2.2 Information volume method
The IV method is developed and derived from the

combination of statistical models and information theory. The

purpose of applying the information volume model to landslide

susceptibility mapping is to extract the distribution of landslides

in areas where landslides have occurred and convert the actual

measured data in the study area into information values of

quantifiable size, thereby providing a quantitative indicator of

landslide susceptibility (Ge et al., 2018). The formula is as follows:

Iij � ln
Nij/N
Sij/S (2)

In Eq. 2, Iij is the information value of the jth class interval of the

ith mapping factor; Nij is the number of landslide rasters in the

FIGURE 2
Landslide susceptibility mapping process.

FIGURE 3
Diagrammatic representation of the BP neural network
model.
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jth class interval of the ith mapping factor; N is the total number

of landslide rasters in the study area; Sij is the number of rasters

in the jth class interval of the ith mapping factor; and S is all

rasters in the study area.

3.2.3 BP neural network method
The BPNN model has the capacity to categorize arbitrarily

complex patterns and conduct exceptional multidimensional

function mapping. It is composed of an input layer, a hidden

layer, and an output layer, with different activation functions

linking adjacent layers (Figure 3). When completing the

calculation, each neuron uses the output value of the neuron

in the previous layer as the input value of the neuron in this layer

and processes the value according to the weights and thresholds

before outputting the result of the computation to the neuron in

the next layer (Wu et al., 2013; Li et al., 2019; Yu and Chen, 2020).

The BPNN model facilitates machine learning by continuously

adjusting weights and thresholds (Guo et al., 2020).

3.3 Method for precise evaluation and
analysis

3.3.1 Receiver operating characteristic curve
evaluation

The ROC curve was utilized to evaluate the precision of the

mapping results for landslide susceptibility. ROC curves are

extensively employed to evaluate the precision of landslide

susceptibility mapping results. The horizontal axis is the false

positive rate (1-specificity), the vertical axis is the true positive

rate (sensitivity), and the area below the ROC curve (the AUC)

can be used as an indicator for the accurate evaluation of a certain

judgment method. The larger the AUC is, the higher the accuracy

of the experiment and the better the prediction effect of the

model (Vakhshoori and Zare, 2018; Ngo et al., 2021).

3.3.2 Evaluation statistical of the susceptibility
index

Themean value indicates the trend in a collection of data sets.

Its formula is provided in (3), which illustrates the overall pattern

of the distribution of landslide susceptibility values in the study

region and represents the average landslide susceptibility in the

study area. The standard deviation measures the distance from

themean. Its Eq. 4 represents the degree of dispersion of the value

of landslide susceptibility in the study area. A smaller standard

deviation implies that the values of landslide susceptibility in the

study area are more concentrated around the mean value, and

vice versa, which indicates that they are more dispersed. The

mean and standard deviation are utilized to analyze the

distribution characteristics of susceptibility values in the entire

study area, reveal the prediction performance under various

correlation analysis methods and model coupling models, and

provide theoretical guidance for landslide susceptibility research

(Huang et al., 2022).

Δx � x1 + x2 +/ + xn

n
(3)

sN �

�������������
1
N

∑N
i�1
(xi − Δx)2

√√
(4)

where Δx represents the mean value; xn represents the

susceptibility value in the nth rasters; and xi represents the

susceptibility value in the ith rasters.

4 Mapping factor analysis

From the database, nine landslide mapping factors were

selected based on the characteristics of landslide distribution

in the study area and a review of relevant papers (Tang et al.,

2020; Yang et al., 2021). It includes 1) topographic and

geomorphological factors: slope, aspect, curvature, elevation,

and relief; 2) the engineering rock group factor: engineering

rock group; 3) the tectonic factor: fault density; 4) the

hydrological factor: distance from the river; and 5) the surface

cover factor: Land use. The seven mapping factors of fault

density, slope, aspect, curvature, elevation, relief, and river

distance were continuous data that were classified by a certain

spacing. The engineering rock group and land use type were

defined based on their inherent natural grouping (Figure 4). The

FR and IV at each interval are then tallied (Table 1). The index of

vegetation coverage was not addressed in this study due to the

lack of plant coverage on the slope surface in the study area.

4.1 Topographic and geomorphic factors

The DEM is used to derive the five mapping factors of

slope, curvature, aspect, elevation, and relief. The research

area was separated into six slope intervals based on the

number of landslide distributions, using the slope factor

(Table 1) as an example. In these six intervals, the number

of landslide disasters follows the law of normal distribution,

with a rise followed by a drop. IV and FR were calculated and

evaluated for various slope intervals. We discovered that the

majority of landslides occurred on slopes between 20° ~ 40°,

accounting for 71.58% of all landslides, and that the IV was

more than 0 and the FR was bigger. The IV and FR in the 20° ~

30° slope interval are the greatest at 0.385 and 1.470,

respectively; the IV and FR in the remaining slope intervals

are less. It was consistent with the distribution of landslides

that both IV and FR demonstrated a normal distribution

relationship in the slope classification interval, with the

center value being greater than the two sides.
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4.2 Engineering rock group factor

Landslides are significantly influenced by the structural

integrity of the rock and soil. The slopes with superior

lithology are more resistant to weathering and experience

less weathering, reducing the probability of deformation.

As shown in Table 1, the majority of landslides (55.20%)

occurred in the collapse-slip deposits and soft rock

formations; the IV is greater than 0 and the FR is also

greater than 1. IV and FR have the highest values in the

collapse-slip accumulation layer, with respective values of

1.290 and 3.633.

FIGURE 4
Mapping factors of landslide susceptibility in the study area. [(A) Slope; (B) Aspect; (C) Curvature; (D) Relief; (E) Elevation; (F) Engineering rock
group; (G) Fault density; (H) Distance; (I) Land use].
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TABLE 1 Correlation values of mapping factors.

Factor Class Landslide ratio
(%)

Area ratio
(%)

FR IV

Slope(°) 0~10 1.827 16.810 0.109 −2.220

10~20 15.010 22.228 0.675 −0.393

20~30act 37.052 25.200 1.470 0.385

30~40 34.537 23.767 1.453 0.374

40~50 9.661 9.747 0.991 −0.009

>50 1.914 2.248 0.851 −0.161

Aspect(°) −1 0.512 1.142 0.449 −0.801

0~45 18.337 12.128 1.512 0.413

45~90 13.667 13.965 0.979 −0.022

90~135 5.702 12.888 0.442 −0.816

135~180 5.151 10.569 0.487 −0.719

180~225 10.069 12.295 0.819 −0.200

225~270 17.450 15.864 1.100 0.095

270~315 14.856 11.629 1.277 0.245

315~360 14.256 9.518 1.498 0.404

Curvature Concave 42.631 39.927 1.068 0.066

Flat 18.304 19.462 0.940 −0.061

Convex 39.065 40.610 0.962 −0.039

Elevation (m) 577~800 10.810 24.161 0.447 −0.804

800~1,000 30.596 20.601 1.485 0.396

1,000~1,200 32.409 18.396 1.762 0.566

1,200~1,400 15.808 14.547 1.087 0.083

1,400~1,600 5.452 10.067 0.542 −0.613

>1,600 4.924 12.229 0.403 −0.910

Relief 0~8 6.445 27.252 0.236 −1.442

8~16 37.355 30.455 1.227 0.204

16~24 38.174 25.273 1.510 0.412

24~32 13.577 11.893 1.142 0.132

32~40 2.994 3.446 0.869 −0.141

>40 1.456 1.682 0.865 −0.145

Engineering rock group Hard rock 1.601 5.197 0.308 −1.178

Relatively hard rock 25.065 26.624 0.941 −0.060

Relatively soft rock 8.284 9.591 0.864 −0.147

Soft rock 33.532 21.761 1.541 0.432

Collapse-slip deposits 21.664 5.963 3.633 1.290

Eluvium diluvium 6.380 11.128 0.573 −0.556

Fault density (strip/km2) 0 12.180 16.547 0.736 −0.306

0~0.3 10.608 16.136 0.657 −0.419

0.3~0.6 15.559 23.263 0.669 −0.402

0.6~0.9 23.995 22.334 1.074 0.072

0.9~1.2 30.610 15.586 1.964 0.675

>1.2 7.048 6.136 1.149 0.139

Distance to river (m) 0~500 12.247 18.783 0.652 −0.428

500~1,000 15.369 13.865 0.961 0.103

1,000~1,500 28.712 15.748 1.823 0.601

1,500~2000 16.958 17.655 1.108 −0.040

2000~2,500 7.344 11.250 0.653 −0.426

(Continued on following page)
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4.3 Tectonic factor

The faults control not only the topography and

geomorphology, but also the rock mass structure and

combination features of rock formations, as well as the

occurrence of landslide. In the study area, there are two big

regional fault zones and several smaller faults. As a result, the

fault density is used to represent the influence of tectonic factors

on landslide. The fault density factor is divided into six divisions

by ArcGIS. 54.70% of all landslides occur between 0.6 ~

1.2 faults/km2, accounting for the majority of landslides. IV

and FR in the range of 0.9 ~ 1.2 faults/km2 are the largest,

with values of 0.675 and 1.964, respectively. Both IV and FR

demonstrate a statistically significant positive correlation

between landslides and fault density in the studied area (Table 1).

4.4 Hydrological factor

Throughout the study area are several rivers, notably the

Jinsha River. Downward and lateral erosion caused by these

rivers has altered the surface morphology and internal structure

of the slope, thereby increasing the risk of slope instability. This

time, the distance from the river is utilized to illustrate the effect

of the water factor on the landslide, and ArcGIS divides the

mapping factor of the distance from the river into six sections. IV

is bigger than 0 and FR is also greater in the area between 500 ~

1,500 m. Most landslides are developed in the 1,000–1,500 m,

accounting for 28.72% of the total landslides, and the IV and FR

are the largest, 0.601 and 1.823, respectively. This is because of

the river’s downerosion action, which causes the higher section of

the slope body to be worn and stripped of vegetation first

(Table 1).

4.5 Surface cover factor

Different forms of slope surface cover have a significant

impact on the weathering and erosion of the slope. The study

area is divided into six groups based on its actual surface cover:

farmland, forest, grassland, shrubland, wetland, and artificial

surface. Table 1 demonstrates that 68.64% of all landslides

occurred on grassland, with the IV and FR being the greatest,

0.545 and 1.725, respectively.

5 Landslide susceptibility mapping

5.1 Cartographic modeling of landslide
susceptibility

The mapping factors and landslide surface data for the study

area were divided into layers with a 10 m resolution. Using the IV

correlation method as an example, the specific steps of landslide

susceptibility mapping in the studied area are as follows:

(1) Using ArcGIS, 250 landslide sample points and the same

number of nonlandslide sample points were randomly

selected from polygon files of 118 landslides and the

nonlandslide area, respectively. Then, the IV of each

mapping factor is distributed to each sample point to

obtain 500 samples with independent properties.

(2) 500 samples of data were imported into MATLAB, the IV

with 9 mapping factors was used as the input layer, and

landslide status was utilized as the output layer (the landslide

is assigned “1”, the nonlandslide is assigned “0”). The

number of neurons in the hidden layer was seven (this

time α = 4) and was calculated by a Eq. 5:

m � ����
n + l

√ + α (5)

In Eq. 5, m is the number of neurons in the hidden layer; n

is the number of neurons in the input layer; l is the number of

neurons in the output layer; and α is a constant between

1 and 10.

(3) Seventy percent of the sample data is utilized for

training, whereas thirty percent are used for testing.

TABLE 1 (Continued) Correlation values of mapping factors.

Factor Class Landslide ratio
(%)

Area ratio
(%)

FR IV

>2,500 19.370 22.700 0.853 −0.159

Land use Farm land 19.737 36.678 0.538 0.219

Forest 9.921 17.916 0.554 −0.591

Grassland 68.643 39.787 1.725 0.545

Shrubland 1.150 0.924 1.245 −0.620

Wetland 0.158 2.287 0.069 −2.674

Artificial surface 0.391 2.409 0.162 −1.819
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Then, logsig and purelin are selected as activation

functions with the training number set to 10,000, the

learning rate set to 0.001, and the minimal training goal

error set to 0.001. Finally, MATLAB is used to calculate

the BPNN model.

(4) The IV of the raster data points in the study area is included

into the trained BPNN model to determine the values of

landslide susceptibility. The modeling procedures and

parameter configurations of the FR-BPNN and BPNN

models are essentially identical to those of the IV-BPNN

model.

5.2 Results of landslide susceptibility
mapping

After importing the landslide susceptibility values predicted

by the three models into ArcGIS, the natural interval method was

used to classify the landslide susceptibility values in the study

area into four classes: low, medium, high, and very high. The

landslide susceptibility findings of the IV-BPNN model, FR-

BPNN model, and BPNN model (Figure 5) were the result of the

aforementioned procedures (Huang et al., 2022).

Comparing the mapping results of the three models, the

following can be observed:

(1) The very high-susceptibility areas are mostly concentrated in

areas with steep slopes and in densely faulted areas, but the

susceptibility is also greatly affected by the softness of the

engineering rock group. There are two reasons for this in

terms of slope: first, in areas with steeper slopes, there is a

large shear stress concentration at the foot of the slope;

second, the slope restricts the redistribution of surface

material and energy to different degrees and controls

surface runoff, the thickness of loose material on the

slope, and the recharge and discharge of groundwater on

the slope. Hence, the steeper the slope is, the greater the

possibility of displacement of loose rock and soil on the

surface under the hydrodynamic and self-weight conditions

and the greater the probability of a landslide. Moreover, on

the one hand, fracture zones can trigger landslide disasters;

on the other hand, unconformities (structural planes such as

fault planes and joint planes) within the geological structure

provide the geomorphological conditions necessary for the

occurrence of landslides. Thus, under different engineering

rock group conditions, collapse-slip deposits and soft rock

formations significantly reduce the stability of the slope,

facilitating the formation of landslides under the combined

action of weathering, earthquakes, and other external factors.

(2) Comparing Figure 5 shows that the landslide susceptibility

findings of the three prediction models are distinct; yet, the

FIGURE 5
Landslide susceptibility mapping results. [(A) BPNN; (B) FR-BPNN; (C) IV-BPNN).
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vast majority of the 118 actual landslides in the study area fall

into the very high and high susceptibility areas of the three

prediction models. This displays the accuracy of the three

models’ mapping results for landslide susceptibility.

6 Discussion

6.1 Receiver operating characteristic
precision evaluation

The area under the ROC curve (AUC value) was used to

evaluate the accuracy of the evaluation of the landslide

susceptibility results of various models (Zhao et al., 2022).

The greater the AUC number, the more accurate the model’s

predictions.

In this study, 500 sample points were randomly picked from

the landslide surface file, and an equal number were randomly

selected from the non-landslide area. The ROC curve was

analyzed using a total of 1,000 independent samples. The

ROC curves of the landslide susceptibility results for the

BPNN model, the FR-BPNN model, and the IV-BPNN model

are depicted in Figure 6.

Figure 6 demonstrates that the susceptibility results predicted

by the three models are realizable. The AUC value is in the order

of AUC (IV-BPNN) > AUC (FR-BPNN) > AUC (BPNN), which

suggests that the coupled model has higher accuracy and better

effect than the single BPNN model. At the same time, the IV-

BPNN model achieves superior results for landslide

susceptibility, and its AUC value is 6.4% higher than that of

the FR-BPNN model and 11.8% higher than the value of the

single BPNN model.

6.2 Test of reasonability

The frequency ratio represents the density of landslides in

different sections prone to landslides in each model, and the

findings are displayed in Table 2.

According to Table 2, the frequency ratio of the very high and

high susceptibility areas for landslides is greater than 1, but the

results of the medium and low susceptibility areas are less than 1.

The data level indicates that the landslide susceptibility results of

the three models are accurate, and the landslides are primarily

dispersed in very high and high susceptibility areas, which is

compatible with the susceptibility map’s results. It can also be

concluded that the frequency ratio of very high susceptibility

areas in the IV-BPNNmodel is 1.112 and 0.4632 greater than the

results of the BPNN model alone and the FR-BPNN model,

respectively, indicating that the landslide susceptibility results of

the IV-BPNN model are superior to those of the other two

models.

6.3 Distribution analysis of the landslide
susceptibility index

Themean and standard deviation are utilized to represent the

average and dispersion of landslide susceptibility values in the

study area, respectively, and to evaluate the uncertainty of

landslide susceptibility mapping for different models (Huang

et al., 2022).

Figure 7 depicts the distribution, mean, and standard

deviation of landslide susceptibility values in the study

area. Figure 7 demonstrates that the distribution laws of

the landslide susceptibility values of the BPNN model, the

FR-BPNN model, and the IV-BPNN model are comparable

and are concentrated in the middle susceptibility area with a

normal distribution. The mean value of landslide

susceptibility was BPNN (0.48) > IV-BPNN (0.43) > FR-

BPNN (0.42); the standard deviation from large to small

was IV-BPNN (0.149) > FR-BPNN (0.131) > BPNN

(0.124). Additionally, the IV-BPNN model has a smaller

very high susceptibility area than the other two models, but

it has the highest accuracy. The IV-BPNN model’s landslide

susceptibility values have smaller mean values and the largest

standard deviation and reflect more landslides with fewer high

susceptibility areas, indicating that this model can more

effectively identify landslides in the study area and produce

more differentiated landslide susceptibility results. Therefore,

the uncertainty analysis concludes that the IV-BPNN model

delivers much improved susceptibility outcomes compared to

the other two models.

FIGURE 6
ROC curve of landslide susceptibility results.
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6.4 Combined examination of two
correlation methods

The mapping factor correlation method reflects quantitatively

or approximates the effect of different sections of each mapping

factor on landslide susceptibility. IV can more precisely reflect the

influence of varied intervals of mapping factors on landslides and

has a greater AUC value (88.2%) in correlation analysis-based

susceptibility mapping compared to FR. Based on the original

mapping factor data, the BPNN model yields the least precise

susceptibility mapping results.

In terms of landslide susceptibility, the frequency ratio of the IV

correlation analysis model in the very high susceptibility area is the

greatest at 3.624, while the frequency ratio of the BPNNmodel alone is

the lowest in the very high susceptibility area. In addition, the

comparison of the mean and standard deviation demonstrates that

the IV-BPNN and FR-BPNN models are far better to the BPNN

model. Because the couplingmodel organically combines the landslide

and its mapping factors, it accurately reflects the influence of the

mapping factors on the landslide, making the landslide susceptibility

value more closely related to the existing landslide hazards and

resulting in more reasonable evaluation results. In contrast, the

correlation method using the IV method as the mapping factor

yields superior results for landslide susceptibility than the FRmethod.

7 Conclusion

(1) The precision and uncertainty of the mapping results of the

BPNN model using the original data as the input layer are

demonstrably lower than those of the coupling model

employing the mapping factor correlation method.

Consider using a single assessment method for

susceptibility mapping to expedite your investigation and

obtain landslide susceptibility data quickly. However, if the

distribution relationship between landslides and their

mapping factors in each interval is to be reflected, the

coupling model connected by the mapping factor

correlation method should be considered to improve the

precision of the evaluation.

(2) The IV as the correlation analysis method produced the most

accurate landslide susceptibility mapping results, as its AUC

value (88.2%) was much higher than that of the FR-BPNN

model (81.8%) and its frequency ratio of very high

susceptibility areas was greater than that of the FR-BPNN

model. The IV-BPNN model has the lowest mean and the

greatest standard deviation. Thus, IV can strengthen the

correlation between landslides and their mapping factors.

(3) In conclusion, the coupled model using IV as the correlation

method has the best accuracy and reliability of susceptibility

TABLE 2 Frequency ratio of each model’s susceptibility area.

Model
susceptibility

BPNN model FR-BPNN model IV-BPNN model

Landslide
ratio
(%)

Area
ratio
(%)

FR Landslide
ratio
(%)

Area
ratio
(%)

FR Landslide
ratio
(%)

Area
ratio
(%)

FR

Low 7.53 34.78 0.216 4.24 25.89 0.1638 5.38 31.59 0.170

Medium 20.43 29.52 0.692 9.98 26.42 0.3777 11.83 34.68 0.341

High 49.46 26.71 1.852 53.54 37.49 1.4281 40.86 22.16 1.844

Very high 22.58 8.99 2.512 32.24 10.2 3.1608 41.94 11.57 3.624

FIGURE 7
Distribution of landslide susceptibility values.

Frontiers in Environmental Science frontiersin.org12

Xue et al. 10.3389/fenvs.2022.1039985

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2022.1039985


results, and the mapping results are more comparable with

the actual distribution of landslides in the study area. It can

effectively direct disaster prevention efforts in the reservoir

region.
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